首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The use of heavy machinery is increasing in agriculture, which induces increased risks of subsoil compaction. Hence, there is a need for technical solutions that reduce the compaction risk at high total machine loads. Three field experiments were performed in order to study the effects of dual wheels, tandem wheels and tyre inflation pressure on stress propagation in soil. Vertical soil stress was measured at three different depths by installing probes into the soil horizontally from a dug pit. In one experiment, also the stress distribution below the tyre was measured. Beneath the dual wheels, vertical stresses at 0.15 and 0.3 m depth were lower between the two wheels than under the centre of each wheel, despite the gap between the wheels being small (0.1 m). At 0.5 m depth, vertical stress beneath the wheels was the same as between the two wheels. The stress interaction from the two wheels was weak, even in the subsoil. Accordingly, measured stresses at 0.3, 0.5 and 0.7 m depth were highest under the centre of each axle centre line of tandem wheels, and much lower between the axles. For a wheel load of 86 kN, tyre inflation pressure significantly affected stress at 0.3 m depth, but not at greater depths. Stress directly below the tyre, measured at 0.1 m depth, was unevenly distributed, both in driving direction and perpendicular to driving direction, and maximum stress was considerably higher than tyre inflation pressure. Calculations of vertical stress based on Boussinesq's equation for elastic materials agreed well with measurements. A parabolic or linear contact stress distribution (stress declines from the centre to the edge of the contact area) was a better approximation of the contact stress than a uniform stress distribution. The results demonstrate that stress in the soil at different depths is a function of the stress on the surface and the contact area, which in turn are functions of wheel load, wheel arrangement, tyre inflation pressure, contact stress distribution and soil conditions. Soil stress and soil compaction are a function of neither axle load nor total vehicle load. This is of great importance for practical purposes. Reducing wheel load, e.g. by using dual or tandem wheels, also allows tyre inflation pressure to be reduced. This reduces the risk of subsoil compaction.  相似文献   

2.
轮式和履带式车辆行走对农田土壤的压实作用分析   总被引:3,自引:3,他引:0  
由履带式行走机构代替轮胎被认为是减缓大型农业车辆对土壤压实的有效手段之一。与轮胎相比,履带具有更大的接地面积,能够有效减小车辆对土壤的平均压力。然而履带与土壤接触面间的应力分布极不均匀,应力主要集中在各承重轮下方,履带减缓土壤压实的能力是目前有待研究的问题。该研究通过在土壤内埋设压力传感器,测试比较了相近载质量的轮胎和履带式车辆作用下,0.15和0.35 m深度土壤内的最大垂直及水平应力,同时研究了车辆行驶速度对土壤内垂直及水平应力大小的影响。基于土壤压实分析模型计算了轮胎和履带压实的0.1~0.7m深度土壤内的最大垂直及水平应力分布。通过对0.15和0.35 m深度的土样进行室内测试,比较了轮胎和履带式车辆压实对土壤透气率、先期固结压力及干容重大小的影响。结果表明,履带相比较于轮胎,能够减小土壤内的垂直及水平应力,但垂直应力的减小量比水平应力大;轮胎对0.15和0.35m深度土壤作用的平均最大垂直应力分别约为履带的2.2及2.0倍,而平均最大水平应力仅分别约为履带的1.2及1.1倍。轮胎作用下的最大垂直及水平应力在表层土壤内明显大于履带,但两者的应力差值随着土壤深度的增加逐渐减小,分别在0.7和0.4 m深度时无明显差别。轮胎和履带压实作用下,0.15和0.35 m深度土壤内的垂直及水平应力均随车辆行驶速度的增加而减小,履带作用下的应力减小速度大于轮胎。履带作用下0.15和0.35 m深度内土壤的透气率均明显小于轮胎,但土壤的先期固结压力及干容重无显著区别。研究结果为可为农业车辆行走机构的选择及使用提供参考。  相似文献   

