首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 57‐day growth experiment was conducted with juvenile gibel carp (13.48 ± 0.10 g) in a flow‐through system to study the effect of dietary phosphorus on growth performance, body composition, nutrition utilization, phosphorus loading and enzymes activities. Seven semipurifed diets were formulated to contain 0.07 (the basal), 2.27, 5.32, 8.10, 12.06, 15.24 and 19.48 g available phosphorus/kg diet. The results showed that specific growth rate, body length and feed efficiency significantly increased in the fish fed diets containing 0.07 to 15.24 g available P/kg diet (< .05). Ash and P content increased in fish fed diets containing 0.07–12.06 P g/kg (< .05) and then levelled off, while moisture, crude protein and lipid had no significant difference (> .05). The protein retention efficiency increased in the fish fed with diets 0.07–5.32 g/kg P (< .05) and then reached a plateau. The P content in faeces was higher in fish fed diets containing 15.24 and 19.48 g available P/kg. Total P concentration in tank water increased in fish fed 0.07–12.06 g available P per kg diet (< .05). The plasma P was higher in the fish fed with 15.24 g available P/kg diet (< .05), triglycerides was lower in the fish fed diet containing 15.24 and 19.48 g available P/kg (< .05), no significant differences were observed in plasma Ca, plasma glucose and calcitonin (> .05). Based on SGR, whole body P content and FE, dietary available P requirement for juvenile gibel carp were 13.37, 13.97 g/kg and 15.06 respectively.  相似文献   

2.
3.
A 60‐day feeding trial was conducted to estimate the effects of dietary iron (Fe) levels on growth, Fe concentration in the liver, spleen, and blood, and transferrin and hepcidin concentrations in the blood of bighead carp (Aristichthys nobilis). The six experimental diets were formulated to contain different Fe levels (0, 43.1, 84.2, 123.3, 162.2 and 203.1 mg/kg of dry diet) using ferrous sulphate (FeSO4) as the source. The weight gain (WG) and the specific growth ratio (SGR) of A. nobilis fed with a dietary Fe level of 123.3 mg/kg were significantly higher than that of the 0 mg/kg Fe group (p < .05). The results indicated that the growth was affected by dietary Fe levels. Regression analysis of WG and SGR at different levels of dietary Fe suggests that the appropriate dietary requirement of Fe for the bighead carp larvae is 120–134.36 mg/kg. The Fe contents in different tissues were as follows: spleen > liver > whole body. When the Fe dietary content increases to 162.2 mg/kg, the blood concentrations of Fe significantly decreased and thereafter increased, hepcidin significantly decreased and thereafter decreased, and transferrin significantly increased and thereafter decreased. The results indicate that the transferrin blood content significantly increased with decreasing hepcidin of up to 264.63 μg/ml content and thereafter decreased. It could be concluded that after transferrin saturation, hepcidin functions to maintain iron balance in the blood of A. nobilis by decreasing transferrin content.  相似文献   

4.
This study evaluated the effects of dietary γ‐aminobutyric acid (GABA) on the growth performance, serum biochemical indices and antioxidant status of pharaoh cuttlefish, Sepia pharaonis. Cuttlefish were cultured in open‐culturing cement pool systems for 8 weeks. Six practical diets supplemented with graded levels of GABA (0, 20, 40, 60, 80 and 100 mg/kg) were formulated. Each diet was randomly assigned to triplicate groups of 60 cuttlefish (mean weight: 10.33 g), the cuttlefish were fed two times per day to apparent satiation. The results showed that the specific growth rate (SGR), weight gain (WG) and feed efficiency (FE) significantly increased with dietary GABA supplementation (p < .05). The survival rate (SR) and protein content in muscle significantly increased when 58.9 mg/kg GABA supplied. Moreover, the nitric oxide (NO) content and acid phosphatase (ACP) activity in serum were significantly increased with dietary GABA supplementation (p < .05), while the activity of aspartate aminotransferase (AST) in serum decreased significantly when supplied with GABA at 58.9 mg/kg (p < .05). In addition, dietary GABA improved antioxidation activity by significantly increasing the activities of superoxide dismutase (SOD) and catalase (CAT) but decreasing malondialdehyde (MDA) levels in the liver and gill (p < .05). On the basis of the quadratic regression analysis of FE, the optimum content of dietary GABA in S. pharaonis was estimated to be 55.3 mg/kg. The findings of this study demonstrated that dietary GABA had a positive effect on the growth performance, serum biochemical indices and antioxidant status of S. pharaonis.  相似文献   

