首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to determine if algal products rich in DHA or ARA are able to completely replace fish oil in microdiets for marine fish larvae, gilthead seabream and if extra supplementation with EPA may further enhance larval performance. For that purpose, 20 day‐old gilthead seabream larvae of 5.97 ± 0.4 mm mean total length and 0.12 ± 0.001 mg mean dry body weight were fed with five microdiets tested by triplicate: a control diet based on sardine oil; a diet containing AquaGrow® DHA (diet DHA) to completely substitute the sardine oil; a diet containing AquaGrow® ARA (diet ARA); a diet containing both products, AquaGrow® DHA and AquaGrow® ARA to completely substitute the fish oil; and, a diet containing both products, AquaGrow® DHA and AquaGrow® ARA, together with an EPA source. Temperature, air and salinity activity tests were also performed to detect larval resistance to stress. At the end of the experiment, final survivals did not differ among groups. The microorganism produced DHA was able to completely replace fish oil in weaning diets for gilthead seabream without affecting survival, growth or stress resistance, whereas the inclusion of microorganism produced ARA did not improve larval performance. Moreover, addition of EPA to diets with total replacement of fish oil by microorganism produced DHA and ARA, significantly improved growth in terms of body weight and total length. The results of this study denoted the good nutritional value of microorganisms produced DHA as a replacement of fish oil in weaning diets for gilthead seabream, without a complementary addition of ARA. However, dietary supplementation of EPA seems to be necessary to further promote larval performance.  相似文献   

2.
A 30‐day feeding experiment was conducted in blue tanks (70 × 50 × 60 cm, water volume 180 L) to determine the effects of dietary lipid levels on the survival, growth and body composition of large yellow croaker (Pseudosciaena crocea) larvae (12 days after hatchery, with initial average weight 1.93 ± 0.11 mg). Five practical microdiets, containing 83 g kg?1 (Diet 1), 126 g kg?1 (Diet 2), 164 g kg?1 (Diet 3), 204 g kg?1 (Diet 4) and 248 g kg?1 lipid (Diet 5), were formulated. Live feeds (Artemia sinicia nauplii and live copepods) were used as the control diet (Diet 6). Each diet was randomly assigned to triplicate groups of tanks, and each tank was stocked with 3500 larvae. During the experiment, water temperature was maintained at 23(±1) °C, pH 8.0 (±0.2) and salinity 25 (±2) g L?1. The results showed that dietary lipid significantly influenced the survival and growth of large yellow croaker larvae. Survival increased with the increase of dietary lipid from 83 to 164 g kg?1, and then decreased. The survival of larvae fed the diet with 83 g kg?1 lipid (16.1%) was significantly lower than that of larvae fed other diets. However, the survival in larvae fed the diet with 16.4 g kg?1 lipid was the highest compared with other artificial microdiets. Specific growth rate (SGR) significantly increased with increasing dietary lipid level from 83 to 164 g kg?1 (P < 0.05), and then decreased. The SGR in larvae fed the diet with 164 g kg?1 lipid (10.0% per day) was comparable with 204 g kg?1 lipid (9.6% per day), but were significantly higher than other microdiets (P < 0.05). On the basis of survival and SGR, the optimum dietary lipid level was estimated to be 172 and 177 g kg?1 of diet using second‐order polynomial regression analysis respectively.  相似文献   

3.
The present study was carried out to evaluate the effect of supplementation of Garlen®, Diamond V XPC®, and Bactozyme® and their combination in the diets of European sea bass, Dicentrarchus labrax larvae development in hatcheries on feed intake, growth performance, feed efficiency, intestinal bacterial, survival rate, and economics analysis. Dicentrarchus labrax juveniles (1.4 ± 0.5 mg) were distributed into eight experimental groups with a density of 2.5 larvae per liter. Eight iso-nitrogenous (55% crude protein) and iso-caloric (19.2 ± 0.2 MJ/kg, DM) weaning diets were formulated to contain the control diet (no feed additives), individually or mixed alternatively with three feed additives (Garlen®; Diamond V XPC®, and Bactozyme®). Each experimental diet was allocated to three tanks of fish and fed for 12 weeks. Growth and survival rate (S %) were improved for larvae fed the diets supplied with either (Diamond V XPC® + Bactozyme®) or (Garlen® + Diamond V XPC® + Bactozyme®), respectively compared to the control larvae group. The best FCR value was recorded for larvae fed a diet supply with (Garlen® + Diamond V XPC® + Bactozyme®), while the control larvae group recorded the worst FCR. The optimum significant (P ≤ 0.05) nutrient utilization values, larvae body crude protein content, activity test (ATV%), and profit index (PI) values were observed for larvae fed a diet containing Diamond V XPC® + Bactozyme® or Garlen® + Diamond V XPC + Bactozyme® compared to other treatments. The opposite trend was observed for total bacterial (TBC) and Vibrio sp. counts. No significant (P ≥ 0.01) difference was recorded in Aeromonas sp. count values in all experimental treatments. The results from this study show that (Garlen®; Diamond V XPC®, and Bactozyme®) individually or mixed alternately as growth promoters and immune stimulants in early weaning larval diets of European sea bass under hatchery conditions led to improve growth performance, feed utilization, survival, lowest intestinal bacterial load, and highest profit index (LE).  相似文献   

