首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
喷灌系统组合均匀度是规划设计时的重要技术参数。在无风或微风条件下,可通过室外组合喷洒试验或依据单喷头试验资料用计算方法求得。在有风条件下,目前普遍采用的是以大量观测数据为基础的统计方法,由于试验条件、手段所限以及风的多变性,不但试验结果再现性差、且很难比较精确地求得某些特征风速(如灌溉期间的平均风速、设计风速)下的均匀度。本文提出了一种计算有风条件下喷灌系统组合均匀度的方法,经与实测值比较,表明具有较高精度。  相似文献   

2.
基于弹道理论有风条件下折射式喷头喷灌均匀度研究   总被引:3,自引:0,他引:3  
为计算有风条件下折射式喷头水量分布及喷灌均匀度,以弹道轨迹理论为基础,依据风速分布模型,建立有风条件下折射式单喷头水量分布计算方法,采用该方法模拟出有风条件下Nelson D3000型喷头倒挂安装方式下水量分布特性,通过与实测资料进行对比,验证了模拟具有较高的准确度,可应用于有风条件下折射式喷头水量分布计算。在此基础上,选用4.76 mm(24号)喷嘴直径,模拟出不工况下单喷头水量分布,计算出组合情况下喷灌均匀度,分析了风速、风向、喷头间距、工作压力和安装高度5种因素对喷灌均匀度的影响,并对蒸发漂移损失进行了分析。结果表明:95%的置信区间下,喷头布置间距对喷灌均匀度的影响最显著,其次是安装高度和喷头工作压力,风速和风向对喷灌均匀度影响不显著。风速、喷头工作压力和安装高度都会对蒸发漂移损失产生影响,其中工作压力影响最大。当选用Nelson D3000型喷头在风速小于6 m/s的环境下喷灌时,应将喷头安装间距固定在2.13~3.04 m范围内。另外,该安装间距范围内,喷头安装高度和喷灌压力增大后,喷灌均匀度增大的效果不明显,因此应采用低压喷灌以降低喷灌系统运行成本;考虑到较高的喷头安装高度会产生较大的蒸发漂移损失,喷灌时还应适当降低喷头安装高度,以提高喷灌水分利用率。  相似文献   

3.
为探索大尺寸半固定式喷灌系统适宜的灌水技术参数,通过田间试验研究不同工作压力、不同喷头间距以及不同风速组合条件下大尺寸半固定式喷灌灌水均匀度。试验结果表明,在推荐工作压力范围内,单喷头的喷灌均匀度系数随着工作压力的增加呈提高趋势;无风环境下,工作压力为425 k Pa时,喷头间距不大于35和39 m时,灌水均匀度可以达到90%和80%以上,喷头间距控制在35~39 m比较适宜;风速在0~1、1~3和3~5 m/s范围内,喷灌灌水均匀度达到75%以上的喷头间距组合分别为不大于39、30和20 m,说明风速在0~1和1~3 m/s范围时,喷头适宜间距分别为39和30 m,当风速超过3 m/s时,风速是影响喷灌均匀度系数的主要因子。大尺寸半固定式喷灌系统适宜的间距为30~39 m。  相似文献   

4.
构建了基于开环控制策略的方形域喷灌系统,以喷头转速一致为评价指标,采用逐级计算方法对管路进行水力计算,以优化方形域喷头组合喷灌配置模式。试验研究了单喷头的水力性能,依据单喷头水量分布对喷头组合喷灌均匀性进行了仿真。通过与2喷头组合喷灌试验对比获得以下结论:在实验室条件下对方形域喷头进行仿真计算获得的均匀度数据与组合试验结果基本一致,因此可通过仿真试验研究变量喷头组合喷灌均匀性;基于S800喷头的方形域组合喷灌,其平均喷灌强度为2.8mm/h,组合喷灌均匀度达77%,达到《喷灌工程技术规范》规定的定喷系统均匀系数不低于75%的要求。  相似文献   

