首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 250 毫秒
1.
不同土地利用方式土壤温室气体排放对碳氮添加的响应   总被引:7,自引:0,他引:7  
王海飞  贾兴永  高兵  黄涛  苏芳  巨晓棠 《土壤学报》2013,50(6):1170-1179
揭示不同土地利用方式下土壤N2O产生机制及其CO2和CH4的排放,有助于土壤温室气体减排措施的制定。本研究以长沙金井河流域酸性红壤上菜地、稻田、茶园和林地土壤为研究对象,控制温度和土壤含水量,采用静态培养-气相色谱法,研究4种利用方式土壤N2O、CO2和CH4的排放对不同碳氮和硝化抑制剂添加的响应。结果表明,由于土壤pH较低,酸性红壤外加氮源后仅有较小的N2O排放。葡萄糖能够促进尿素添加后N2O的排放及土壤反硝化作用N2O的排放。异养硝化作用可能是酸性红壤N2O产生的主要途径。硝化抑制剂双氰胺(DCD)对酸性红壤N2O减排无明显效果。碳氮添加后土壤N2O的总排放量表现为茶园 > 菜地 > 稻田 > 林地。外源有机碳能够显著促进4种利用方式土壤CO2的排放,表现为茶园、稻田 > 菜地、林地。但除稻田土壤CH4排放增加外,菜地、茶园和林地土壤CH4排放对外源有机碳无明显响应。  相似文献   

2.
生物质炭对土壤结构改良、土壤肥力提升和农田温室气体排放具有重要意义。本研究以吉林省梨树县典型黑土为研究对象,通过培育实验,研究不同土壤水分含量(40%WHC和100%WHC)下,生物质炭种类(玉米秸秆生物质炭和稻壳生物质炭)和施加量(0%、1%和4%(w/w))对黑土N2O排放及硝化反硝化功能基因丰度的影响。结果表明,随着秸秆生物质炭施加量的增加,土壤N2O排放呈下降趋势,4%高量秸秆生物质炭添加下,土壤N2O排放量仅为1%低量秸秆生物质炭添加下的33.9%。同时土壤NO- 3-N也表现出一致性规律,4%高量生物质炭添加下土壤NO- 3-N含量显著低于1%低量生物质炭。在100%WHC土壤水分状况下,玉米秸秆生物质炭显著增加了土壤N2O排放,而稻壳生物质炭则显著降低了土壤N2O排放。高土壤水分显著促进了土壤N2O排放,进一步为实时荧光定量PCR结果所证实,高土壤水分通过增加nirS基因丰度进而促进了土壤反硝化作用过程,而4%高量稻壳生物质炭添加下nosZ基因丰度显著高于玉米秸秆生物质炭添加,表现出更强的N2O还原潜力。尽管amoA-AOA基因丰度在不同生物质炭添加量下并未发生显著变化,但amoA-AOB基因丰度在高量玉米秸秆生物质炭添加下显著下降。结果说明,土壤水分和生物质炭通过影响土壤硝化反硝化微生物的营养底物和代谢过程,进而影响土壤N2O排放特征。  相似文献   

3.
以我国江南茶区(安徽、浙江)和华南茶区(福建)典型茶园土壤及各自相邻的林地土壤为研究对象,在25oC和60%田间持水量条件下,通过28 d的室内培养试验,研究了林地改为茶园后对土壤净硝化速率及N_2O排放规律的影响。结果表明:安徽地区林地改种茶园显著抑制了净硝化速率;与安徽地区的林地和茶园土壤相比,浙江和福建地区林地和茶园土壤净硝化速率很低(N,0.2 mg/(kg·d)),且林地改为茶园后对土壤净硝化速率没有显著影响。安徽地区植茶年限超过10 a的茶园土壤N_2O累积排放量均显著低于邻近的林地土壤,而植茶年限为10 a的茶园土壤与邻近的林地土壤差异不显著。浙江和福建茶园土壤N_2O累积排放量均高于各自对照的林地土壤。安徽地区土壤的N_2O累积排放量与p H呈显著的正相关关系,这表明林地改为茶园后,随着植茶年限的增加和氮肥的施用,p H降低抑制了净硝化速率,进而降低N_2O排放。  相似文献   

