首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Y. Wang  M. Li  K. Filer  Y. Xue  Q. Ai  K. Mai 《Aquaculture Nutrition》2017,23(5):1113-1120
This trial was conducted to evaluate the effects of replacing dietary fish oil with Schizochytrium meal for Pacific white shrimp (Litopenaeus vannamei) larvae (initial body weight 4.21 ± 0.10 mg). Six test microdiets were formulated using Schizochytrium meal to replace 0 g/kg, 250 g/kg, 500 g/kg, 750 g/kg, 1000 g/kg or 1500 g/kg fish oil DHA. No significant differences were observed in survival, growth, final body length and activities of digestive enzyme among shrimp fed different diets (p > .05). No significant differences were observed in C20:5n‐3 (EPA) in muscle samples (p > .05). C18:3n‐3 and C20:4n‐6 in muscle increased as Schizochytrium meal replacement level increased (p < .05). No significant differences were observed in C22:6n‐3 (DHA) and n‐3 fatty acids among shrimp fed diets that algae meal replaced 0 g/kg ‐ 1000 g/kg of fish oil. Shrimp fed diet R150 had higher DHA content than other groups and had higher n‐3 fatty acids than that of shrimp fed diets R50, R75 and R100 (p < .05). C18:2n‐6, PUFA and n‐6 fatty acids in muscle increased, while n‐3/n‐6 ratio decreased with increasing algae meal replacement level from 0 g/kg to 1000 g/kg (p < .05). In conclusion, Schizochytrium meal could replace 1500 g/kg fish oil DHA in the microdiets without negatively affecting shrimp larvae survival, growth and activities of digestive enzyme.  相似文献   

2.
We examined if minimum water exchange could spare dietary methionine (Met) required for maximum growth performance of juvenile Litopenaeus vannamei reared in an intensive outdoor system. Shrimp of 1.98 ± 0.13 g were stocked at 70 animals/m2 and reared for 72 days in 50 tanks of 1 m3 under flow‐through (14.4% a day) and static (1.4%–2.9% a day) green‐water conditions at 32.0 ± 3.7 g/L salinity. Five diets with a minimum inclusion of fishmeal supplemented with a dipeptide, dl ‐methionyl‐dl ‐methionine, were formulated to contain increasing levels of Met, 4.8, 6.2, 7.2, 8.1 or 9.4 g/kg (on a dry matter basis). Each of the five diets were fed four times daily to five replicate groups. Dietary Met and water exchange significantly influenced shrimp survival, gained yield, apparent feed intake, food conversion ratio and final body weight (< .05). Raising shrimp under limited water exchange, i.e., static versus flow‐through spared the dependence on higher levels of dietary Met to maximize shrimp body weight, from 9.4 g/kg to 8.0 g/kg (14.0 and 12.6 g/kg Met+Cys respectively). In an intensive rearing system, a reduction in water exchange is desirable as it leads to a lower need for supplemental dietary Met.  相似文献   

3.
A 10‐week growth trial was run to evaluate effects of myo‐inositol (MI) on growth performance, haematological parameters, antioxidative capacity and salinity stress tolerance of Litopenaeus vannamei. Six practical diets supplemented with graded levels of MI (designated as MI0, MI600, MI1200, MI2400, MI 3600 and MI4800 for 448.8, 974.2, 1568.0, 2810.6, 3835.5 and 4893.6 mg/kg diet, respectively) were fed to six replicate groups of L. vannamei (mean initial body weight 0.63 ± 0.00 g). The results showed that significant increment of growth performance was observed in shrimp fed MI600 diet than those fed MI1200 diet. Lipid concentration in whole body of the shrimp fed MI600 diet was significantly increased. Shrimp fed MI0 diet had lower total protein (TP) as compared to shrimp fed the MI‐supplemented diets (except MI4800 diet). In general, lower activities of antioxidant enzymes and higher malondialdehyde (MDA) content in haemolymph and hepatopancreas were recorded in shrimp fed MI0 diet, compared to those fed the MI‐supplemented diets. Reduced survival after 7‐h salinity stress was present in shrimp fed MI0 diet as compared to those fed MI4800 diet. Dietary MI requirement for glutathione peroxidase activity of L. vannamei was 2705 mg/kg diet.  相似文献   