3.
Subsoil compaction is persistent and can affect important soil functions including soil productivity. The aim of this study was to develop recommendations on how to avoid subsoil compaction for soils exposed to traffic by machinery at field capacity. We measured the vertical stress in the tyre–soil contact area for two traction tyres at ca. 30‐ and 60‐kN wheel loads on a loamy sand at field capacity. Data on resulting stress distributions were combined with those from the literature for five implement tyres tested at a range of inflation pressures and wheel loads. The vertical stress in the soil profile was then predicted using the Söhne model for all tests in the combined data set. The predicted stress at 20 cm depth correlated with the maximum stress in the contact area, tyre inflation pressure, tyre–soil contact area and mean ground pressure. At 100 cm depth, the predicted vertical stress was primarily determined by wheel load, but an effect of the other factors was also detected. Based on published recommendations for allowable stresses in the soil profile, we propose the ‘50‐50 rule’: At water contents around field capacity, traffic on agricultural soil should not exert vertical stresses in excess of 50 kPa at depths >50 cm. Our combined data provide the basis for the ‘8‐8 rule’: The depth of the 50‐kPa stress isobar increases by 8 cm for each additional tonne increase in wheel load and by 8 cm for each doubling of the tyre inflation pressure. We suggest that farmers use this simple rule for evaluating the sustainability of any planned traffic over moist soil.  相似文献   

4.
Subsoil compaction is a major problem in modern agriculture caused by the intensification of agricultural production and the increase in weight of agricultural machinery. Compaction in the subsoil is highly persistent and leads to deterioration of soil functions. Wheel load‐carrying capacity (WLCC) is defined as the maximum wheel load for a specific tyre and inflation pressure that does not result in soil stress in excess of soil strength. The soil strength and hence WLCC is strongly influenced by soil matric potential (h). The aim of this study was to estimate the seasonal dynamics in WLCC based on in situ measurements of h, measurements of precompression stress at various h and simulations of soil stress. In this work, we concentrated on prevention of subsoil compaction. Calculations were made for different tyres (standard and low‐pressure top tyres) and for soil under different tillage and cropping systems (mouldboard ploughing, direct drilling, permanent grassland), and the computed WLCC was compared with real wheel loads to obtain the number of trafficable days (NTD) for various agricultural machines. Wheel load‐carrying capacity was higher for the top than the standard tyres, demonstrating the potential of tyre equipment in reducing compaction risks. The NTD varied between years and generally decreased with increasing wheel load of the machinery. The WLCC simulations presented here provide a useful and easily interpreted tool to guide the avoidance of soil compaction.  相似文献   

5.
A critical-state finite element model was used to simulate compaction under single and dual tyres and tracks. The compaction involved deformations at three different scales, from small tyres with a contact area of about 70 cm2 (single tyre) supporting a load of about 50 kg, to large tyres of about 1.2 m2 (dual tyres) supporting a load of about 4500 kg. The predictions were compared with measured values for several different quantities. These included: rut depths; vertical displacement and shear strain: vertical stresses; and, void ratios and precompression stress measured on sampled soil cores. In general, the predictions and measurements agreed reasonably well. However, the agreement between prediction and measurement depended on the precision of measurements, soil disturbance, and the volume of soil involved in a measurement relative to the volume of soil influenced by the tyre or track. This study shows that the critical-state finite element model is useful, offering insight into the compaction process, the dependence of compaction on soil strength and compressibility, and practical implications for soil management.  相似文献   

6.
The relative importance of wheel load and tyre inflation pressure on topsoil and subsoil stresses has long been disputed in soil compaction research. The objectives of the experiment presented here were to (1) measure maximum soil stresses and stress distribution in the topsoil for different wheel loads at the same recommended tyre inflation pressure; (2) measure soil stresses at different inflation pressures for the given wheel loads; and (3) measure subsoil stresses and compare measured and simulated values. Measurements were made with the wheel loads 11, 15 and 33 kN at inflation pressures of 70, 100 and 150 kPa. Topsoil stresses were measured at 10 cm depth with five stress sensors installed in disturbed soil, perpendicular to driving direction. Contact area was measured on a hard surface. Subsoil stresses were measured at 30, 50 and 70 cm depth with sensors installed in undisturbed soil. The mean ground contact pressure could be approximated by the tyre inflation pressure (only) when the recommended inflation pressure was used. The maximum stress at 10 cm depth was considerably higher than the inflation pressure (39% on average) and also increased with increasing wheel load. While tyre inflation pressure had a large influence on soil stresses measured at 10 cm depth, it had very little influence in the subsoil (30 cm and deeper). In contrast, wheel load had a very large influence on subsoil stresses. Measured and simulated values agreed reasonably well in terms of relative differences between treatments, but the effect of inflation pressure on subsoil stresses was overestimated in the simulations. To reduce soil stresses exerted by tyres in agriculture, the results show the need to further study the distribution of stresses under tyres. For calculation of subsoil stresses, further validations of commonly used models for stress propagation are needed.  相似文献   

