首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Palm kernel stearin and hydrogenated palm kernel stearin can be used to prepare compound chocolate bars or coatings. The objective of this study was to characterize the chemical composition, polymorphism, and melting behavior of the bloom that develops on bars of compound chocolate prepared using these fats. Bars were stored for 1 year at 15, 20, or 25 degrees C. At 15 and 20 degrees C the bloom was enriched in cocoa butter triacylglycerols, with respect to the main fat phase, whereas at 25 degrees C the enrichment was with palm kernel triacylglycerols. The bloom consisted principally of solid fat and was sharper melting than was the fat in the chocolate. Polymorphic transitions from the initial beta' phase to the beta phase accompanied the formation of bloom at all temperatures.  相似文献   

2.
This study demonstrates how chemically interesterified hydrogenated palm oil (IHPO) and partially hydrogenated palm oil (PHPO) can be structured to have similar mechanical properties. Crystallization of IHPO at 30 degrees C for 24 h yielded a fat with a solid fat content (SFC) of 45% and a yield force of 51.5 N. On the other hand, PHPO had a SFC of 50% and a yield force of 44 N when crystallized under the same conditions. The result was opposite from what would be expected from the SFC point of view, thus suggesting that the microstructure of the fat plays a key role in determining mechanical properties. By matching crystallization behavior using the Avrami index as a guide, microstructures and material hardness were successfully matched. These results suggest that the dynamics of structure formation was a key factor influencing the macroscopic mechanical properties of palm oil-based fats.  相似文献   

3.
In this study enzymatic-interesterified margarine fats with different conversion degrees were produced in a packed-bed reactor. The effects of conversion degree on the formation of free fatty acids and diacyglycerols, solid fat content, crystallization behavior, microstructure, and crystal network were investigated, and the enzymatically interesterified products were compared with a chemically interesterified product. Formation of free fatty acids and diacyglycerols increased slightly with increasing conversion degree. The solid fat content was higher at 10 and 20 degrees C and lower at 30, 35, and 40 degrees C with increasing conversion degree. Increased conversion degree from the blend to products, measured by X-ray with addition of 50% of rapeseed oil for dilution, caused the content of beta to decrease from 100% to 33%, and 30% and eventually to pure beta' crystal. However, double chain packing was observed for both the blend and products. Isothermal crystallization kinetics was characterized by the Fisher-Turnbull model. The highest free energy was observed for the blend. A small deformation with oscillation tests shows a significant difference between the blend and interesterified products. The differences of microstructure between the blend, different conversion degree, and chemical randomized product were observed.  相似文献   

4.
trans-Free interesterified fat was produced for possible usage as a margarine. Palm stearin, coconut oil, and canola oil were used as substrates for chemical interesterification. The main aim of the present study was to evaluate the physicochemical properties of blends of palm stearin, coconut oil, and canola oil submitted to chemical interesterification using sodium methoxide as the catalyst. The original and interesterified blends were examined for fatty acid composition, softening and melting points, solid fat content, and consistency. Chemical interesterification reduced softening and melting points, consistency, and solid fat content. The interesterified fats showed desirable physicochemical properties for possible use as a margarine. Therefore, our result suggested that the interesterified fat without trans-fatty acids could be used as an alternative to partially hydrogenated fat.  相似文献   

5.
Structured lipids (SLs) for formulating trans-free margarines were synthesized by lipase-catalyzed interesterification of the blends of canola oil (CO), palm stearin (PS), and palm kernel oil (PKO) in weight ratios (CO/PS/PKO) of 40:60:0, 40:50:10, 40:40:20, 40:30:30, 50:30:20, and 60:25:15. The atherogenicity was determined using fatty acid profiles. We also determined the physical properties (melting/crystallization profiles, solid fat content, polymorphism, and microstructure) of SLs and the textural properties of margarines made with the SLs. The SLs from the 50:30:20 and 60:25:15 blends had atherogenic indices similar to or lower than those of the commercial trans (CTMF) and similar to the trans-free margarine fats (CTFMF). SLs from the blends with PKO contained a wide range of fatty acids (C6-C20) and had more beta' than beta polymorphs. Margarines made with SLs from 50:30:20 and 60:25:15 blends possessed similar hardness, adhesiveness, or cohesiveness to margarines made with CTMF and CTFMF, respectively. Therefore, CO/PS/PKO-based SLs were suitable for formulating trans-free margarines with low atherogenicity and desirable textural properties.  相似文献   