4.
王启  兰婷  赖晶晶  高雪松 《土壤》2020,52(6):1170-1178
生物质炭施用可能对土壤中氮素硝化过程和N2O排放产生影响。本研究通过室内培养试验,研究铵态氮肥与玉米秸秆生物质炭施用量(0、1%、2%、5%、10%w/w)对酸性(pH=5.10)和石灰性紫色土(pH=8.15)氮素硝化率、净硝化速率及N2O排放特征的影响。结果表明:(1)酸性和石灰性紫色土生物质炭处理平均净硝化速率相比对照分别降低了33.7%~93.7%和7.5%~40.9%,生物质炭添加抑制了酸性和石灰性紫色土硝化作用,在酸性紫色土中生物质炭对氮素硝化作用的抑制作用随施用量的增加而增强,在石灰性紫色土中无明显规律。(2)与对照相比,酸性紫色土N2O累计排放量在1%生物质炭(1%BC)和2%生物质炭(2%BC)处理下降幅分别为15.9%和27.7%,在5%生物质炭(5%BC)和10%生物质炭(10%BC)处理下增幅分别为60.1%和93.2%。石灰性紫色土生物质炭各处理N2O累积排放量均显著高于对照。(3)综合考虑酸性紫色土1%、2%生物质炭量施用下对硝化作用抑制和N2O减排综合效果最好,在石灰性紫色土中无明显抑制和减排效果。  相似文献   

5.
中亚热带地区春季降雨频繁,茶园施肥量大,该季节茶园土壤氧化亚氮(N2O)排放量较高,研究春季茶园土壤N2O排放及其影响因子有一定意义。以中亚热带丘陵区土壤为对象,采用静态箱-气相色谱法,研究了两种植茶年限茶园和林地土壤春季N2O排放特征及其影响因子。结果表明:茶园N2O排放量明显高于林地,50年茶园N2O排放量明显高于20年茶园,林地N2O的排放量最少;50年茶园、20年茶园和林地土壤春季N2O累积排放量分别为2.07、1.39、0.22 kg·hm-2。两种植茶年限茶园土壤N2O排放通量均与土壤NO-3-N含量呈显著正相关(P<0.05),林地土壤N2O排放通量则与土壤NH+4-N含量呈极显著正相关关系(P<0.01);茶园和林地土壤N2O排放通量均与5 d累积降雨量之间存在显著的相关性。多元逐步回归分析显示,茶园土壤N2O排放通量受土壤温度和NO-3-N含量影响,共同解释其48%~49%的变化;林地土壤N2O排放通量受土壤温度和NH+4-N含量影响,共同解释其55%的变化。这项研究显示施肥对春季茶园N2O排放的促进作用与降雨有关。  相似文献   

6.
不同利用方式红壤反硝化势和气态产物排放特征   总被引:1,自引:1,他引:1  
采用厌氧培养-乙炔抑制法测定了4种不同利用方式红壤的反硝化势和气态产物N2O和N2的排放速率。结果表明,不同利用方式红壤反硝化势和N2O和N2的排放速率差异明显,土壤反硝化势强弱顺序依次为:竹林>茶园>林地>旱地。反硝化势与土壤有机碳(P<0.05)、厌氧培养期间土壤CO2累积排放量(P<0.01)、nirS基因丰度( P<0.05)和nirK基因丰度(P<0.05) 呈显著正相关关系。逐步回归分析结果表明,CO2累积排放量表征的易矿化碳是造成不同利用方式红壤反硝化势差异的主要原因,可以解释反硝化势变化的66%(P<0.01)。不同利用方式红壤N2O和N2排放速率差异明显,旱地红壤N2O和N2排放速率均最低,表明土壤pH的提升并没有增加旱地红壤的反硝化损失风险和N2O排放速率。土壤易矿化有机碳含量也是影响不同利用方式红壤N2O和N2排放速率的主要因素。反硝化功能基因nirS、nirK和nosZ的丰度均与CO2累积排放量呈显著正相关关系,进一步支持了土壤易矿化有机碳含量是影响不同利用方式红壤反硝化势和气态产物排放的主要因子。土壤pH是影响不同利用方式红壤反硝化气态产物N2/N2O的主要因素,但是pH影响红壤N2/N2O的微生物机制仍需要进一步研究。  相似文献   