5.
A 60‐day growth experiment was conducted to investigate the effect of dietary replacement of fishmeal by Spirulina platensis on growth performance, digestion and physiological parameters in juvenile gibel carp (5.0 ± 1.0 g). Four diets were formulated to replace 0 (SP0), 50% (SP50), 75% (SP75) and 100% (SP100) of dietary fishmeal protein by S. platensis respectively. Other two diets based on SP100 were supplemented with 2% dicalcium phosphate (SP100 + P) or 0.28% coated lysine (SP100 + Lys). The results showed that no significant differences of specific growth rate (SGR), feed efficiency (FE), feeding rate (FR) and protein efficiency ratio (PER) were observed between SP0 group and the replacement groups (SP50, SP75 and SP100). FE and PER of fish‐fed SP100 + Lys diet were significantly higher than the fish‐fed SP100 diet (< .05). Apparent digestibility coefficients (ADCs) of dry matter, protein, energy and phosphorus increased significantly with the increasing S. platensis inclusion. Meanwhile, fish from SP100 + P or SP100 + Lys group had higher ADCs of nutrients compared to the SP100 group (< .05). Compared with SP0 diet, fish‐fed S. platensis diets had higher activities of plasma superoxide dismutase, hepatopancreas total antioxidant capacity, plasma alkaline phosphatase and plasma lysozyme, as well as the lower content of plasma malondialdehyde. The present results indicated that dietary fishmeal could be fully replaced by S. platensis without any negative effects on growth performance of gibel carp. Supplementation of lysine in the S. platensis replacement diet could further improve the feed utilization of gibel carp.  相似文献   

6.
An 88‐day experiment was conducted in a flowing system to evaluate the effects of dietary vitamin C on growth, body composition, antioxidant and gonad development of on‐growing gibel carp. Triplicate tanks of gibel carp (77.2 ± 0.1 g) were randomly fed with one of seven experimental diets containing l ‐ascorbic acid of 0, 101.1, 188.5, 313.1, 444.1, 582.1 and 747.0 mg/kg, respectively. The results showed that specific growth rate (SGR) and feed efficiency (FE) of fish were not affected by dietary l ‐ascorbic acid. Dietary l ‐ascorbic acid of 444.1 mg/kg diet led to low levels (p < .05) of gonadosomatic index (GSI) and hypothalamic gonadotropin‐releasing hormone (GnRH) in on‐growing fish, as well as the early ovarian stages (Developing stages) compared with fish (Maturing stages) from the other groups. Dietary l ‐ascorbic acid supplementation increased (p < .05) the dorsal muscle collagen content, but did not affect the protein or lipid content of dorsal muscle in gibel carp. Plasma total antioxidant capacity (T‐AOC) and superoxide dismutase (SOD) activity increased (p < .05) and then remained unchanged with the increase in dietary l ‐ascorbic acid levels. Dietary l ‐ascorbic acid of 101.1 mg/kg diet improved (p < .05) plasma lysozyme activity of the fish. Broken‐line regression indicated that dietary l ‐ascorbic acid requirement of 77 g gibel carp was 223.3 or 225.0 mg/kg diet based on plasma T‐AOC or SOD activity, which was a little higher than that based on plasma l ‐ascorbic acid concentration (193.2 mg/kg).  相似文献   

7.
This study aimed to determine the optimal dietary niacin requirement of juvenile Megalobrama amblycephala. Fish, with an average weight of 3.62 ± 0.02 g, were randomly divided into six groups and fed six purified diets with graded levels of niacin (0, 10, 20, 30, 40 and 50 mg/kg) three times daily for 8 weeks. The survival rate, weight gain (WG), feed conversion ratio, protein efficiency and protein retention all significantly improved (< .05) as the dietary niacin level increased from 0 to 30 mg/kg but showed no significant difference (> .05) with further increases in niacin levels. The supplementation of 30 mg/kg niacin also led to a significant (< .01) reduction in the viscerosomatic index, hepatosomatic index and mesenteric fat index. The dietary niacin levels exhibited minimal effects on whole‐body moisture and ash content (> .05) but exerted a significant (< .05) influence on protein and lipid contents and liver nicotinamide concentrations with high values obtained in fish receiving greater than 30 mg/kg of niacin. In addition, moderate levels of niacin lowered plasma triglycerides, non‐esterified fatty acid and low‐density lipoprotein cholesterol concentrations (< .05). Based on the broken‐line regression analysis of WG and liver nicotinamide content, the optimal dietary niacin requirement of juvenile blunt snout bream was 31.25 and 30.62 mg/kg, respectively.  相似文献   