5.
<正> 一、引言 固定式喷灌装置的效率、增产以及经济性主要取决于水量分布的均匀度,而水量分布的均匀度主要受气象条件(尤其是受风向和风力)以及射程的影响。迄今为止,固定式喷灌系统的设计主要依据的是无风条件下(风速≤0.5m/s)检测的喷头的各种参数。在德国东部地区,风速≤0.5m/s是较为罕见的。据估计,日平均风速一般为4m/s左右。 国际上通常采用两种方法来减少风对喷灌均匀度的影响。其一是推荐喷头组合间距的设计尺寸,该设计尺寸考虑到了单喷头湿润面积的减小问题,另一是设计出水量分布不受风影响的喷头。本文以8000/8002型单喷嘴中射程旋转式喷头为例阐述了风向和风力对喷头参数的影响。  相似文献   

6.
用电子计算机计算组合喷灌强度和均匀度   总被引:2,自引:0,他引:2  
喷灌的灌水质量,在喷灌系统中是以实际的多喷头组合喷灌时的组合喷灌强度和均匀度以及水滴打击强度来表征的,组合喷灌强度和均匀度是喷灌系统规划设计中的重要技术指标。本文探讨了用电子计算机计算各种组合情况下的喷灌强度和均匀度。并与实  相似文献   

7.
考虑水滴运动蒸发的喷灌水量分布模拟   总被引:3,自引:0,他引:3  
提出了有风条件下喷头水滴运动与喷灌水量分布模拟方法,并利用Visual Basic 6.0开发了喷灌水量分布模拟软件.该软件在已知单喷头的径向水量分布数据时,可以模拟出不同风速、风向、空气温湿度等环境条件下单喷头或多喷头组合的喷灌水量分布,计算出喷灌系统的组合喷灌强度、喷灌均匀系数和蒸发损失率.以9708A型喷头为例,分别对工作压力为0.20、0.25和0.30 MPa下单喷头径向水量分布以及喷灌系统组合间距为14 m x 14 m和14 m×12 m时的喷灌水量分布进行了模拟,并与实测值进行了对比,结果表明:模拟的单喷头径向水量分布与实测值总体一致,由模拟水量分布推算的喷头流量与实测值的相对误差为0.83% ~8.01%;喷灌均匀系数模拟值与实测值的相对误差为0.69%~6.36%,蒸发损失率模拟值为0.51% ~ 1.75%,小于实测的水量损失率.模拟了不同组合间距下的喷灌水量分布,得到的喷灌均匀系数模拟值与其他软件比较,相对误差在0.11% ~2.44%之间.  相似文献   

8.
针对恒压喷灌系统压力变化的特性,通过试验得到了在不同工作压力及压力的周期变化情况下,ZY-1、ZY-2型喷头组合喷灌强度及均匀度的变化规律。结果表明,不同工作压力下,平均喷灌强度及组合均匀度与压力之间基本成线性关系;在一定的压力变幅下,系统压力的周期变化对平均喷灌强度及组合均匀度的影响较小,在压力周期不变的情况下,不同...  相似文献   