7.
Field traffic may reduce the amount of air-filled pores and cavities in the soil thus affecting a large range of physical soil properties and processes, such as infiltration, soil water flow and water retention. Furthermore, soil compaction may increase the mechanical strength of the soil and thereby impede root growth.

The objective of this research was to test the hypotheses that: (1) the degree of soil displacement during field traffic depends largely on the soil water content, and (2) the depth to which the soil is displaced during field traffic can be predicted on the basis of the soil precompression stress and calculated soil stresses. In 1999, field measurements were carried out on a Swedish swelling/shrinking clay loam of stresses and vertical soil displacement during traffic with wheel loads of 2, 3, 5 and 7 Mg at soil water contents of between 11 and 35% (w/w). This was combined with determinations of soil precompression stress at the time of the traffic and predictions of the soil compaction with the soil compaction model SOCOMO. Vertical soil displacement increased with increased axle load. In May, the soil precompression stress was approximately 100 kPa at 0.3, 0.5 and 0.7 m depth. In August and September, the soil precompression stress at 0.3, 0.5 and 0.7 m depth was 550–1245 kPa. However, when traffic with a wheel load of 7 Mg was applied, the soil displacements at 0.5 m depth were several times larger in August and September than in May, and even more at 0.7 m depth. An implication of the results is that the precompression stress does not always provide a good indication of the risk for subsoil compaction. A practical consequence is that subsoil compaction in some soils may occur even when the soil is very dry. The SOCOMO model predicted the soil displacement relatively well when the soil precompression stress was low. However, for all other wheeling treatments, the model failed to predict that any soil compaction would occur, even at high axle loads.

The measured soil stresses were generally higher than the stresses calculated with the SOCOMO model. Neither the application of a parabolic surface load distribution nor an increased concentration factor could account for this difference. This was probably because the stress distribution in a very dry and strongly structured soil is different from the stress distribution in more homogeneous soils.  相似文献   


8.
One of the most significant soil parameters affecting root growth is soil compaction. It is therefore important to be able to determine the presence of compacted layers, their depth, thickness and spatial location without the necessity of digging a large number of holes in the field with either a spade or backhoe. Previous investigations have identified soil compaction by different methods such as: using ground penetrating radar, acoustic systems, vertical and horizontal penetrometers and instrumented wings mounted on the faces of tines. Linking the output from these sensors to global positioning systems would give an indication of the spatial patent variation. The aim of this study was to evaluate the performance of a soil compaction profile sensor in both controlled laboratory and field conditions. The sensor consisted of a series of instrumented flaps; a flap is defined as the sensing element which comprises one half of a pointed leading edge to the leg of a tine to which strain gauges are placed on the rear face of the flap. Studies measured the effect of compaction on the changes in the soil resistance acting upon a flap face in a soil bin laboratory and under field conditions. The results indicated that the sensor was sensitive to differences in soil strength at different depths in soils. A technique was developed to identify the soil compaction resulting from different tyre inflation pressures and loads. The soil compaction profile sensor was tested on a number of fields in south‐eastern England to determine the changes in soil strength below the wheelings of a pea harvester operating at different tyre inflation pressures.  相似文献   

9.
The objective of this study was to compare predicted stresses with measured stresses within the soil profile underneath a tractor rear tyre as affected by soil type, dynamic load, and contact pressure. The major principal stress, octahedral normal stress, and octahedral shearing stress were compared. A three-dimensional non-linear finite element model was used to predict soil profile stresses while stress state transducers were used to measure soil stresses beneath a moving tyre in the field. Principal stresses, octahedral normal stresses, and octahedral shearing stresses were calculated from the measured stresses. Predicted values of soil stress obtained from the finite element model were compared against measured values obtained from field experiments. Generally, the results from the finite element model were found to be compatible with the experimental results. The study of compaction on two soils indicated that, at the same dynamic load, compaction of clay soils was far more severe than that of coarsely textured soils.  相似文献   