4.
Despite intensive stocking programmes, wild Maraena whitefish Coregonus maraena (Bloch, 1779)‐stocks are in danger of extinction in the Baltic sea region. Current aquaculture rearing methods in recirculating aquaculture systems (RAS) are lacking efficient protocols for transitioning larvae from endogenous to exogenous feeding. In this 34‐day‐experiment the offspring of wild fish was used. Maraena whitefish larvae were weaned at three different temperatures (15.9°C, 17.9°C, 19.7°C) and three feeding regimes, resulting in nine treatments. The first group received pure live feed (freshly hatched Artemia sp. nauplii) for 10 days and a 1:1‐mixture of live and dry feed for 3 days. The second group received the live and dry feed mixture for 13 days and the third group directly received a commercial dry feed. All nine treatments were stocked in triplicate with 500 larvae per tank (19 ind. L?1). Feeding started 4 days post hatch. Survival was highest in the pure dry feed groups and lowest in the pure live feed groups. In contrast to growth, which was highest in the live feed groups and lowest in the dry feed group. Higher temperature increased growth in the live feed groups but had no effect on survival in all groups. These results will enhance the weaning of C. maraena in recirculation aquaculture.  相似文献   

5.
The aim of this study was to evaluate two new types of experimental weaning microdiets for fish larvae, using the same formulation, but with different manufacturing processes, microextrusion marumerization (MEM) and particle‐assisted rotational agglomeration (PARA). Both microdiets were compared to a commercial microdiet, Otohime? (OTO), during the weaning of the fine flounder, Paralichthys adspersus . Weaning was achieved by cofeeding with live food from 40 to 50 d after hatch (d.a.h.). Thereafter, only the microdiets were fed to the end of the study (60 d.a.h.), where the total length, dry weight, and survival rates were 15.9 ± 3.20, 14.3 ± 1.72, and 14.4 ± 2.28 mm; 8.83 ± 3.40, 5.53 ± 2.85, and 7.10 ± 3.56 mg; 18.1, 16.3, and 15.2%, for OTO, MEM, and PARA, respectively. The dry weight and total length were significantly higher (P < 0.05) for larvae fed OTO compared with those fed MEM. There were no differences between the other comparisons. Based on these results, any of the two experimental microdiets can be used for future investigations. However, we recommend the PARA microdiets because the manufacturing process produces less‐dense and smaller particle size diets, reducing sinking rates and increasing the probability of the larvae in detecting and ingesting the diet.  相似文献   

6.
Early weaning of marine fish larvae with dry diets delays gut maturation and reduces growth rates. In juvenile and adult forms of several marine fish species, inclusion of dietary mannan oligosaccharides (MOS) improves gut integrity and functionality, but the effects of MOS inclusion in gilthead sea bream (Sparus aurata, L.) larval diets have not been addressed yet. Thus, this study assesses the effects of dietary MOS inclusion on survival, growth performance, gut morphology, feed acceptance and quality of gilthead sea bream larvae. For that purpose, 16 days post‐hatched gilthead sea bream larvae were fed four graded levels of MOS (Biomos®, Alltech, Nicholasville, KY, USA) in weaning diets as follows: 0 g kg?1 MOS, 0.5 g kg?1 MOS, 1.5 g kg?1 MOS and 2 g kg?1MOS. Dietary MOS did not affect feed acceptance in gilthead sea bream larvae (P > 0.05). MOS supplementation was correlated in a dose‐dependent way with higher larval survival (P = 0.026). After 15 days of feeding, dietary MOS increased whole larvae (P < 0.01) arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid. Gilthead sea bream larvae fed 2 g kg?1 MOS presented higher gut occupation with goblet cells after feeding compared with larvae fed the other dietary treatments. Overall, the results suggest that inclusion of MOS in early weaning diets for gilthead sea bream improves essential fatty acid utilization and may promote growth and final survival.  相似文献   