6.
The objective of this study was to gain insight into the role of trans fatty acids in determining the crystallization behavior and texture of palm-based confectionery fats. Therefore, the isothermal crystallization behavior of two series, each of three fats, one trans-containing and one trans-free, was examined by pNMR, DSC, and rheology. Furthermore, the hardness of these samples was examined at three different storage times at 10 degrees C. All of the trans free samples showed a two-step crystallization at 10 degrees C which is hypothesized to be an alpha-mediated beta' crystallization for two of the samples and a fractionated crystallization in the beta' polymorph for the third, while the trans-containing fats crystallized in a single step, probably a direct beta' crystallization. The trans-containing fat series clearly crystallized faster than the trans-free fat series and also yielded higher hardness values at all storage times investigated. The presence of trans fatty acids seems to reduce the effect of compositional variations on the crystallization process. For the trans free fats, chemical composition was much more critical in determining the crystallization rate, the SFC, and the final hardness value.  相似文献   

7.
The objective of this study is to gain further understanding into the relationship between crystallization behavior, microstructure, and macroscopic properties in coating fats. The isothermal crystallization behavior of two coating fats (one trans containing and one trans free) was examined, both as pure fats and in coatings, by DSC and microscopy. Furthermore, the hardness of the samples was examined after cooling in a water bath at two different temperatures and at three different storage times. Both fats seemed to show an alpha-mediated beta' crystallization at lower temperatures and a direct beta' crystallization at higher temperatures. The trans free coating fat clearly crystallized faster and in smaller crystals. The hardness was governed not only by the amount of solid fat present in the network but also by the structure of this network. The coating matrix components seem to have a pronounced influence on the microstructure and thus on the macroscopic properties.  相似文献   

8.
The kinetics of crystallization of high-melting fraction (HMF) and a mixture of 40% HMF and 60% low-melting fraction (LMF) of milk fat were studied at 5 degrees C by time-resolved in-situ synchrotron X-ray diffraction. HMF crystallized in the alpha polymorph, had a longer lifetime than the ones previously reported in pure milk fat, and was almost completely solid. The HMF/LMF mixture crystallized initially in the alpha form and transformed into the beta' polymorph, with a solid fat content much lower than that of HMF. The polymorphic change was therefore attributed to a delayed sudden formation of beta' mixed crystals from the uncrystallized melt. These findings are important for the food industry and as fundamental knowledge to improve our understanding of the origin of the macroscopic physical properties of solid milk fat fractions used in many manufacturing processes.  相似文献   

9.
This work demonstrates the application of FT-IR and FT-NIR spectroscopy to monitor the enzymatic interesterification process for bulky fat modification. The reaction was conducted between palm stearin and coconut oil (70:30, w/w) with the catalysis of Lipozyme TL IM at 70 degrees C in a batch reactor. The blends and interesterified fat samples in liquid form were measured by attenuated total reflectance based FT-IR (spectra region, 1516-781 cm(-1)) and transmission mode based FT-NIR (spectra region, 5369-4752 cm(-1)) with the temperature of both controlled at 70 degrees C. The samples in solid form were also measured by reflectance-based FT-NIR (spectra regions, 7037-6039 and 5995-5612 cm(-1)) at room temperature. Calibrations of FT-IR and FT-NIR for conversion degrees (evaluated by triglyceride profile), solid fat contents (SFC), and dropping points of interesterified products were carried out by using partial least-squares regression. High correlations (r > 0.96) were obtained from cross validations of the data estimated by FT-IR, FT-NIR, and the above-mentioned conventional analytical methods, except for correlations (r = 0.90-0.95) between FT-IR and SFC profiles. Overall, FT-NIR spectroscopy coupled with transmission mode measured at 70 degrees C had the highest correlations, which also had the closest conditions to the sampled products in the process, indicating a great potential for implementation as an on-line control for monitoring the enzymatic interesterification process.  相似文献   