4.
This study investigated the effects of coconut oil as a dietary supplement on the growth, lipid metabolism and related gene expressions of juvenile orange‐spotted grouper Epinephelus coioides. Coconut oil at concentrations of 0, 10, 30 and 50 g/kg was used to replace dietary lipids in a basal diet containing 150 g/kg lipids. The four experimental diets were, respectively, fed to triplicate groups of juvenile groupers (initial weight: 8.53 ± 0.13 g) in a recirculating system for 8 weeks. Fish fed the diet containing 50 g/kg coconut oil exhibited lower (p < .05) weight gain than did fish fed the diet containing 30 g/kg coconut oil; however, no significant differences in weight gain were observed between fish fed diets containing 0 and 10 g/kg coconut oil. Hepatic carnitine palmitoyltransferase‐1, fatty acid synthase, fatty acid elongase, fatty acid desaturase and peroxisome proliferator‐activated receptor gamma gene expressions were all the highest in fish fed the diet containing 10 g/kg coconut oil. Fish fed the coconut oil‐free basal diet demonstrated upregulated gene expression of neuropeptide Y. The results suggest that dietary supplementation with 10 g/kg coconut oil exerted beneficial effects on lipid metabolism by E. coioides.  相似文献   

5.
Litopenaeus vannamei were stocked in 25 clear‐water 500‐L tanks at 100 shrimp m?2 and in 25 green‐water 1000‐L tanks at 60 animals m?2. Four diets were formulated to include krill meal at 10, 50 or 110 g kg?1; or krill oil at 25 g kg?1 by replacing fish meal, fish oil, soybean lecithin and cholesterol. Diets had similar levels of crude protein, total energy and essential amino acids. After 72 days, shrimp reared in clear and green water showed no differences in performance among diets. In clear water, shrimp attained 13.1 ± 0.59 g body weight, 1.00 ± 0.06 g week?1 growth, 81.4 ± 7.3% survival, 780 ± 118 g m?2 yield, 16.9 ± 1.8 g shrimp?1 apparent feed intake (AFI), and 2.18 ± 0.29 food conversion ratio (FCR). In green water, shrimp attained 14.3 ± 0.81 g body weight, 1.04 ± 0.09 g week?1 growth, 91.4 ± 5.4% survival, 569 ± 69 g m?2 yield, 20.9 ± 3.2 g shrimp?1 AFI, and 2.22 ± 0.34 FCR. Diets containing krill meal or krill oil were able to fully replace the protein and lipid value of fish meal, fish oil, soybean lecithin and cholesterol at no cost to performance.  相似文献   

6.
Three isonitrogenous diets containing 60 g kg–1, 90 g kg–1 or 120 g kg–1 lipid were formulated and fed to the Litopenaeus vannamei (2.00 ± 0.08 g) under two salinities (25 or 3 psu) in triplicate for 8 weeks. Shrimp fed 90 g kg–1 lipid had higher weight gain and specific growth rate than shrimp fed the other two diets regardless of salinity, and the hepatosomatic index increased with increasing dietary lipid at both salinities. The shrimp at 3 psu had significantly lower survival and ash content, higher condition factor, weight gain and specific growth rate than the shrimp at 25 psu. Increasing dietary lipid level induced the accumulation of serum MDA regardless of salinity, and at 3 psu, it reduced the serum GOT and GPT activities and the mRNA expression of TNF‐α in intestine and gill of L. vannamei. The hepatopancreatic triacylglycerol lipase (TGL) and CPT‐1 mRNA expression showed the highest value in shrimp fed 90 g kg–1 lipid diet at 3 psu. This study indicates that 120 g kg–1 dietary lipid may negatively affect the growth and induce oxidative damage in shrimp, but can improve immune defence at low salinity; 60 g kg–1 dietary lipid cannot afford the growth and either has no positive impact on the immunology for L. vannamei at 3 psu.  相似文献   