7.
Weaning success of pond‐cultured pikeperch and wild‐caught perch (mean length 51 and 48 mm respectively) was evaluated using different weaning techniques and different formulated feeds. Juveniles that were fed formulated feed grew as well as or better than juveniles that were weaned successively using zooplankton or yolk. Four different formulated feeds (agglomerated marine larvae feed, marine larvae feed, trout feed and a semi‐moist feed) were evaluated regarding specific growth rate (SGR), condition factor and a subjective stomach fullness estimate. The agglomerated marine larvae feed gave significantly better weaning performance than the other feeds regarding all parameters (SGR = 7.3% day?1 and 3.4% day?1 for pikeperch and perch respectively).  相似文献   

8.
The aim of this experiment was to determine the effects of dietary supplementation of Bio‐Mos® as a source of mannan oligosaccharide (MOS) on the growth, survival, immunity and digestive enzyme activity of freshwater crayfish, Cherax destructor (yabby). A basal diet and another diet with 0.4% of Bio‐Mos® supplemented to the basal diet were formulated. Each diet was provided to eight yabbies (35.14 ± 0.48 g, initial weight) replicated 3 times in individual 250‐L plastic cylindrical tanks for a duration of 56 days. Each tank was provided with an independent recirculating water system filtered with a biological filtration. Growth parameters such as weight, specific growth rate and average weekly gain of Bio‐Mos®‐fed yabbies were higher (P < 0.05) than yabbies fed the control diet. Total haemocyte count, granular cells and semi‐granular cells were also higher in the yabbies fed Bio‐Mos® diet. Protease activity was higher in hepatopancreas, and amylase activity was higher in the guts of yabbies fed Bio‐Mos® diet. The results implies that supplementation of MOS through Bio‐Mos® can effectively improve growth and immunological condition of yabbies.  相似文献   

9.
The tongue sole Cynoglossus semilaevis, an inshore fish in China, has showed great potential in aquaculture recently. However, poor survival was recorded during the period of weaning from live Artemia to artificial diets. In this paper, the influence of co‐feeding larvae with live and inert diet on weaning performance was described. The C. semilaevis larvae were reared at 21 ± 1 °C and fed four different feeding regimes from 6 days post‐hatching (dph): A, Artemia (10 individuals mL?1); B, Artemia (5 individuals mL?1); C, mixed diet (10 Artemia individuals mL?1 and 12 mg L?1 inert diet); and D, mixed diet (5 Artemia individuals mL?1 and 12 mg L?1 inert diet). Rotifers were also supplied in all cases during the first days of feeding. Mixed diets of commercial formulated feed and live prey (rotifers and Artemia) allowed larvae to complete metamorphosis, achieving similar specific growth rate (SGR) (18.5 ± 1.4% and 18.7 ± 1.6%) and survival (40 ± 7.6% and 48.5 ± 6.8%) compared with larvae fed on live feed alone (SGR of 18.3 ± 1.2%, 19.3 ± 1.9% and survival of 41.2 ± 11.3%, 38 ± 4.9%). However, in metamorphosed fish, when live feed was withdrawn on 31 dph, there was significant difference (P < 0.05) in survival and growth among treatments. Metamorphosed fish, previously fed mixture diets during larval stages, had similar survival (62.1 ± 7.6% and 62.8 ± 3.9% for regimes C and D, respectively) but higher than that obtained for fish that previously fed on live feed (49.3 ± 2% and 42.1 ± 3.9% for regimes A and B, respectively) after weaning (day 60). The SGR of weaned fish previously fed live feed was similar (3.1 ± 0.6% and 2.92 ± 0.6% for regimes A and B, respectively) but lower than that recorded for fish that was fed from day 6 to day 30 on the mixed diet (4.5 ± 1.1% and 4.9 ± 0.3% for regimes C and D, respectively). It is suggested that weaning of C. semilaevis from early development would appear to be feasible and larval co‐feeding improves growth and survival.  相似文献   