7.
施肥对夏玉米季紫色土N2O排放及反硝化作用的影响   总被引:9,自引:0,他引:9  
采用原状土柱-乙炔抑制培养法研究了施肥对紫色土玉米生长季土壤N2O排放通量和反硝化作用的影响.结果表明:玉米季施肥显著增加土壤N2O排放和反硝化损失,同时,各施肥处理间N2O排放与反硝化损失量差异显著.猪厩肥、猪厩肥配施氮磷钾肥、氮肥、氮磷钾肥和秸秆配施氮磷钾肥等处理的土壤N,O排放量分别为3.01、2.86、2.51、2.19和1.88 kg hm-2,分别占当季氮肥施用量的1.63%、1.53%、1.30%、1.09%和0.88%,反硝化损失量分别为6.74、6.11、5.23、4.69和4.12 kg hm-2,分别占当季氮肥施用量的3.97%、3.55%、2.97%、2.61%和2.23%,不施肥土壤的N2O排放量和反硝化损失量仅为0.56和0.78 kg hm-2.施肥是紫色土玉米生长前期(2周内)土壤N2O排放和反硝化速率出现高峰的主要驱动因子,土壤铵态氮和硝态氮含量是影响土壤N2O排放、土壤硝化和反硝化作用的限制因子,土壤含水量是重要影响因子,降雨是主要促发因素.土壤N2O排放量与反硝化损失量的比值介于0.45 ~0.72之间,土壤反硝化损失量极显著高于土壤N2O排放量,说明土壤反硝化作用是紫色土玉米生长季氮肥损失的重要途径.  相似文献   

8.
土地利用方式变化是造成大气中温室气体浓度变化的主要原因之一,但土地利用方式转变,如林地转变为耕地过程对土壤氧化亚氮(N_2O)排放的影响还缺乏系统研究。本研究于2016年7月中旬在四川盆地丘陵区将林地转变为耕地,并按照耕地冬小麦-夏玉米轮作方式,采用静态暗箱-气相色谱法,对比分析了耕地翻耕不施肥(CL-T)、翻耕施肥(CL-TF)和邻近林地(CK)的土壤N_2O排放过程特征。结果表明,试验期间CL-T、CL-TF土壤N_2O排放通量较CK均显著增加(P0.01),且二者的N_2O排放通量在林地转变为耕地初期均有明显的排放峰。小麦季和玉米季土壤N_2O排放通量[μg(N)·m-2·h-1]均值CK分别为2.52和4.60,CL-T分别为3.55和11.63,CL-TF分别为6.26和22.16,N_2O排放通量玉米季显著高于小麦季。CK、CL-T和CL-TF的土壤N_2O全年累积排放量[mg(N)·hm-2]分别为0.271、0.515和0.957,CL-T、CL-TF较CK分别显著增长89.8%、253.0%,说明林地转变为耕地,紫色土N_2O排放迅速增加。首先翻耕改变土壤结构并显著增加土壤无机氮含量(P0.05),其次施肥大幅增加土壤无机氮含量导致土壤N_2O的激发排放。而土壤温度和水分未发生显著改变(P0.05),种植作物短时间内也未显著改变土壤的N_2O排放。结果表明,林地转变为耕地激发土壤N_2O排放的根本机制可能是提高了土壤有机氮矿化速率。但土地利用转变对土壤氮转化过程的影响以及进而改变土壤N_2O的排放特征的机理有待进一步研究。  相似文献   

9.
为探讨除草剂施用对柑橘园土壤氮转化及温室气体排放的影响,在实验室培养条件下,研究了0年(林地)、种植10年和30年的柑橘园土壤中分别添加除草剂草甘膦和丁草胺后,尿素态氮含量、硝化和反硝化作用以及温室气体排放的变化。研究结果表明,橘园土壤中尿素第1 d的水解率、氮肥硝化率、反硝化作用损失总量以及N_2O和CO_2排放量显著高于林地土壤(P0.05)。与10年橘园土壤相比,30年橘园土壤显著增加了尿素的水解速率、氮肥硝化率和CO_2排放量(P0.05),但二者的反硝化损失量没有显著差异。施用草甘膦和丁草胺都显著促进了林地土壤的尿素水解(P0.05),第1 d尿素态氮含量分别降低11.20%和12.43%;但对3种土壤氮肥的硝化率均没有明显影响。施用丁草胺显著降低了林地土壤的CO_2排放量(P0.05),对两种橘园土壤的CO_2排放没有明显影响,但明显增加了两种橘园土壤的N_2O排放总量(P0.05),分别比不施除草剂增加56.27%和85.41%;施用草甘膦对3种土壤的N_2O和CO_2排放均没有明显影响。可见,草甘膦和丁草胺的施用不会对柑橘园土壤的氮转化过程产生影响,但丁草胺显著增加了柑橘园土壤的N_2O排放。  相似文献   