9.
移动式单喷头喷灌机的田间试验表明,如果要保持适宜的喷灌均匀度,随着风速的增大,必须相应地缩小移动的间距。而且当风向与移动方向接近平行时,其移动间距还必须进一步缩小。这里引用一个经验方程来估算移动间距,即在试验喷灌机时,将移动间距作为风速、风向和水压的函数估算之。如果按无风条件下的移动间距进行喷灌,则其水量分布图在有风时是不均匀的。若随之将移动间距变窄以符合大风的条伴,其水量分布图即便在几种风向的条件下,也可能适宜,但是,若风向与移动方向近于平行,则其水量分布图很差。同样,若按有风条件将间距变窄进行喷灌,在风速降低时,其水量分布图也很差。在无风情况下,移动间距为湿润直径的30%至75%,通常获得适宜的均匀度。水量分布不均,使有的地面水量太少,从而降低作物产量;有的地面水量太多,引起深层渗漏,从而导致土壤肥力的损失,能量成本提高,作物产量降低等。均匀喷灌则因土地、喷灌设备、抽水和化肥等费用的增大而显得更为重要。非均匀灌水因深层渗漏而导致水和土壤肥力的损失,使地下水污染,以及某些地面灌水不足和作物减产等。在明尼芬达州中西部,用移动式大流量单咀喷头灌水的耕地面积日益增多,在这个地方喷灌已用于贫瘠而又干旱的地面,播种季节又特别多风。本报告是一篇科研论文,它所叙述的是探讨移动式单喷头喷灌机的性能和大风条件下能提供适宜喷灌均匀度的操作程序。均匀系数(C_u)达0.85以上被认为是适宜的。它可按照克里斯琴逊的公式算出,即:C_u=1-(∑|X_i-|)/(n)………式中:C_u-均匀系数X_i-单个量雨筒在田间测量的灌水深度X_i的平均值n-读数。应用已算出的重叠灌水深度,即可算出不同的移动间距的C_u值。为使各最大移动间距的C_u值达0.85,其最大间距要在每一试验中分别测定之。而且,其最大间距也可根据以前按固定式试验推导出的方程(舒耳等人)(未注明日期)进行计算,並且将它与按移动式喷头数据求得的间距进行了比较,以确定该方程的实用价值,能否作为在不同风速和风向条件下预测移动间距的一般指南。  相似文献   

10.
喷灌技术在干旱风沙区的应用研究   总被引:4,自引:0,他引:4  
喷灌在灌溉技术中具有独特的优势而得到广泛的应用,但因其受风的影响大、蒸发损失多,在风沙区的应用受到了极大的制约。通过对风沙区蒸发和风速分布规律的分析以及风沙区喷灌灌溉试验和喷灌在大田中应用的案例调查,给出了喷灌灌溉水利用效率与风速之间的关系,指出只要很好的利用风沙区蒸发和风速分布规律,避开高蒸发时段和高风速时区,在风沙区进行喷灌仍可获得较高的灌溉水利用效率和灌水均匀度,喷灌在风沙区仍有广阔的应用是前景。  相似文献   

11.
一目的喷头组合喷洒均匀度是评价喷洒效果的一个重要指标,是设计喷灌系统时,确定喷头布局和末级管道间距必不可少的一个重要设计参数。由于进行设计时往往忽视组合均匀度问题,而造成在使用中的漏喷或喷洒极不均匀的现象,在有风情况下,问题更为严重。  相似文献   

12.
【目的】研究喷头不同组合方式对喷灌均匀度的影响,得到最佳的组合方式。【方法】根据FYRB471 型喷头在不同工作压力下间距1 m采样所得的无风喷洒降水强度,针对喷头分别呈正三角形、正方形、正六边形等组合方式,拟合出了喷头在不同工作压力及组合间距下的降水强度,采用克里斯琴森均匀系数计算了相应的喷灌均匀度。【结果】当工作压力一定时,不同组合方式下的喷灌均匀度都随喷头间距的增大而减小;当喷头间距一定时,组合均匀度与工作压力正相关。当间距小于5.5 m时,不同工作压力下3 种组合方式的均匀度相差不大;当间距大于5.5 m时,随着工作压力或者组合间距的增大,正三角形组合方式所提供的喷灌均匀度最优,正方形组合方式次之,正六边形组合方式最低。正三角形组合方式喷头间距变大时,喷灌均匀度降低;工作压力过大或间距过小时会增加成本,因此农业生产可兼顾考虑效率和成本选择喷头的组合方式以及工作压力,制定合理的喷灌方案。【结论】当组合间距介于5.5 m和8.5 m之间,工作压力介于200 kPa 与320 kPa 时,应考虑采用正三角形组合方式,此时的喷灌均匀度最高,达80%以上;当组合间距小于等于5.5 m时,不同工作压力下的均匀度基本相同,应考虑采用正六边形组合方式,单个喷灌设备覆盖范围最广,成本最低。  相似文献   