10.
The purpose of this work was to study two key parameters of the lipid phase that influence flavor release-lipid level and lipid type-and to relate the results to a mass balance partition coefficient-based mathematical model. Release of 10 volatile compounds from milk-based emulsions at 10, 25, and 50 degrees C was monitored by 1-min headspace sampling with a solid-phase microextraction fiber, followed by GC-MS analysis. As compared to the observations for milk fat, changing to a lipophilic lipid (medium-chain triglycerides, MCT) and adding a monoglyceride-based surfactant did not influence the volatiles release. However, increasing the solid fat content was found to increase the release. At 25 degrees C, and even more so at 10 degrees C, concurrent with an increase in their solid fat content, hydrogenated palm fat emulsions showed increased flavor release over that observed for emulsions made with coconut oil, coconut oil with surfactant, milk fat, and MCT. However, at 50 degrees C, when hydrogenated palm fat emulsions had zero solid fat content, there was no difference in flavor release from that observed for milk fat emulsions. Varying milk fat at nine levels between 0 and 4.5% showed a systematic dependence of the release on the lipid level, dependent on compound lipophilicity. Close correlations were found between the experimental and model predictions with lipid level and percent liquid lipid as variables.  相似文献   

11.
Structured Lipid was synthesized from canola oil and caprylic acid with sn-1,3 specific lipase from Rhizomucor miehei. Cold spreadable butter was made by blending butterfat with the SL at a weight ratio of 80:20. Its chemical and physical properties were compared with pure butter and butterfat-canola oil 80:20 blend spread. The butterfat-SL blend had lower contents of hypercholesterolemic fatty acids (FAs) and the lowest atherogenic index (AI) as compared to the others. Melting and crystallization behaviors of butterfat-SL blend were similar to those of butterfat-canola oil blend above 0 degrees C. It showed solid fat contents (SFCs) similar to butterfat-canola oil blend but lower than pure butterfat. The butterfat-SL blend was shown to crystallize in the beta' form. There were no differences between the hardness of butterfat-SL blend spread and butterfat-canola oil blend spread. Rheological analysis showed that butterfat-SL blend spread lost its elastic behavior at 5 degrees C, a lower temperature than pure butter.  相似文献   

12.
Incorporation of stearic acid into canola oil to produce trans-free structured lipid (SL) as a healthy alternative to partially hydrogenated fats for margarine formulation was investigated. Response surface methodology was used to study the effects of lipozyme RM IM from Rhizomucor miehei and Candida rugosa lipase isoform 1 (LIP1) and two acyl donors, stearic acid and ethyl stearate, on the incorporation. Lipozyme RM IM and ethyl stearate gave the best result. Gram quantities of SLs were synthesized using lipozyme RM IM, and the products were compared to SL made by chemical catalysis and fat from commercial margarines. After short-path distillation, the products were characterized by GC and RPHPLC-MS to obtain fatty acid and triacylglycerol profiles, 13C NMR spectrometry for regiospecific analysis, X-ray diffraction for crystal forms, and DSC for melting profile. Stearic acid was incorporated into canola oil, mainly at the sn-1,3 positions, for the lipase reaction, and no new trans fatty acids formed. Most SL products did not have adequate solid fat content or beta' crystal forms for tub margarine, although these may be suitable for light margarine formulation.  相似文献   

13.
Structured lipids (SL) containing caprylic, stearic, and linoleic acids were synthesized by enzymatic transesterification using Lipozyme IM60. Pure trilinolein and free fatty acids were used as substrates. Incorporation of stearic acid was higher than that of caprylic acid in all parameters. Highest incorporations of both acids were achieved at 32 h, mole ratio of 1:4:4 (trilinolein/caprylic/stearic acids), water content of 1% (wt %), temperature of 55 degrees C, and 10% (wt %) enzyme load. The maximal incorporations of caprylic and stearic acids were 23.73 and 62.46 mol %, respectively. Reaction time, water content, and enzyme load had major influences on the reaction, whereas substrate mole ratio and temperature showed less influence. Lipozyme showed good stability over six reuses. Differential scanning calorimetric analysis of SL gave a melting profile with a very low melting peak of 0-3.3 degrees C and a solid fat content of 25.21% at 0 degrees C. The melting profile and solid fat content of SL were compared with those of fats extracted from commercially available solid and liquid margarine products. The data suggest that enzymatically produced SL could be used in liquid margarine products.  相似文献   