10.
Growth performance of two Oreochromis niloticus strains, Chitralada and Red‐Stirling, their reciprocal crossbred and the Israeli tetra‐hybrid ND‐56 were assessed in net cages under on‐farming conditions. Throughout 268 days of grow‐out, the strains were weighed monthly and mortality, feed consumption and water quality were recorded. Ten rigid net cages (1.5 × 1.5 × 1.7 m) immersed in a 10 ha reservoir were linearly arranged near the reservoir outlet following a completely randomized design with two replicates for each treatment (strain). Each cage was stocked with 459 fish (120 fish m?3) and fed twice daily to apparent satiation with a commercial tilapia diet following the recommended feeding program. The final mean weights were higher for Chitralada (557.20 g) and the reciprocal crossbreds (522.95, 496.40 g) than those of Red‐Stirling (421.90 g). All treatments outperformed the ND‐56 tetra hybrid. Daily growth showed statistical differences between Chitralada (2.04 g) and Red‐Stirling (1.52 g) but they were statistically the same when compared with the reciprocal crossbreds (1.90, 1.80 g). The relative growth ratios showed the same trend observed in the results for daily growth. The mean survival rate was 98%. The overall growth rate showed that crossbred performed as well as the parental lines. All crossbred progeny presented red colouration with variable pattern of black marks corroborating the dominant inheritance of the red trait in Red‐Stirling strain.  相似文献   

11.
The effects of weaning strategies of cobia (Rachycentron canadum L.) larvae to commercial microdiets, either from rotifers or from Artemia, on growth, survival and enzymatic digestive capacity, were investigated. In the first experiment, cobia larvae were weaned from rotifers by co-feeding with a microdiet (Otohime) from 8, 13 or 20 days post-hatching (dph). The larvae in the control treatment were fed rotifers (2–12 dph), Artemia nauplii from 7 dph, and co-fed with the microdiet from 20 dph. In the second experiment, the larvae were weaned from Artemia, which was fed to the larvae from 7 dph, by co-feeding with a microdiet (NRD) from 8, 13 or 18 dph. The larvae in control treatment were fed rotifers, then Artemia to the end of the experiment (28 dph). Weaning of cobia larvae onto a microdiet directly from rotifers significantly reduced growth, survival and digestive capacity of the larvae and did not lead to larval acceptance of the microdiet, compared to those weaned from Artemia in the first experiment. Early weaning of cobia larvae onto NRD microdiet (on 8 or 13 dph) from Artemia in the second experiment also reduced growth, survival rate and gut maturation index, compared to those fed live feed. With available microdiets, weaning of cobia larvae could start from Artemia at around 18 dph in order to obtain comparable growth, survival and gut maturation to larvae fed live feed.  相似文献   

12.
This study was conducted to evaluate the potential of graded levels of GroBiotic®‐A to improve performance of Nile tilapia, Oreochromis niloticus, fed a 29% crude protein (CP) diet. A 29% CP diet was formulated and supplemented with 0, 0.4, 0.8, and 1.2% GroBiotic®‐A and compared to performance of fish fed a 33% CP diet. Enhanced weight gain and feed efficiency were generally observed in fish fed the diets supplemented with GroBiotic®‐A compared to the 29% CP diet. No significant differences in these responses were observed between fish fed diets supplemented with GroBiotic®‐A compared to those fed the 33% CP diet. Supplementation of 0.8 and 1.2% GroBiotic®‐A induced significantly lower condition factor and hepatosomatic index compared to fish fed the 29% CP diet, but those values were similar to that of fish fed the 33% CP diet. GroBiotic®‐A supplementation and protein reduction had no effect on the viscerosomatic index of fish or moisture, lipid, and protein content of muscle samples. However, muscle ash increased significantly with protein reduction (29% CP diet), but GroBiotic®‐A supplementation (0.8 and 1.2%) reduced muscle ash content. Activities of catalase and superoxide dismutase were markedly reduced in fish fed GroBiotic®‐A (0.8 and 1.2%) compared to those fed the control diet. GroBiotic®‐A supplementation also induced significantly higher neutrophil oxidative radical production compared to fish fed the 29% CP diet, but no significant difference was observed in comparison with the 33% CP diet. After 8 wk of feeding, exposure to Aeromonas hydrophila for 3 wk resulted in 40% (0.4, 0.8% GroBiotic®‐A) and 27% (1.2% GroBiotic®‐A) mortality and reduced signs of disease, while 47% mortality was observed in fish fed the 29% CP diet. Based on the result of this study, it is concluded that 0.8 and 1.2% GroBiotic®‐A positively influenced growth performance and feed efficiency of tilapia fed diets containing 29% crude protein to levels comparable to fish fed the 33% CP diet. GroBiotic®‐A supplementation also significantly increased neutrophil oxidative radical production as well as resistance to Ae. hydrophila infection.  相似文献   