13.
正三角形组合喷灌均匀度计算方法   总被引:4,自引:0,他引:4  
喷灌均匀度是衡量喷头水力性能和喷灌质量的重要指标,为研究雨量筒取样间距、计算网格点间距以及插值方法对喷灌均匀度计算结果的影响规律,利用雨量筒径向间隔为1 m和2 m的Nelson R33型喷头无风喷洒试验数据,取1 m和0.5m的计算网格点间距,采用线性插值、立方插值、三次样条插值的两次插值法、距离插值法和平面插值法计算了克里斯琴森均匀度.结果表明,采样间隔1 m比2m计算出的均匀度小1.3~3.4个百分点;计算网格点间距越小,喷头组合均匀度越大,但相差都小于1.2个百分点.采用线性插值、立方插值、三次样条插值的两次插值法和距离插值法,喷灌组合均匀度计算结果非常接近,但平面插值法计算结果的差异较大.均匀度影响因素正交试验的方差分析结果表明,雨量筒采样间距、计算网格点间距、插值方法对均匀度的影响依次降低.  相似文献   

14.
喷灌以其适应性广、易于机械化作业等优点成为目前世界上广泛采用的节水灌溉技术之一.喷灌均匀度是衡量灌溉质量和喷头水力性能的重要指标,是喷灌系统规划设计中的重要参数.通过接口软件MATCOME4.5,结合MATLAB与VisualC++工具混合开发出喷头水量分布仿真及组合优化软件系统.该系统操作简单,功能强大,能够脱离混合开发环境独立运行.用户只需输入雨量筒实测数据,选择喷头组合方式,插值方法及插值间距等指令,系统即可快速得出基于给定组合方式下的多种喷灌均匀度系数,喷洒水量分布图,或以某种均匀度系数为评价指标的喷头组合间距优化结果.系统给喷灌质量或喷头性能的评价分析工作以及喷灌系统的规划设计工作带来了极大便利.  相似文献   

15.
变量喷洒喷头组合喷灌试验   总被引:3,自引:0,他引:3  
变量喷头可以根据喷洒地块形状和喷洒量的要求实现射程和流量的同步可控,对精确灌溉具有重要意义.试验研究了基于扇形通孔动静片调节器的变量喷头在系统不同压力工况下组合喷灌时的水量分布及喷灌均匀度等水力性能,并与传统圆形喷洒域喷头进行了对比,研究了变量调节器对喷头性能的影响及其对工作压力的敏感性.工作压力和调节器的双因素重复全面试验结果表明,变量精确灌溉喷头较传统圆形喷洒域喷头单喷头控制面积降低了15.4%,喷灌均匀度提高了9.5%,喷灌强度降低了15.7%,射程损失了5.9%,喷洒域系数可达64.0%.组合均匀度方差分析结果表明,调节器和工作压力以及两者之间的交互作用对组合均匀度都有极显著影响,变量调节器的设计需要满足喷头在不同工作压力工况条件下的性能要求.  相似文献   

16.
本文根据微喷灌系统全湿润喷洒灌溉的试验数据和生产考核,分析了微喷灌为正方形布置时,在相应的组合间距下,达到的均匀度指标。SWP-J,SWP-2折射式微喷头正方形布置时,建议其组合间距a×b采用0.7~0.8R,DLXD1.5离心式微喷头组合间距a×b=0.8~0.9R(风速在0~3.8m/s范围),此时喷洒均匀系数不低于0.85。  相似文献   