14.
The optimization of solid fat content (SFC) and crystal properties of trans-free structured lipids (SL) synthesized by incorporating stearic acid into canola oil was investigated. The SLs were blended with varying amounts of palm midfraction (PMF). The SFC and crystal polymorphism were improved. The addition of sucrose stearate (S-170), sorbitan tristearate (STS), and distilled monoglycerides (DMG) to one of the blends, SL40:PMF (70:30, w/w), did not improve crystal polymorphism but had significant effects on crystal morphology. The emulsifiers significantly delayed crystal growth, resulting in smaller crystal sizes as compared to the control. They were unable to inhibit the formation of granular crystals (30-140 microm), which are undesirable in margarine, after 4 weeks of storage at 0 degrees C. Blends treated with S-170 and STS showed many small evenly distributed crystals interspersed with large crystal aggregates (after 4 weeks of storage), whereas the blend treated with DMG and the control showed irregularly shaped globular crystals, also interspersed with large crystal aggregates. However, these crystal aggregates were not observed upon visual and physical examination and may therefore not impart the sensory properties of the finished products negatively.  相似文献   

15.
The sensorial, functional, and nutritional properties of goat dairy products result from the specific fatty acid composition of goat's milk fat. However, information on the physical and thermal properties of goat's milk fat is scarce. In this study, crystallization of triacylglycerols (TG) in goat's milk fat globules was investigated using polarized light microscopy and the coupling of time-resolved synchrotron radiation X-ray diffraction (XRD) and high-sensitivity differential scanning calorimetry (DSC). The molecular organization of the solid fat phase was characterized for cooling rates between 3 and 0.1 degrees C/min. Quenching of goat's milk fat globules from 50 to -8 degrees C and 4 degrees C was also examined to identify the most unstable polymorphic forms of TG. Then, the melting behavior of fat crystals was studied on subsequent heating at 1 degrees C/min. Triple chain length (3L: 68.6-70 A) and double chain length (2L: 37-45.4 A) structures were characterized and 5 polymorphic forms, alpha, sub-alpha, beta' 1, beta' 2, and beta were identified. Polymorphic transitions were observed within goat's milk fat globules as a function of time after quenching and as a function of temperature on heating. From a technological point of view, this work will contribute to a better understanding of the rheological properties as well as on the flavor evolutions of goat's milk-based products.  相似文献   

16.
The chemical composition and properties of lipids, both triglycerides and phospholipids, play a major role in the functional and nutritional properties of food products. In this study, the suprastructure of fat, solid fat content, and crystallographic properties of triglycerides were investigated in hard-type cheeses from the microscopic scale to the molecular level using the combination of relevant techniques. Two industrial cheeses with different oiling off properties were compared with experimental cheeses manufactured in the laboratory. Microstructural analysis performed using confocal laser scanning microscopy showed that milk processing led to the disruption of fat globules with the formation of nonglobular fat. For a similar fatty acid composition, oiling off was mainly related to the fat in dry matter content and to the suprastructure of fat in cheese. An exogenous fluorescent phospholipid permitted the localization of milk phospholipids in the cheese matrix, which mainly remain around fat inclusions after disruption of the milk fat globule membrane, and to show heterogeneities. We also showed using differential scanning calorimetry that the suprastructure of fat did not affect the solid fat content in cheese at 4 degrees C: 71.6 +/- 4.9%. The organization of triglyceride molecules in fat crystals, elucidated at a molecular level using X-ray diffraction, corresponded to the coexistence of 2 lamellar structures (2L 40.5 angstroms and 3L 54.6 angstroms) with four polymorphic forms: alpha, two beta' and beta. A schematic representation of the multiscale organization of triglycerides and phospholipids in cheese is proposed.  相似文献   

17.
Interesterification of a 60:40 (wt/wt) mixture of olive oil and fully hydrogenated canola oil was carried out in a batch reactor using a commercial immobilized lipase from Thermomyces lanuginose as a biocatalyst. The effects of a stepwise change of temperature on the degree of conversion, the solid fat content (SFC) of the products, and the residual activity of the enzyme were investigated. As a reference condition, an interesterification trial was conducted at a constant temperature of 70 degrees C for 48 h. For trials in which a temperature of 70 degrees C was used for the first 4 h of reaction and a temperature of 60 degrees C was employed for the following 44 h, there were no significant differences (p < 0.05) in the overall degree of conversion relative to the reference condition. Oils interesterified for only 1 or 2 h at 70 degrees C had melting points higher than 60 degrees C, whereas an oil produced by interesterification at 70 degrees C for only 4 h had a melting point of 58 degrees C. There was little difference (p < 0.05) between the SFC profiles of the interesterification products prepared by two different temperature protocols (70 degrees C for 24 h; 70 degrees C for 4 h followed by 60 degrees C for 20 h). Use of the protocol involving a step decrease in temperature significantly decreased catalyst deactivation effects, thereby increasing the residual activity of the immobilized lipase.  相似文献   