7.
Commercial de‐fatted groundnut oil cake (GNC) fermented with the fungus Aspergillus niger was evaluated as a fishmeal alternative in the diet of Penaeus vannamei. A 45‐day growth trail was performed using nine iso‐nitrogenous and iso‐lipidic diets. Untreated/fermented GNC was included at the rate of 0 (control), 25, 50, 75 and 100 g/kg by replacing fishmeal (w/w). Each diet was randomly assigned to triplicate group of 20 shrimps (initial weight of 3.09 ± 0.03 g). Results revealed that shrimp fed with diets having untreated GNC up to 50 g/kg has no significant difference in growth, whereas the inclusion level was enhanced to 100 g/kg with fermented GNC with no deleterious effect. The negative linear trend was found for SGR with increasing the inclusion of both untreated and fermented GNC. The feed and protein efficiency measures, viz. feed conversion ratio, protein efficiency ratio and apparent protein utilization, were better in shrimps fed with diets having fermented GNC than those fed the respective level of untreated GNC. The broken‐line analysis indicated that the inclusion of 72.5 g/kg fermented GNC showed the best FCR. No significant difference was observed in survival (86.67%–96.67%) between the dietary treatments. There was a significant difference in ether extract of shrimp between the treatments, whereas other parameters were not affected. Haemolymph indices showed a significant difference in total protein, glucose, cholesterol and triglycerides between control and test diets. The results conclude fermented GNC, which can be better than untreated one in the diet of shrimp.  相似文献   

8.
9.
A 3‐hr experiment was conducted to investigate the effects of dietary myo‐inositol (MI) supplementation on survival, immune response and antioxidant abilities in Litopenaeus vannamei under acute hypoxia stress. Six practical diets were formulated with supplementation of graded levels (control group 0, 0.1, 0.2, 0.4, 0.8 and 1.6 g/kg dry diet) of MI and were randomly assigned to triplicate groups of L. vannamei (mean weight 0.40 ± 0.00 g) for 8 weeks. Ten healthy shrimp (final mean weight approximately 11–14 g) randomly selected from each tank were exposed to hypoxia stress after feeding trial. After 3‐hr acute hypoxia stress, survival of shrimp fed MI‐supplemented diets (except 0.1 and 0.4 g/kg diets) was significantly increased compared with the control group. Shrimp fed control diet had lower activities of alkaline phosphatase (AKP), acid phosphatase (ACP), total antioxidant capacity (T‐AOC) and glutathione peroxidase (GPX), and higher malondialdehyde (MDA) and protein carbonyl (PC) contents in hepatopancreas than those fed the MI‐supplemented diets. In addition, mRNA expression levels of heat shock protein 70 (Hsp70), catalase (CAT) and penaeidin were significantly differentially regulated in hepatopancreas. In summary, dietary MI supplementation may have a positive effect on improving resistance to acute hypoxia stress of L. vannamei.  相似文献   

10.
This study investigated the effect of two lipid sources on reproduction performance and growth in pearl gourami. For this purpose, 180 fish (3.32 ± 0.25 g) were fed with three isoenergetic (19.80) and isonitrogenous diets (480 g/kg protein) including FO (80 g/kg fish oil), FS (40 g/kg fish oil and 40 g/kg soybean oil) and SO (80 g/kg soybean oil) for 10 weeks before maturation. At the end of the trial, there was no significant difference in weight gain, feed conversation ratio and body composition between fish fed FO and FS diets. Individuals fed dietary FO had significantly higher levels of n‐3 long‐chain polyunsaturated fatty acids in the muscle (130.5 g/kg lipid) and ovary (140.4 g/kg lipid) as compared with those fed SO diet (64.5, 103.6 g/kg, respectively) (p < .05). Feeding pearl gourami with FO and FS diets enhanced regarding absolute fecundity, relative fecundity, the fertilization rate, larvae total length and survival at 3 day posthatch (p < .05). Also, 17 beta‐estradiol in plasma of fish fed dietary FO (6.2 ng/L) was higher than those fed SO diet (1.7 ng/L) (p < .05). In conclusion, we suggest FS diet for broodstock nutrition of pearl gourami as a model for asynchronous multi‐batch spawning fish.  相似文献   