10.
《土壤通报》2019,(5):1210-1217
研究在我国亚热带红壤地区采集林地、竹林、茶园和旱地农田4种利用方式的土壤样品,测定了氮素净矿化和净硝化以及N_2O排放速率,定量了氨氧化细菌(AOB)和氨氧化古菌(AOA),以期阐明土地利用方式对红壤氮素矿化和硝化作用的影响。结果表明,不同利用方式红壤AOA基因拷贝数在6.20×10~6到6.58×10~6copies g~(-1)土;AOB基因拷贝数在4.18×10~6到7.41×10~6copies g~(-1)土,AOA和AOB丰度的最大值均出现在旱地红壤。旱地红壤0~7天和0~14天的氮素净矿化速率分别为3.46和1.62 mg kg~(-1),均显著高于其他利用方式。氮素净矿化速率与土壤pH值呈显著的正相关关系(P0.05),与C/N呈显著的负相关关系(P0.05),说明土壤pH和C/N是影响不同利用方式红壤氮素净矿化速率的主要因子。旱地红壤0~7天和0~14天的净硝化速率分别为5.33和3.06 mg kg~(-1),也均显著高于其他利用方式。净硝化速率与铵态氮(NH_4~+-N)含量(P0.01)、pH(P0.05)和AOB(P0.01)均呈显著的正相关关系,表明土壤p H和可利用NH_4~+-N含量是影响红壤净硝化速率的重要因素,高土壤pH和NH_4~+-N含量有利于AOB的生长和活性,从而明显增加净硝化速率。然而,不同利用方式红壤的N_2O排放速率却没有显著的差异,说明利用方式似乎不影响土壤N_2O排放,这与净硝化速率变化规律相矛盾。可能的原因是,除了硝化作用外,好氧培养条件下还存在其他重要的N_2O产生途径,将来的研究中需要关注不同利用方式红壤N_2O产生途径,以阐明红壤N_2O排放机制。  相似文献   

11.
强酸性茶园土壤中添加不同肥料氮后N2O释放量变化   总被引:4,自引:3,他引:1  
茶园由于长期偏施氮肥,造成土壤酸化现象严重和 N2O 大量排放。本文对强酸性茶园土壤进行不同氮肥处理试验,结果表明, 通过31 d的好气培养,各施肥处理均显著提高N2O排放, 其中施硝酸钾(KNO3)处理平均每天排放的N2O最高,总排放量为对照(CK)的17倍,其次是硝酸铵(NH4NO3)处理, 尿素[CO(NH2)2]和硫酸铵[(NH4)2SO4]处理虽然能增加N2O 排放,但远远小于硝酸钾处理。对各氮肥处理硝化势的测定表明,尿素、 硫酸铵和硝酸铵处理均明显增加土壤硝化活性,而硝酸钾处理硝化势与对照相比显著降低。强酸性茶园土壤中N2O排放的主要来源是反硝化作用。氧化亚氮还原酶(nosZ)的定量PCR 分析表明,硝酸钾处理的nosZ 基因拷贝数与对照相比显著降低(P0.05)。因此,强酸性土壤中N2O还原酶活性被NO3-抑制是导致高N2O排放的重要原因之一。  相似文献   

12.
生物炭基肥对酸化茶园土壤养分及茶叶产质量的影响   总被引:3,自引:0,他引:3  
针对多年生茶园土壤酸化严重、养分失衡、茶叶产质量下降等问题,以七年生酸化茶园为研究对象,设置不施肥(CK)、常规化肥(F)、生物炭(B)、低量生物炭基肥(BF1)、中量生物炭基肥(BF2)和高量生物炭基肥(BF3)6个处理,通过大田试验探究生物炭基肥对酸化茶园土壤肥力性状、茶树养分吸收以及茶叶产质量的影响,揭示生物炭基...  相似文献   