18.
Tripalmitin-enriched triacylglycerols were concentrated from palm stearin by acetone fractionation and as the substrate reacted with a mixture of equimolar quantities of fatty acids (C8:0-C18:3). The incorporation degree and acyl migration level of the fatty acids and acylglycerols composition were investigated, providing helpful information for the production of human milk fat substitutes. Higher incorporation degrees of the fatty acids were obtained with lipase PS IM, Lipozyme TL IM, and Lipozyme RM IM followed by porcine pancreatic lipase and Novozym 435-catalyzed acidolysis. During reactions catalyzed by Lipozyme TL IM, Lipozyme RM IM, and lipase PS IM, incorporation degrees of C12:0, C14:0, C18:1, and C18:2 were higher than those of other fatty acids at operated variables (molar ratio, temperature, and time), and the triacylglycerols content reached the highest (82.09%) via Lipozyme RM IM-catalyzed acidolysis. On the basis of significantly different levels of acyl migration to the sn-2 position, lipases were in the order of lipase PS IM < Lipozyme TL IM < Lipozyme RM IM.  相似文献   

19.
Human milk fat substitutes (HMFSs) were synthesized by lipozyme RM IM-catalyzed acidolysis of chemically interesterified palm stearin (mp = 58 °C) with mixed FAs from rapeseed oil, sunflower oil, palm kernel oil, stearic acid, and myristic acid in a solvent-free system. Response surface methodology (RSM) was used to model and optimize the reactions, and the factors chosen were reaction time, temperature, substrate molar ratio, and enzyme load. The optimal conditions generated from the models were as follows: reaction time, 3.4 h; temperature, 57 °C; substrate molar ratio, 14.6 mol/mol; and enzyme load, 10.7 wt % (by the weight of total substrates). Under these conditions, the contents of palmitic acid (PA) and PA at sn-2 position (sn-2 PA) were 29.7 and 62.8%, respectively, and other observed FAs were all within the range of FAs of HMF. The product was evaluated by the cited model, and a high score (85.8) was obtained, which indicated a high degree of similarity of the product to HMF.  相似文献   

20.
The content of phytosterol oxidation products was determined in samples of crude vegetable oils: peanut, sunflower, maize, palm nut, and lampante olive oils that were intended for refining and not for direct consumption. The 7 alpha- and 7 beta-hydroxy derivatives of beta-sitosterol, stigmasterol, and campesterol and the 7-keto-beta-sitosterol were the principal phytosterol oxides found in almost all of the oils analyzed. In some oils, the epoxy and dihydroxy derivatives of beta-sitosterol were also found at very low levels. The highest total concentrations of phytosterol oxides, ranging from 4.5 to 67.5 and from 4.1 to 60.1 ppm, were found in sunflower and maize oils, respectively. Lower concentrations were present in the peanut oils, 2.7-9.6 ppm, and in the palm nut oil, 5.5 ppm, whereas in the lampante olive oils, only three samples of the six analyzed contained a low concentration (1.5-2.5 ppm) of oxyphytosterols. No detectable levels of phytosterol oxides were found in the samples of palm and coconut oils. Bleaching experiments were carried out on a sample of sunflower oil at 80 degrees C for 1 h with 1 and 2% of both acidic and neutral earths. The bleaching caused a reduction of the hydroxyphytosterol with partial formation of steroidal hydrocarbons with three double bonds in the ring system at the 2-, 4-, and 6-positions (steratrienes). The same sunflower oil was deodorized at 180 degrees C under vacuum for 1 h, and no dehydration products were formed with a complete recovery of the hydroxyphytosterols. A bleaching test with acidic earths was carried out also with an extra virgin olive oil fortified with 7-keto-cholesterol, dihydroxycholesterol, and alpha-epoxy-cholesterol. There was no formation of steratrienes from these compounds, but dihydroxycholesterol underwent considerable decomposition and alpha-epoxycholesterol underwent ring opening with formation of the dihydroxy derivative, whereas 7-ketocholesterol was rather stable  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号