11.
New cultured ornamental fish namely Lake Kurumoi rainbowfish Melanotaenia parva (Allen) run into reduced of colour performances when reared in the aquaria, consequently, fish feed must be added with carotenoids as a pigment source. The aim of this study was to evaluate the digestibility, growth and pigmentation of astaxanthin, canthaxanthin and lutein in diet. Apparent digestibility coefficients (ADC) of dry matter, lipid, protein, carotenoids, growth and pigmentation were studied in twenty fish after 14 and 56 days of observation. The single‐dose supplementation of 100 mg/kg of astaxanthin, canthaxanthin, or lutein diets on fish was fed by apparent satiation. The basal diet without carotenoids was used as control. The result showed that the ADC of carotenoids of test diets was higher compared to control. Fish fed astaxanthin diet had higher survival rate (96.67 ± 2.89%), colour measurements of lightness (57.60 ± 7.46%), a*‐values (4.66 ± 1.20), total carotenoids content in skin (33.75 ± 5.02 mg/kg) and muscle (2.16 ± 0.74 mg/kg). Astaxanthin also increased the growth after 14 days (2.00% ± 0.19%/days) but there was no significantly different at the end of experiment. The yellowish‐orange colour performance was more rapidly achieved by fish fed astaxanthin diet after 28 days experimentation. These values suggested that dietary carotenoids were required and astaxanthin diet was superior to other diets for skin pigmentation of Lake Kurumoi rainbowfish.  相似文献   

12.
Three groups of juvenile golden pompano, Trachinotus ovatus (54.75 ± 0.25 g), were each fed one of three diets containing different lipid sources: fish oil (FO), soybean oil (SO) and lard oil (LO). Fish were reared in sea cages for 8 weeks, and the fish fed the FO diet had significantly higher specific growth rate (SGR) but lower condition factor (CF) than the other treatments. The fatty acid (FA) composition of whole‐body lipids was closely correlated with those in the diets. Although no differences can be found in hepatic fatty acid synthase (fasn) activity, the carnitine palmitoyl transferase 1 (cpt1) activity in fish fed the FO diet was significantly higher compared with other treatments. In addition, the relative gene expression of lipid metabolism‐related enzymes, such as cpt1, fas, apolipoprotein B100 (apoB100), delta‐6 fatty acyl desaturase (fadsd6) and fatty acid‐binding protein 1 (fabp1), was also influenced by the different dietary lipid sources. Serum triglyceride (TG) and glucose content in fish fed the LO and FO diets were significantly higher than those in the SO group. Accordingly, it can be concluded that FO could not be completely replaced by SO or LO in golden pompano diets. The lipid sources of a diet could impose significant influence on body condition factor and hepatic lipid metabolism of golden pompano.  相似文献   

13.
A 10-week feeding experiment was conducted to evaluate the nutritional value of menhaden oil (MO), soybean oil (SO) and soybean lecithin oil (SL) at different ratios (MO/SO/SL) in practical diets for juvenile Litopenaeus vannamei by determining their effects on survival, growth, blood chemistry and fatty acid composition of hepatopancreas and muscle tissue. Eight isonitrogenous and isolipidic diets were formulated using 3% MO(3/0/0), 3% SO(0/3/0), 3% SL(0/0/3), 1% MO + 1% SO + 1% SL (1/1/1), 1% SO + 2% SL (0/1/2), 1% MO + 2% SL (1/0/2), 2% SO + 1% SL (0/2/1) and 2% MO +1% SL (2/0/1), respectively. There were no significant differences in body weight gain among all treatments. However, shrimp fed diets with SL supplementation showed significantly (P < 0.05) higher survival than those fed diets without SL supplementation (3% MO and 3% SO diets). The fatty acid (FA) composition of hepatopancreas and muscle tissue reflected, to a certain extent, FA composition of the test diets. Shrimp fed the 3% SL diets showed significantly (P < 0.05) higher triglyceride (TG) concentration in serum than those fed the other experimental diets. Shrimp fed diets containing SL have relatively higher total cholesterol (TC) and phospholipid (PL) concentration in serum than those fed the diets without SL (3% MO and 3% SO). The results of the present investigation are encouraging and confirmed soybean lecithin supplement in shrimp practical diets, when sufficiently high levels of phospholipid are present, survival is enhanced.  相似文献   