13.
The use of prebiotics and probiotics as feed supplements that improve efficiency of intestinal bacteria is becoming de rigueur in animal husbandry in many regions worldwide. We tested the effects of a commercial probiotic (Biogen®) containing allicin, high unit hydrolytic enzyme, Bacillus subtilis spores and ginseng extracts on survival, growth, carcass composition and feed cost/benefit in rabbitfish Siganus rivulatus. Fifteen net cages (100 × 100 × 40 cm; L × W × H) were stocked with 10 juvenile rabbitfish (10.3 g per fish) each and placed in a large rectangular tank and offered feed at 4% body weight daily. Cages were offered one of five isonitrogenous and isocaloric diets containing 0, 1, 2, 3 and 4 g kg−1 probiotic at three replicates per treatment for 98 days. Fish in all cages were weighed at 2‐week intervals and feed regimen was adjusted accordingly. Rabbitfish offered the control diet exhibited lower growth and feed utilization than all experimental treatments. There was no effect of probiotic inclusion level on survival but growth was better at all inclusion levels than in the control. No significant differences (P > 0.05) in growth were observed among fish groups fed various levels of the probiotic. Carcass composition was not affected by dietary probiotic inclusion. Ultimately, when all variables are considered, Biogen® inclusion to diets appears to reduce feed cost per unit growth of rabbitfish.  相似文献   

14.
We evaluated the effect of differently enriched rotifers on the early growth, survival and lipid composition of Atlantic cod larvae (Gadus morhua). The enrichments tested were: (i) AlgaMac 2000®; (ii) AquaGrow® Advantage; and (iii) a combination of Pavlova sp. paste and AlgaMac 2000®. Larvae from treatment 3 [1.50 ± 0.11 mg dry weight (dw) and 7.10 ± 0.14 dw specific growth rate (SGR)] were heavier (P = 0.006) and grew faster (P = 0.004) than larvae from treatment 2 (1.03 ± 0.04 mg dw and 6.29 ± 0.04 dw SGR). No significant differences were found in the final weight and SGR among larvae from treatment 1 (1.21 ± 0.07 mg dw and 6.58 ± 0.20 dw SGR) and larvae from treatments 2 and 3. The treatment 3 also resulted in the best survival at the end of the experimental period, estimated to be 3 on a scale from 1 to 5, whereas the survival estimates for the two other groups were 1–2. Larvae from the treatment 3 reached 37 days posthatch with levels of ω6DPA 32‐fold higher than newly hatched larvae. Differences in the larval enrichment of ω6DPA may explain the differences in growth and survival of the Atlantic cod larvae.  相似文献   

15.
Intensive fishing of whitefish (Coregonus lavaretus) and a survival rate of the early stages of the fry that is generally too low lead, at present, to the whitefish stocks not being able to utilize fully the natural food resources now produced many times in excess of the requirements by the eutrophication of lakes.Feeding experiments in aquaria have, for several years, shown very impressively, that there are two main reasons for the high mortality of the larvae in the natural environment: high sensitivity to even a short-term lack of food and specific food requirements — the necessity for the larvae to feed on the juvenile stages of certain zooplanktonic crustaceans.Artificial breeding of whitefish eggs in cold water at 1°C caused a delay in hatching of about 8 weeks compared with natural hatching, thus allowing the release of the larvae at a time when the density of zooplankton is about ten times higher and mainly juvenile stages of crustaceans needed by the whitefish larvae are present. Hence, this is one proven way of improving the survival rate of whitefish larvae in the natural environment.Young fish, after metamorphosis, have less specialized food requirements than the larval stage and can even be fed adequately with dry food. In rearing the larvae, natural zooplankton can be replaced by the nauplii of the brine shrimp, Artemia salina. Larvae have not yet been reared on dry food or even on slowly frozen zooplankton or Artemia, but Artemia nauplii shock-frozen in liquid nitrogen (at ?196°C) were found to be as acceptable as living ones and allowed metamorphosis of the larvae to take place. The substance, assumed to be present in the living Artemia, which was lost on slow-freezing but retained after shock-freezing and was shown to be essential to the whitefish larvae, was insoluble in water. Biochemical investigation and identification of this substance are urgently required in order to synthesize an artificial complete food for whitefish larvae.As long as this artificial food is not available, attention will have to be focussed on rearing the larvae in natural ponds where the specific and essential zooplankton can be encouraged.  相似文献   