10.
Soil compaction is one of the most important factors responsible for soil physical degradation. Soil compaction models are important tools for controlling traffic-induced soil compaction in agriculture. A two-dimensional model for calculation of soil stresses and soil compaction due to agricultural field traffic is presented. It is written as a spreadsheet that is easy to use and therefore intended for use not only by experts in soil mechanics, but also by e.g. agricultural advisers. The model allows for a realistic prediction of the contact area and the stress distribution in the contact area from readily available tyre parameters. It is possible to simulate the passage of several machines, including e.g. tractors with dual wheels and trailers with tandem wheels. The model is based on analytical equations for stress propagation in soil. The load is applied incrementally, thus keeping the strains small for each increment. Several stress–strain relationships describing the compressive behaviour of agricultural soils are incorporated. Mechanical properties of soil can be estimated by means of pedo-transfer functions. The model includes two options for calculation of vertical displacement and rut depth, either from volumetric strains only or from both volumetric and shear strains. We show in examples that the model provides satisfactory predictions of stress propagation and changes in bulk density. However, computation results of soil deformation strongly depend on soil mechanical properties that are labour-intensive to measure and difficult to estimate and thus not readily available. Therefore, prediction of deformation might not be easily handled in practice. The model presented is called SoilFlex, because it is a soil compaction model that is flexible in terms of the model inputs, the constitutive equations describing the stress–strain relationships and the model outputs.  相似文献   

11.
履带式行走机构压实作用下土壤应力分布均匀性分析   总被引:1,自引:1,他引:1  
履带式行走机构因具有较小的接地压力而被逐渐应用在大型农业车辆上,以减小对土壤的压实。然而由于履带下应力分布的不均匀,导致农业车辆对土壤的最大应力并未有效减小,对土壤较长的压力作用时间反而增加了土壤被压实的风险。应力分布的不均匀还会造成履带沉陷量的增大,降低车辆在软土地面的通过性能。为了研究履带式行走机构压实作用下土壤内的应力分布规律以及如何提高应力分布的均匀性,以缓解履带车辆对土壤压实作用、提高履带车辆软地通过能力,该文采用侧断面水平钻孔埋设压力传感器的方法,测得了履带式行走机构压实作用下履带中心线横截面内0.35 m深度土壤内沿履带长度方向上的垂直及水平应力分布;同时研究了履带张紧力大小对应力分布均匀性的影响。结果表明,履带式行走机构下的垂直应力在各负重轮的轴线处呈现一个应力峰值;水平应力在各负重轮轴线的前、后方分别呈现一个应力峰值,且最小应力在轴线处。各负重轮下的应力峰值大小不同。最大垂直应力出现在履带式行走机构后端的导向轮处;最大水平应力出现在后支重轮与导向轮之间。适当减小履带张紧力能够提高垂直及水平应力分布的均匀性。履带张紧力由1.8×10~4k Pa减小至1.6×10~4k Pa时,履带下的最大垂直及水平应力分别减小了约37.3%和21.7%;平均最大垂直及水平应力分别减小了约26.4%和20.4%。研究结果可为履带式行走机构结构的优化提供理论依据,以期提高履带下应力分布的均匀性。  相似文献   

12.
The initially high level of soil compaction in some direct sowing systems might suggest that the impact of subsequent traffic would be minimal, but data have not been consistent. In the other hand on freshly tilled soils, traffic causes significant increments in soil compaction. The aim of this paper was to quantify the interaction of the soil cone index and rut depth induced by traffic of two different weight tractors in two tillage regimes: (a) soil with 10 years under direct sowing system and (b) soil historically worked in conventional tillage system. Treatments included five different traffic frequencies (0, 1, 3, 5 and 10 passes repeatedly on the same track). The work was performed in the South of the Rolling Pampa region, Buenos Aires State, Argentina at 34°55′S, 57°57′W. Variables measured were (1) cone index in the 0–600 mm depth profile and (2) rut depth. Tyre sizes and rut depth/tyre width ratio are particularly important respect to compaction produced in the soil for different number of passes. Until five passes of tractor (2WD), ground pressure is responsible of the topsoil compaction. Until five passes the tyre with low rut depth/tyre width ratio reduced topsoil compaction. Finally, the farmer should pay attention to the axle load, the tyre size and the soil water content at the traffic moment.  相似文献   