13.
马兰  李晓波  李博伦  颜晓元 《土壤学报》2016,53(5):1181-1190
羟胺(NH_2OH)和亚硝态氮(NO_2~--N)均可以通过非生物过程产生N_2O,但是同一土壤中其对N_2O排放的相对贡献尚不明确。本文采用高压灭菌和室内培养方法,测定了采自6个不同地点的农业利用土壤在灭菌和非灭菌条件下添加NH_2OH或NO_2~--N后N_2O的排放量,以研究土壤中NH_2OH和NO_2~--N非生物过程对N_2O排放的相对贡献及其关键因子。结果表明,供试土壤中,NH_2OH非生物过程产生的N_2O贡献介于6%~73%,NO_2~--N非生物过程产生N_2O占的比例为3%~236%;在pH7的衢州茶园、鹰潭旱地、常熟菜地和海伦旱地土壤中,添加NO_2~--N后非生物过程产生N_2O比例大于添加NH_2OH的处理,但是在pH7的常熟果园和封丘旱地土壤中则相反;pH是影响NH_2OH和NO_2~--N非生物过程产生N_2O的关键因子,添加NH_2OH处理中非生物过程产生N_2O占N_2O总排放量的比例与土壤pH呈正相关(p0.05),而在添加NO_2~--N处理中呈负相关(p0.01)。上述结果说明,NO_2~--N在偏酸性土壤中可能主要通过非生物过程产生N_2O,而在偏碱性土壤中主要通过生物过程;NH_2OH则与之相反。  相似文献   

14.
生物炭对酸化茶园土壤性状和细菌群落结构的影响   总被引:1,自引:0,他引:1  
  【目的】   生物炭作为一种高效、绿色、多功能的土壤调理剂受到了广泛关注,但生物炭对酸化茶园土壤改良的长期效应还缺乏了解。研究施用生物炭5年后对茶园土壤性状和细菌群落结构的影响,为生物炭在酸化土壤改良上的合理应用提供科学依据。   【方法】   茶园生物炭田间试验在福建安溪县进行,茶园种植年限超过7年,茶树品种为铁观音,土壤为黄壤 。试验设生物炭施用量0、2.5、5、10、20和40 t/hm2共6个水平,一次施入土壤,5年后调查了茶园土壤pH、电导率 (EC)、可溶性有机碳含量、细菌群落结构变化及它们间的相关关系。   【结果】   施用生物炭5年后,茶园土壤pH提高了0.16~1.11个单位,可溶性有机碳含量提高了52.6%~92.3%,EC值降低了1.85%~47.77%,其中施用10~40 t/hm2生物炭处理的pH值均显著高于0~5 t/hm2处理。施用生物炭5年对土壤性质的改变,进一步影响了细菌群落结构,细菌群落Chao指数、ACE指数表现为随生物炭施用量增加而增加得趋势,Shannon指数呈现先增加后降低的趋势。施用生物炭促进了适宜酸中性或弱碱性环境的节杆菌属、硝化螺旋菌属、黄色杆菌科细菌相对丰度的增加,降低了嗜酸性细菌如酸杆菌属细菌的相对丰度。细菌群落结构与环境因子的关联分析表明,施用0~10 t/hm2生物炭处理细菌群落结构受pH、EC环境因子的影响较大;施用20~40 t/hm2生物炭处理细菌群落结构受土壤可溶性有机碳等环境因子的影响较大;其中硝化螺旋菌属、α-变形菌门、酸杆菌属、康奈斯氏杆菌属等的相对丰度与土壤pH、EC值间具有显著相关性。   【结论】   在酸化茶园施用生物炭5年后,土壤pH、EC和可溶性有机碳含量发生了显著变化,增加了细菌群落多样性指数,且适宜酸中性或弱碱性环境的细菌丰度增加,嗜酸性细菌丰度降低;其中施用0~10 t/hm2生物炭的处理土壤pH、EC是显著影响细菌群落结构的环境因子,施用20~40 t/hm2生物炭的处理土壤可溶性有机碳含量是显著影响细菌群落结构的环境因子。  相似文献   

15.
氧化亚氮(N2O)是重要的温室气体之一,还会破坏大气臭氧层,影响全球气候变化。农田土壤是N2O最主要的排放源,由微生物主导的硝化和反硝化作用是其最主要的排放途径,因此,土壤的硝化和反硝化作用备受关注。在综合国内外相关研究的基础上,就区分硝化和反硝化作用对N2O排放贡献的研究方法、土壤N2O产生途径及其影响因素以及施用生物炭对N2O排放的影响机理进行归纳总结。结果表明:硝化和反硝化作用对生物炭的响应不同,在N2O减排效应上也存在很大的不确定性,其内在机理尚不明确。在此基础上,提出区分硝化和反硝化作用对N2O排放贡献的最佳研究方法,并就农田土壤硝化反硝化作用的影响因素以及对生物炭的响应机制进行研究展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号