16.
The study examined the effect of PIT tagging and size on the growth, survival, food conversion, tag retention and wound healing in juvenile European whitefish. Three size classes of juvenile whitefish (class S—body weight (b.w.) approx. 4.0 g; class M—b.w. approx. 8.0 g; class L—b.w. approx. 13.6 g) were tagged with PIT implanted intraperitoneally (TROVAN®, United Kingdom). These groups formed S‐P, M‐P and L‐P respectively. Fish from the control groups (groups S‐C, M‐C and L‐C) were not tagged. Whitefish from the tagged and control groups were reared for 28 days in recirculating aquaculture systems. Only in the fish from the smallest group (group S‐P) was tagging confirmed to have a negative impact on growth rate and survival, which, after 28 days, was 70% in comparison with 94.4% in group S‐C. The rate of wound healing in all whitefish groups was similar. After 28 days following PIT implantation, all wounds were healed. Short‐term PIT retention (28 days) for all the groups was > 90%, and no differences were noted among groups. In summary, it is recommended that whitefish be PIT‐tagged using the intraperitoneal method after they have attained a body weight > 8 g. Tagging smaller specimens of this species leads to higher mortality.  相似文献   

17.
In recent years, a great deal of interest has emerged in the development of microdiets as an economic alternative to live food, in the larval culture of marine fish species. The ability to grow Sparus aurata larvae on a prototype microparticulate diet was examined. To achieve this objective, four feeding regimes differing in the time when the microdiet was introduced (3, 7 or 12 days) and one based exclusively on an inert diet were tested, during the first 22 days of larval life. Significant differences in larval growth were found between the experimental feeding regimes and their corresponding controls (enriched rotifers during the whole experimental period); the larvae in the co-feeding regimes and with an exclusive microparticulate diet were always significantly smaller than larvae fed on rotifers alone. However, the difference was minimised by introducing the inert diet at a later date. A lower survival was found in larvae with a co-feeding regime, in comparison with the control treatments and the survival was significantly lower in larvae fed exclusively on a microparticulate diet. The fatty acid analysis revealed that the experimental microencapsulated diet and the rotifers enriched with Protein Selco® presented relatively similar fatty acid content. In spite of the slightly higher (n?3)/(n?6) and Docosahexaenoic acid (DHA)/Eicosapentaenoic acid (EPA) ratios and somewhat lower highly unsaturated fatty acid (HUFA) content found in the inert diet, the fatty acid composition of the diets cannot explain the differences found in larval performance. The results revealed that the complete replacement of live prey with the tested microparticulate diet is still not possible in S. aurata larval rearing. Nevertheless, better growth and survival results and a substantial reduction in the daily supply of live food can be achieved with a combination of microdiet and live prey.  相似文献   

18.
The objective of the present study was to compare the effectiveness of dietary marine phospholipids (MPL) obtained from krill and soybean lecithin (SBL) on the rearing performance and development of seabream (Sparus aurata) larvae. Larvae were fed from 16 to 44 day posthatching (dph) five formulated microdiets with three different levels (50, 70 and 90 g kg–1) of phospholipids (PL) obtained either from an MPL or from a SBL source. Larvae‐fed MPL show a higher survival, stress resistance and growth than those‐fed SBL, regardless the dietary PL level. Overall, the increase in MPL up to 70 g kg–1 total PL in diet was enough to improve larval gilthead seabream performance, whereas even the highest SBL inclusion level (90 g kg–1 PL) was not able to provide a similar success in larval growth or survival. Inclusion of SBL markedly increased the peroxidation risk as denoted by the higher TBARs in larvae, as well as a higher expression of CAT, GPX and SOD genes. Moreover, SBL tends to produce larvae with a lower number of mineralized vertebrae and a lower expression of osteocalcin, osteopontin and BMP4 genes. Finally, increasing dietary MPL or SBL lead to a better assimilation of polyunsaturated fatty acids in the larvae, n‐3HUFA (especially 20:5n‐3) or n‐6 fatty acids (especially 18:2n‐6), respectively. In conclusion, MPL had a higher effectiveness in promoting survival, growth and skeletal mineralization of gilthead seabream larvae in comparison with SBL.  相似文献   