8.
Gibel carp (Carassius auratus gibelio) of mean initial weight 3.1 g were fed one of seven casein‐dextrin‐based diets containing graded levels of magnesium (Mg) (39, 120, 220, 380, 700, 1600 and 2900 mg kg?1) for 3 months with the waterborne Mg concentration of 10.6–12.7 mg L?1. Magnesium sulphate was used as the supplementation Mg source in the diets. The experiment was carried out in a flow‐through system. Growth, survival rate, Na+/K+‐ATPase, Mg2+‐ATPase and tissue mineral contents were measured to investigate the effect of dietary magnesium in gibel carp. At the end of the experiment, the hepatopancreas of fish were collected for enzyme determination. The hepatopancreas, vertebrae and whole body were collected for tissue magnesium content analysis. After 3 months, dietary magnesium supplementation did not improve the growth performance, including feed intake, weight gain and feed conversion efficiency of juvenile gibel carp. On the contrary, negative impacts on survival, reduced growth performance and dramatically decreased Na+/K+‐ATPase, Mg2+‐ATPase and superoxide dismutase activities were observed in gibel carp fed a high Mg diet of 2900 mg kg?1. Although serum and hepatopancreas Mg and Ca contents were not affected by dietary Mg supplementation, vertebrae and whole‐body Mg contents increased significantly with the increasing dietary Mg concentrations. Based on the relationship between whole‐body Mg retention and dietary Mg concentration, a suitable dietary Mg level of 745 mg kg?1 could be estimated for gibel carp. It could be concluded that dietary Mg supplementation did not improve the growth performance, but could increase vertebrae Mg contents of gibel carp. Considering the adverse effects, a dietary Mg concentration of above 2900 mg kg?1 is not recommended and it should be careful to supplement magnesium in practical diets for gibel carp as most feed ingredients contain high magnesium concentrations.  相似文献   

9.
This study was conducted to investigate the effects of dietary protease on growth performance, feed utilization, whole‐body proximate composition, nutrient digestibility, intestinal and hepatopancreas structure of juvenile Gibel carp, Carassius auratus gibelio (mean weight 8.08 ± 0.18 g). Six diets were prepared, including a positive control diet (dietary protein 350 g/kg, PC), one negative control diet (dietary protein 33 g/kg, NC) and four protease supplementations diets, which were 75, 150, 300 and 600 mg/kg protease NC diet. After 12 weeks of diet feeding in indoor recycle aquarium tanks, no significant difference (> .05) was found on growth performance between fish fed diet with 75–600 mg/kg protease and the PC group. Compared with the fish fed the NC diet, the specific growth rate of fish fed 300 mg/kg protease increased significantly (< .05), as well as protein efficiency ratios (< .05), while feed conversion was the opposite (< .05). The nutrient digestibility of crude protein and lipid was higher (< .05) in fish fed 150 mg/kg protease diet than the PC diet. Whole‐body proximate composition of fish was not affected (> .05) by the dietary treatment. Serum alkaline phosphatase and albumin were significantly affected by dietary protease (< .05), while the content of total protein, glucose, triglyceride, total cholesterol, aspartate aminotransferase and alanine aminotransferase activities in serum was not affected (> .05). Foregut muscular thickness was thinner (< .05), when the fish fed diets supplementation of protease in 150 or 600 mg/kg diet than the NC diet. Protease activities in hepatopancreas and foregut were higher (< .05), in the fish fed 150 or 300 mg/kg protease diet than the fish fed the PC diet, but those in the mid‐ and hindgut were not significantly affected (> .05) by the dietary treatments. Based on the regression analysis of weight gain rate, the optimal dietary inclusion level of protease was 400 mg/kg in the diet for juvenile Carassius auratus gibelio.  相似文献   