13.
人字形花纹轮胎压实土壤垂直应力分布规律研究   总被引:1,自引:1,他引:0  
为了完善人字形花纹轮胎在影响因素下压实土壤形成的垂直应力分布规律,并且明确这些因素对于垂直应力的影响,该文使用应力传感器在自主设计并搭建的单轮土槽试验台架上,进行人字形花纹轮胎压实土壤表层垂直应力分布规律的研究,并利用多元线性回归法建立垂直应力和影响因素之间的预测方程,主要结果:1)当胎压为69kPa时,土壤-轮胎表层垂直应力分布曲线相对平坦并且垂直应力峰值渐渐发生在距离轮胎边缘1/4处,而当胎压为138和207kPa时,垂直应力峰值发生在轮胎中心处;2)载荷对于垂直应力的影响最大,然后依次是胎压、行驶速度、纵向距离和横向距离;3)垂直应力与胎压和行驶速度成线性关系,与载荷、横向距离和纵向距离成抛物线关系;4)轮刺产生的垂直应力是胎面产生的垂直应力的1.2~2.3倍,而且越靠近轮胎宽度方向的边缘,轮刺的影响越大。研究结果能够对拖拉机的通过性分析提供有力的理论分析依据,基于建立的预测方程,在实际应用中通过改变这些影响因素值的大小,减小垂直应力,从而减小土壤压实。该研究可为拖拉机的通过性分析提供理论依据。  相似文献   

14.
轮式车辆轮胎动态参数对传动系扭转振动影响的分析   总被引:1,自引:0,他引:1  
建立了动态变参数轮胎模型。测量了轮胎的切向动态刚度和阻尼,回归出轮胎切向动态阻尼半经验公式。得出了随着轮胎滚动速度的增加,轮胎的切向动态刚度和阻尼逐渐减小的结论。分析了轮胎的动态阻尼对传动系扭转振动的影响。  相似文献   

15.
Heavy sugarbeet harvesters may compact subsoil. But it is very difficult to study this by field experiments that resemble agricultural practice. Therefore, an analysis was made by a finite element method (FEM) for a relevant calcaric fluvial soil profile, the mechanical properties of which were largely known. Measuring data of this Lobith loam soil includes preconsolidation stress, compression index and swelling index, all as a function of depth. Using these three types of soil parameters calculations have been done for tyre sizes, inflation pressures and wheel loads that occur with heaviest sugarbeet harvesters available on the European market in 1999. Because no values on soil cohesion were available, the calculations were done for several cohesion levels. The results include the detection of regions with Mohr–Coulomb plasticity and regions with cap plasticity (compaction hardening). For the soil studied—a typical soil strength profile for arable land with ploughpan in the Netherlands in the autumn of 1977—all studied combinations of wheel load and inflation pressure did not induce compaction in and below the ploughpan. The size of the region with Mohr–Coulomb plasticity decreased with increasing cohesion. It appeared from a sensitivity analysis that, although soil modelling may use a great number of soil parameters, the most important parameters seem to be: preconsolidation stress and cohesion. There is an urgent need for data of these parameters that are measured on a great range of subsoils and subsoil conditions.  相似文献   

16.
为克服已有梯形渠道弹性地基梁模型未考虑土体连续性及需要预先假定切向冻结力分布的不足,该研究在Winkler模型的基础上,用土弹簧的伸缩来描述法向冻胀力与法向冻结力,引入剪切层和接触界面层构建了梯形渠道双参数冻土地基梁模型。通过引入剪切层考虑土弹簧间的相互作用,引入接触界面层把切向冻结力计算纳入模型中一体化求解。以甘肃省靖会总干渠梯形渠道为例,计算了衬砌板法向冻胀位移,并将计算值与Winkler模型、有限元法计算结果及试验值进行对比分析,最后对衬砌板各点切向位移及切向冻结力分布进行计算。结果表明:本文模型计算值与Winkler模型、有限元法计算结果的总体变化趋势一致,且关键点上与试验值更加符合,当剪切系数g=0时双参数模型则退化为Winkler模型,验证了模型合理性;衬砌板各点切向位移及切向冻结力呈非线性分布,且随切向刚度增大,各点切向位移总体呈减小趋势,与实际相符。本研究可为梯形渠道抗冻胀设计提供参考。  相似文献   