19.
Although dietary marine phospholipids are able to improve culture performance of marine fish larvae in a further extend than soybean lecithin, both types of phospholipids (PL) markedly increase oxidative risk. The inclusion of a fat‐soluble antioxidant such as the vitamin E α‐tocopherol could allow a better control of oxidative stress. The objective of this study was to determine the combined effect of graded levels of α‐tocopherol with different levels and sources of krill phospholipids (KPL) and soybean lecithin (SBL) on growth, survival, resistance to stress, oxidative status, bone metabolism‐related genes expression and biochemical composition of sea bream larvae. Sea bream larvae were completely weaned at 16 dph and fed for 30 days seven microdiets with three different levels of PL (0, 40 and 80 g kg?1 diet) and two of α‐tocopherol 1500 and 3000 mg kg?1 diet. Sea bream larvae fed diets without PL supplementation showed the lowest survival, growth and stress resistance, whereas increase in PL, particularly KPL, markedly promoted larval survival and growth. However, feeding SBL markedly increased TBARs and GPX gene expression increasing the peroxidation risk in the larvae. Besides, KPL inclusion improved incorporation of n‐3 HUFA and, particularly, EPA into larval tissues, these fatty acids being positively correlated with the expression of BMP‐4, RUNX 2, ALP, OC and OP genes and to bone mineralization for a given larval size class. The increase in dietary α‐tocopherol tends to improve growth in relation to the n‐3 HUFA levels in the diet, denoting the protective role of this vitamin against oxidation. Indeed, dietary α‐tocopherol decreased the oxidative stress in the larvae as denoted by the reduction in larval TBARs contents and gene expression of SOD and CAT, but not GPX. Thus, increase in dietary α‐tocopherol effectively prevented the formation of free radicals from HUFA, particularly EPA, but did not affect the incidence of bone anomalies or the expression of genes related to osteogenetic processes.  相似文献   

20.
We evaluated the effects of some dietary natural mineral materials as an antibiotic replacer based on growth performance, non‐specific immune responses and disease resistance in juvenile and subadult rainbow trout, Oncorhynchus mykiss. First experiment, juvenile rainbow trout averaging 2.7 ± 0.02 g (mean ± SD) were fed one of the six experimental diets; a basal commercial diet as a control (CON), CON with oxytetracycline (OTC), with yellow loess (YL), with Macsumsuk® (MS), with Song‐Gang® stone (SG) and with barley stone (BS) at 0.4% of each diet. At the end of 8‐week feeding trial, weight gain (WG), specific growth rate (SGR), feed efficiency (FE) and protein efficiency ratio (PER) of fish fed YL diet were significantly higher than those of fish fed CON diet. Non‐specific immune responses such as superoxide dismutase (SOD), myeloperoxidase (MPO), lysozyme (LYS) activity and oxidative radical production of fish fed YL diet were higher than those of fish fed CON diet. At the end of 15 days of challenge test with Aeromonas salmonicida, average cumulative survival rate of fish fed YL diet was significantly higher than that of fish fed BS and CON diets. However, there were no significant differences among fish fed YL, SG and OTC diets. Second experiment, subadult rainbow trout averaging 261.5 ± 3.5 g (mean ± SD) were fed one of the four experimental diets for 22 weeks: CON, and CON with OTC, YL or SG at 0.4% of each diet. At the end of feeding, growth performance of fish fed SG and YL diets was significantly higher than that of fish fed CON diet. Non‐specific immune responses in terms of SOD, MPO, LYS and NBT of fish fed SG and YL diets were significantly higher than those of fish fed CON diet. However, there were no significant differences among the fish fed YL, SG and OTC diets. The results indicate that dietary yellow loess or Song‐gang® stone at 0.4% of diet could replace oxytetracycline in juvenile and subadult rainbow trout.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号