14.
An 8‐week feeding trial was conducted to evaluate the effects of dietary nucleotide (NT)‐rich yeast supplementation on growth, innate immunity and intestinal morphology in Pacific white shrimp (Litopenaeus vannamei). Four isonitrogenous and isolipidic practical diets were formulated to contain 0 (control), 10, 30 and 50 g/kg of NT‐rich yeast, respectively. A total of 480 shrimp with an average initial body weight of 1.86 ± 0.02 g were randomly allocated into four groups, with four replicates per group and 30 shrimp each replicate. The results indicated that shrimp fed the diet containing 50 g/kg NT‐rich yeast had significantly higher weight gain (WG), specific growth rate (SGR) and protein efficiency ratio (PER) than those fed the control diet, and the lowest feed conversion ratio (FCR) was observed in the shrimp fed the 50 g/kg NT‐rich yeast supplemental diet. However, there was no significant difference in survival among all treatments. The crude protein of whole shrimp in the 50 g/kg NT‐rich yeast group was higher than that in the control group. Total protein, triglyceride concentrations, the activities of aspartate aminotransferase and alanine aminotransferase in serum were significantly influenced by the dietary NT‐rich yeast supplementation. The activities of serum phenoloxidase (PO) and lysozyme (LZM) of shrimp fed the diet containing 50 g/kg NT‐rich yeast were higher than those in shrimp fed the other diets. Relative expressions of alp and lzm significantly upregulated in the 30 g/kg NT‐rich yeast group compared to the control group. The intestinal fold height and fold width in the 30 g/kg NT‐rich yeast group were significantly higher than those fed the control diet; and the highest microvillus height occurred in the shrimp fed the 50 g/kg NT‐rich yeast diet. In summary, dietary 30–50 g/kg NT‐rich yeast supplementation promotes growth performance, enhances innate immunity and improves intestinal morphology of Litopenaeus vannamei.  相似文献   

15.
Two growth trials were designed to evaluate the utilization of dried fermented biomass (DFB) in commercial type feed formulation for Pacific white shrimp, Litopenaeus vannamei. In trial 1, four experimental diets were formulated to utilize increasing levels (0, 25, 50 and 100 g/kg) of spray‐dried fermented biomass (SDFB) as a replacement of fish meal (FM). Results indicated that SDFB can be utilized up to 50 g/kg as a substitution for FM without causing growth depression in shrimp. However, dietary SDFB supplementation at 100 g/kg significantly reduced the weight gain (WG) of shrimp and increased feed conversion ratio (FCR). This reduction in performance is likely due to palatability or nutrient imbalances of the feed. In trial 2, nine experimental diets were formulated with increasing levels (0, 20, 40, 60 and 120 g/kg) of spray‐dried (S) or granular (G) DFB to replace soy protein concentrate (SPC) or SPC + corn protein concentrate (CPC). This allowed the comparison between spray‐dried and ring‐dried products. Ring drying produced a granular product, reducing dust and increasing product particle size. Shrimp fed with diet containing 20 g/kg GDFB performed the best in terms of final mean weight, WG and FCR. Significantly reduced growth and increased FCR were observed in shrimp fed diets containing 60 and 120 g/kg SDFB. Lipid content of whole body was significantly reduced when GDFB was incorporated at 120 g/kg. No significant differences were detected in survival, protein retention efficiency as well as protein and ash contents of the whole shrimp. Results from analysis of covariance indicated that the processing method (covariant) had a significant effect on final mean weight, WG and FCR. In general, shrimp fed with diet containing granular product performed better as compared to those fed with diets utilizing spray‐dried product. GDFB can be utilized in the diets up to 120 g/kg in practical shrimp feeds as a substitute for SPC and CPC without compromising the growth of shrimp. However, a significant reduction in WG was observed in the diets containing 60 and 120 g/kg SDFB. The results in the current study demonstrate that processing changes to produce a granular product produced an improved feed ingredient for shrimp.  相似文献   