17.
We describe a simplified model that allows users to explore some of the main aspects of soil compaction. It is intended for use by non-experts, such as students, and is written as an easy-to-use spreadsheet. It estimates soil bulk density under the centre-line of a wheel track from readily available tyre details. The model uses an analytical method to estimate the propagation of stress in the soil. It contains compactibility data for contrasting soils and it accounts for both rebound and recompression realistically. We present examples that show the potential of the model in selecting tyres and wheel systems to minimise compaction.  相似文献   

18.
Subsoil compaction is a severe problem mainly because its effects have been found to be long-lasting and difficult to correct. It is better to avoid subsoil compaction than to rely on alleviating the compacted structure afterwards. Before recommendations to avoid subsoil compaction can be given, the key variables and processes involved in the machinery–subsoil system must be known and understood. Field traffic-induced subsoil compaction is discussed to determine the variables important to the prevention of the compaction capability of running gear. Likewise, technical choices to minimise the risk of subsoil compaction are reviewed. According to analytical solutions and experimental results the stress in the soil under a loaded wheel decreases with depth. The risk of subsoil compaction is high when the exerted stresses are higher than the bearing capacity of the subsoil. Soil wetness decreases the bearing capacity of soil. The most serious sources of subsoil compaction are ploughing in the furrow and heavy wheel loads applied at high pressure in soft conditions. To prevent (sub)soil compaction, the machines and equipment used on the field in critical conditions should be adjusted to actual strength of the subsoil by controlling wheel/track loads and using low tyre inflation pressures. Recommendations based on quantitative guidelines for machine/soil interactions should be available for different wheel load/ground pressure combinations and soil conditions.  相似文献   

19.
Abstract

In this paper we describe the susceptibility of Swedish subsoils to compaction and discuss strategies for prevention of traffic-induced subsoil compaction against the background of experiences from wheeling experiments conducted in Sweden during recent years. The susceptibility of Swedish subsoils to compaction must be considered high because subsoils are often wet during field operations and machinery with high wheel loads is used. The risk of subsoil compaction could be reduced by technical solutions, such as the use of dual and tandem wheels instead of single wheels, low tyre inflation pressure or tracks. However, each of these solutions has its limitations. Results from several wheeling experiments on different soils indicate that residual deformations occur even when the applied stress is lower than the precompression stress. Hence, soil compaction could not be avoided completely by limiting the applied stress to the precompression stress.  相似文献   

20.
Methods are described for measuring the changes in the horizontal and vertical distribution of packing state and cone resistance following the passage of wheels and tracks over prepared beds of soil. A gamma-ray transmission system was employed with automatically controlled scanning in a 2 × 2 cm grid in soil sections of 1.08 m length by 0.3 m depth, using a scintillator/photomultiplier detector assembly with stabilized pulse-height analysis and magnetic tape recording. Changes in cone resistance were measured in a 2 cm (vertical) by JO cm (horizontal) grid in a section 1.4 m length by 0.5 m depth using an electrically driven penetrometer with load and displacement simultaneously recorded on an XY plotter and magnetic tape. Results were analysed and displayed graphically by computer with packing state expressed by a number of optional properties (dry bulk density, total porosity, air-filled porosity, void ratio, or specific volume). Pronounced differences in packing state and soil strength were observed as a result of the passage of a two-wheel-drive tractor, with and without cage wheels, and a crawler tractor. Adding a cage wheel decreased slightly the compaction below the rubber tyre, but formed a partially compacted zone below the cage wheel. Increases of dry bulk density and soil strength were recorded below the crawler track but the values for these properties did not reach the maximum values found below the rubber tyre.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号