17.
喷灌水量分布的遗传神经网络模拟与组合均匀度计算   总被引:2,自引:0,他引:2  
喷头的水量分布与工作压力 H、风速 V等密切相关 ,但难以找出描述其间关系的显式方程。这使得喷灌系统的布置优化、模拟仿真乃至运行控制不太方便 ,不利于电算。采用遗传神经网络较好地模拟了喷头水量分布及其与 H、V的关系 ,给出了基于这种模拟的喷灌组合均匀度计算方法 ,并通过实例验证了该方法。  相似文献   

18.
【目的】探究安装高度及工作压力对育苗喷头水力性能的影响,得到育苗喷头适宜工作条件,优化育苗喷头喷洒水力性能。【方法】选取育苗喷头的安装高度为0.5、0.6、0.7 m,分别测试其在200、250、300、350 kPa工作压力下单喷头的水量分布。基于水量平衡原理,建立移动喷洒水量分布计算模型,将单喷头定喷水量分布转换为喷头移动水量分布,计算出不同组合间距下的均匀性系数,并对组合间距-工作压力-均匀度进行多项式拟合,得到不同安装高度下的拟合公式。【结果】在0.5~0.7 m范围内,增大喷头的安装高度能提高单喷头水量分布的均匀度、降低峰值喷灌强度;单喷头平均喷灌强度随压力的增大而增大;工作压力相同时,组合均匀性系数随着组合间距的增大多呈现先减小后增大再减小的趋势;安装高度相同时,喷头组合均匀性系数随压力的改变所呈现的变化规律不明显;试验条件下,喷头的最优工况为:安装高度0.5m、工作压力300kPa,组合间距0.5m,组合均匀度98.08%。安装高度升高时,单喷头喷洒辐射面积增大,喷头喷灌强度峰值降低,水量分布更均匀,工作压力升高时,各测点喷灌强度增大,喷洒范围更广。【结论】在试验条件下,...  相似文献   

19.
针对坡地喷灌水量分布实测困难问题,以坡地喷头射程计算公式为基础,依据喷头射流方向总水量守恒原理,构建了喷灌水量分布由平地转换到坡地的计算模型,并通过试验验证了模型的正确性。利用该模型,分析了喷头布置方式、间距、工作压力和坡度等对坡面喷灌水量分布的影响,结果表明,三角形布置有利于坡地单喷头水量分布的叠加,且其组合喷灌均匀度略高于方形布置;随着喷头间距的增大,组合喷灌均匀度呈下降趋势;喷头低压运行时,组合喷灌均匀度相对较低,不能满足喷灌均匀性的要求,随着喷头工作压力的增大,组合喷灌均匀度逐渐增大;在一定坡度范围内,不同坡度对水量分布和组合喷灌均匀度的影响较小。因此,在坡地喷灌系统设计时,若选用雨鸟LF1200型喷头,建议采用三角形布置,喷头间距宜为1.0~1.2倍平地喷头射程,喷头工作压力宜选用300k Pa。  相似文献   

20.
针对坡地喷灌水量分布实测困难问题,以坡地喷头射程计算公式为基础,依据喷头射流方向总水量守恒原理,构建了喷灌水量分布由平地转换到坡地的计算模型,并通过试验验证了模型的正确性。利用该模型,分析了喷头布置方式、喷头间距、工作压力和坡度等对坡面喷灌水量分布的影响,结果表明,三角形布置有利于坡地单喷头水量分布的叠加,且其组合喷灌均匀度略高于方形布置;随着喷头间距的增大,组合喷灌均匀度呈下降趋势;喷头低压运行时,组合喷灌均匀度相对较低,不能满足喷灌均匀性的要求,随着喷头工作压力的增大,组合喷灌均匀度逐渐增大;在一定坡度范围内,不同坡度对水量分布和组合喷灌均匀度的影响较小。因此,在坡地喷灌系统设计时,若选用雨鸟LF1200型喷头,建议采用三角形布置,喷头间距宜为1.0~1.2倍平地喷头射程,喷头工作压力宜选用300 k Pa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号