16.
The effects of dietary administration of inorganic zinc (zinc sulphate, ZnSO4) and nano zinc (zinc oxide nanoparticles, ZnO‐NP) were evaluated in rohu, Labeo rohita fingerlings. Fish were fed with a basal diet (Control) supplemented with ZnSO4 (T1, T2 and T3) and ZnO‐NP (T4, T5 and T6) at 10, 20 and 30 mg/kg, respectively, for a duration of 45 days. The results revealed that fish fed diet containing 20 mg ZnO‐NP per kg (T5) had the highest weight gain and specific growth rate (SGR, % per day), which was significantly different (p < .05) from the other experimental diets. Significantly (p < .05), higher activities of the digestive and metabolic enzymes were recorded in the fish fed ZnO‐NP containing diets as compared to the diets containing inorganic Zn or control diet. The maximum serum glucose and protein levels were noted in fish reared on diet T5. Both SGOT and SGPT activities were significantly increased in fish fed Zn‐supplemented diets (T1 to T6), as compared to the control group. Similarly, innate immune parameters were improved with feeding Zn incorporated diets. The highest phagocytic (40.74 ± 0.65%) and respiratory burst (0.33 ± 0.001, OD 630nm) activities were recorded in the fish fed diet containing ZnO‐NPs at 20 mg/kg (T5). The maximum superoxide production and serum peroxidase activity were detected in the fish fed T5 and T6 diets. Overall, results indicated that short‐duration feeding (≤45 days) of dietary ZnO‐NP (20 mg/kg) improved growth, enzyme activity, serum biochemical parameters and immune function in rohu fingerlings.  相似文献   

17.
The main objective of this study was to evaluate the effect of methionine supplementation when reducing fishmeal levels in diets for white shrimp (Litopenaeus vannamei). Tested diets consisted of a positive control with 260 g/kg fishmeal (D1), two negative controls with 100 g/kg fishmeal and no amino acid (AA) supplementation (D2) or supplemented with lysine but not methionine (D3), and four additional diets with 100g/kg fishmeal supplemented with increasing levels of DL‐Met (1.0, 2.0 or 3.0 g/kg) (D4, D5, D6) or Met‐Met (1.0 g/kg) (D7). Each diet was fed to four groups of 30 shrimp for 8 weeks at a daily rate of 70 g/kg body weight. Reduction in fishmeal from 260 g/kg down to 100 g/kg did not significantly affect survival rate, feed conversion ratio (FCR), protein efficiency ratio (PER) or protein retention efficiency (PR%) of white shrimp. However, growth performance (final body weight, FBW; weight gain, WG; specific growth rate, SGR) was reduced when dietary fishmeal level was reduced from 260 g/kg (D1) to 100 g/kg without methionine supplementation (D2). The growth performance (FBW, WG and SGR) of shrimp was significantly increased by supplementation of the 100 g/kg fishmeal diet with increasing levels of DL‐Met (< .05). Same performance as positive control (D1) was achieved with diets containing 100 g/kg fishmeal and supplemented with 3.0 g/kg DL‐Met or 1.0 g/kg Met‐Met. The highest values of growth performance (FBW, WG and SGR) were found in shrimp fed D6 and D7 diets, which were significantly higher than those of shrimp fed D2 and D3 diets (< .05) but without statistical differences with shrimp fed D1, D4 and D5 diets (> .05). The highest values of whole‐body and muscle protein contents were found in shrimp fed D1 diet, which were significantly higher than those of shrimp fed all other diets (< .05). The highest value of intestinal tract proteolytic enzyme activity was found in shrimp fed Met‐Met‐supplemented diet (D7) and followed by the positive control diet (D1) and 3 g/kg DL‐Met‐supplemented diet (D6) (< .05). The highest values of apparent digestibility coefficients (ADCs) of dry matter and crude protein were found in Met‐Met‐supplemented diet (D7) and followed by the positive control diet (D1) (< .05). Shrimp fed the D1 diet showed the highest value of total essential amino acid (EAA) and was significantly higher than shrimp fed D2–D3 (< .05) but without significant difference with shrimp fed D4–D7 (> .05). In conclusion, results showed that same performance can be achieved with diets containing 260 or 100 g/kg fishmeal supplemented with 3.0 g/kg DL‐Met or 1.0 g/kg Met‐Met. Moreover, supplementation of limiting methionine in low‐fishmeal diets seems to improve the digestive proteolytic activity, improving digestibility of dry matter and protein, and eventually to promote growth of juvenile white shrimp in fishmeal reduction diets.  相似文献   