10.
This study was designed to investigate effects of dietary Chlorella meal (CM) additive on growth performance, immune responses and appetite regulation of juvenile crucian carp Carassius auratus (initial body weight: 1.27 ± 0.03 g). Four experimental diets were formulated to contain 0% (CM0), 1% (CM1), 2% (CM2) and 4% Chlorella meal (CM4), respectively. Each diet was randomly assigned to triplicate groups with 40 juvenile fish per fibreglass tank for 8 weeks. Weight gain rate, specific growth rate and feed intake increased with increasing dietary CM levels. In contrast, FCR (feed conversion rate) declined with dietary CM levels. No significant differences were observed in moisture, crude protein, crude lipid and ash contents of muscle and liver tissues. Dietary CM addition increased activities of acid and alkaline phosphatase in liver and kidney. Dietary CM up‐regulated the mRNA expression levels of NKEF‐B, MCHII and IgM in kidney, and increased the mRNA levels of NPY and agouti gene‐related protein in the brain, but down‐regulated mRNA levels of MC4R, LEP, LEPR, CART1, CART2 and CCK8 genes. Based on these observations above, this study indicated that dietary CM additive increased growth performance, immune responses and appetite of crucian carp. The results, for the first time, demonstrate a role for the central nervous system in the control of food intake in fish fed dietary Chlorella meal.  相似文献   

11.
The main objective of this study was to evaluate the effect of methionine supplementation when reducing fishmeal levels in diets for white shrimp (Litopenaeus vannamei). Tested diets consisted of a positive control with 260 g/kg fishmeal (D1), two negative controls with 100 g/kg fishmeal and no amino acid (AA) supplementation (D2) or supplemented with lysine but not methionine (D3), and four additional diets with 100g/kg fishmeal supplemented with increasing levels of DL‐Met (1.0, 2.0 or 3.0 g/kg) (D4, D5, D6) or Met‐Met (1.0 g/kg) (D7). Each diet was fed to four groups of 30 shrimp for 8 weeks at a daily rate of 70 g/kg body weight. Reduction in fishmeal from 260 g/kg down to 100 g/kg did not significantly affect survival rate, feed conversion ratio (FCR), protein efficiency ratio (PER) or protein retention efficiency (PR%) of white shrimp. However, growth performance (final body weight, FBW; weight gain, WG; specific growth rate, SGR) was reduced when dietary fishmeal level was reduced from 260 g/kg (D1) to 100 g/kg without methionine supplementation (D2). The growth performance (FBW, WG and SGR) of shrimp was significantly increased by supplementation of the 100 g/kg fishmeal diet with increasing levels of DL‐Met (< .05). Same performance as positive control (D1) was achieved with diets containing 100 g/kg fishmeal and supplemented with 3.0 g/kg DL‐Met or 1.0 g/kg Met‐Met. The highest values of growth performance (FBW, WG and SGR) were found in shrimp fed D6 and D7 diets, which were significantly higher than those of shrimp fed D2 and D3 diets (< .05) but without statistical differences with shrimp fed D1, D4 and D5 diets (> .05). The highest values of whole‐body and muscle protein contents were found in shrimp fed D1 diet, which were significantly higher than those of shrimp fed all other diets (< .05). The highest value of intestinal tract proteolytic enzyme activity was found in shrimp fed Met‐Met‐supplemented diet (D7) and followed by the positive control diet (D1) and 3 g/kg DL‐Met‐supplemented diet (D6) (< .05). The highest values of apparent digestibility coefficients (ADCs) of dry matter and crude protein were found in Met‐Met‐supplemented diet (D7) and followed by the positive control diet (D1) (< .05). Shrimp fed the D1 diet showed the highest value of total essential amino acid (EAA) and was significantly higher than shrimp fed D2–D3 (< .05) but without significant difference with shrimp fed D4–D7 (> .05). In conclusion, results showed that same performance can be achieved with diets containing 260 or 100 g/kg fishmeal supplemented with 3.0 g/kg DL‐Met or 1.0 g/kg Met‐Met. Moreover, supplementation of limiting methionine in low‐fishmeal diets seems to improve the digestive proteolytic activity, improving digestibility of dry matter and protein, and eventually to promote growth of juvenile white shrimp in fishmeal reduction diets.  相似文献   