18.
Defatted Jatropha kernel meal (DJKM) was irradiated through electron beam radiation at 25 kGy (IJKM). After irradiation, PEs and phytate were decreased by 36.67% and 55.27%, respectively, with slight reduction in total hydrolysed amino acids in IJKM. A 45‐day feeding trial was conducted to evaluate the utilization of irradiated Jatropha kernel meal (IJKM) in the diet of rohu (Labeo rohita) fingerlings. Five isonitrogenous (300 g/kg CP) and isoenergetic (15 MJ/kg GE) diets such as T0 (control, without IJKM), T5 (50 g/kg IJKM), T10 (100 g/kg IJKM), T15 (150 g/kg IJKM) and T20 (200 g/kg IJKM) were prepared and fed to fish of respective treatments. Fish fed diets containing T15 and T20 groups exhibited significantly lower (p < .05) weight gain, FCE, PER, ANPU, HSI, ISI, survival rate, nutrient and energy digestibility, than the other groups. Fish of higher IJKM fed groups (T15 and T20) also showed lower muscle moisture, protein, ash and higher muscle lipid content. The liver catalase and SOD activities significantly decreased in the higher IJKM fed groups. It is concluded that IJKM (irradiated by 25 kGy electron beam) can be incorporated up to 100 g/kg in carp feed with the replacement of 33% soybean meal and 28% ground nut oil cake without compromising growth performances of Labeo rohita.  相似文献   

19.
The effects of fructooligosaccharide (FOS) on growth performance, immunity and predominant autochthonous intestinal microbiota of shrimp (Litopenaeus vannamei) fed diets with fish meal (FM) partially replaced by soybean meal (SBM) were evaluated. After acclimation, shrimps (1.82 ± 0.01 g/kg) were allocated into 15 tanks (25 shrimps per tank) and fed five different diets including positive control diet (C0, containing 250 g/kg FM and 285 g/kg SBM), control diet (C, containing 125 g/kg FM, 439 g/kg SBM) and three experimental diets supplemented with 1.0 g/kg FOS (T1), 2.0 g/kg FOS (T2) and 4.0 g/kg FOS (T3) to control diet (C) respectively. Shrimps were fed diets to apparent satiation three times per day, and 15 shrimps from each aquarium were randomly sampled and analysed at the end of the 6‐week feeding trial. The results showed that FBW, WGR, SGR and SR decreased, while FCR and FI increased significantly in control (C) compared with positive control (C0). Besides, significantly decreased trypsase and lipase activities, and SOD, AKP and ACP activities were recorded in control (C) compared with positive control (C0). On the other hand, significantly improved SGR and decreased FCR were observed in groups T1, T2 and T3 compared with control (C). Moreover, lipase and amylase activities enhanced significantly in group T3 compared with the control (C), while GOT and GPT activities dropped significantly with the increment supplementation of FOS in diets. Compared with the control (C), SOD activity enhanced significantly and MDA level decreased significantly in groups T2 and T3, and improved AKP and ACP activities were observed in group T3. In addition, dietary FOS improved the microbial diversity, and suppressed several potential pathogens, such as Vibrio tubiashii, Vibrio parahaemolyticus and Photobacterium damselae‐like strains in the intestine of shrimp. Overall, these results proved FOS could relieve the side effects induced by SBM and supported the use of 2.0–4.0 g/kg FOS in shrimp diets with FM partially replaced by SBM.  相似文献   

20.
This study was conducted to investigate effects of and interactions between nanoselenium (NanoSe) and nanomagnesium (NanoMg) on growth, humoral immunity, serum biochemistry and antioxidant capacity of juvenile Asian seabass Lates calcarifer reared in freshwater. Four groups of fish with an average weight of 32.78 ± 2.23 g were fed one of the experimental diets for 6 weeks: (a) control (basal diet); (b) NanoSe (basal diet + 4 mg NanoSe/kg diet); (c) NanoMg (basal diet + 500 mg NanoMg/kg diet); and (d) combination (basal diet + 4 mg NanoSe/kg diet + 500 mg NanoMg/kg diet). Fish fed with NanoSe‐supplemented diets (NanoSe and combination) showed higher weight gain, specific growth rate and feed intake. The combination of NanoSe and NanoMg enhanced the immune response. Also, fish fed on combination diet showed higher serum alanine aminotransferase and aspartate transaminase levels but lower glucose concentration. The activities of liver superoxide dismutase, glutathione peroxidase and catalase were not different among all groups, but liver malondialdehyde level was lower in fish fed diets supplemented with NanoSe and/or NanoMg. It could be concluded that NanoSe improved growth performance; the combination of both NanoSe and NanoMg enhanced humoral immunity; and NanoSe and/or NanoMg improved antioxidant capacity in Asian seabass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号