12.
This study was conducted to investigate the effects of dietary geniposidic acid (GA) on growth performance, flesh quality and collagen gene expression of grass carp (Ctenopharyngodon idella). The fish with an initial body weight of 47.1 ± 0.8 g were fed one of the seven diets, including control diet, Eucommia ulmoides (EU)‐supplemented diet (20 g/kg) and GA‐supplemented diets (200, 400, 600, 800 and 1,000 mg/kg GA) for 75 days. The growth performance and muscle proximate composition showed no difference among groups (> .05). Dietary GA (200–1,000 mg/kg) increased the contents of total collagen and alkaline‐insoluble collagen in skin (p < .05), and high supplementation of GA (600–1,000 mg/kg GA) and EU increased the contents of total collagen, alkaline‐insoluble collagen and total amino acids (p < .05), but reduced the lipid level in muscle (p < .05). In collagen gene expression, EU and 200–1,000 mg/kg GA increased COL1A1 expression in muscle and skin (p < .05), but the expression of COL1A2 was increased only by high supplementation of GA (1,000 mg/kg, or 800–1,000 mg/kg) (p < .05). In conclusion, dietary GA improved the flesh quality of grass carp, and the supplementation level was estimated to be 600 mg/kg diet.  相似文献   

13.
Two experiments were conducted to determine the optimum level of dietary available phosphorus from monocalcium phosphate for juvenile Ussuri catfish Pseudobagrus ussuriensis. Experiment 1 was conducted to estimate phosphorus digestibility from monocalcium phosphate for juvenile Ussuri catfish. The apparent digestibility coefficient of phosphorus from monocalcium phosphate was 86.3%. In the experiment 2, triplicate groups of juvenile Ussuri catfish were fed diets containing graded levels of monocalcium phosphate (MCP: 0 g/kg, 8.2 g/kg, 16.4 g/kg, 24.6 g/kg, 32.8 g/kg and 41.0 g/kg) for 8 weeks. Fish fed the diet containing 16.4 g/kg MCP with available phosphorus of 4.8 g/kg showed the best weight gain (171.5%), feed conversion ratio (1.08) and protein efficiency ratio (2.06). No significant difference was observed in fish survival among the treatments. The best result in terms of phosphorus retention efficiency (46.10%) was observed in fish fed the diet containing 8.2 g/kg MCP with available phosphorus of 3.0 g/kg, which was not different (> .05) from those fed the diet containing up to 24.6 g/kg MCP, and the highest vertebrae phosphorus content (58.2 g/kg) was observed in fish fed the diet containing 24.6 g/kg MCP with available P of 6.6 g/kg. The whole‐body lipid and protein, as well as phosphorus contents, were significantly affected by dietary available phosphorus (< .05). Viscerosomatic index (VSI) and condition factor (CF) were inversely correlated with dietary phosphorus levels (< .05). Quadratic regression analysis based on specific growth rate (SGR) against dietary available phosphorus levels indicated that the optimum available phosphorus requirement for the maximal growth of juvenile Ussuri catfish was 5.9 g/kg, and broken‐line analysis based on vertebrae phosphorus content against dietary available phosphorus levels indicated that a dietary level of 6.0 g/kg available phosphorus will provide optimum vertebrae phosphorus content.  相似文献   

14.
A study was conducted to estimate the optimum requirement of dietary phosphorus (P) for Channa argus × Channa maculata. Effects of dietary P levels on the tissue composition, serum biochemical parameters and antioxidant status were also examined. Five practical diets were formulated to contain graded levels (4.8 g kg?1, 6.4 g kg?1, 7.9 g kg?1, 9.4 g kg?1 and 11.0 g kg?1) of available P from dietary ingredients and monocalcium phosphate (MCP). Each diet was randomly assigned to triplicate groups of 30 juvenile fish (initial body weight, 20.50 ± 0.53 g) for 8 weeks. The results showed that the specific growth rate (SGR) and weight gain (WG) were all significantly improved by dietary P up to 9.4 g kg?1 (< 0.05) and then levelled off beyond this level. Broken‐line analysis showed maximum weight gain (WG) was obtained at dietary available P concentrations of 9.6 g kg?1. With the increase in dietary P level, protein efficiency rate (PER) increased significantly and reached a plateau, while the feed conversion ratio (FCR), the mesenteric lipid somatic index (MSI) and the whole‐body lipid content significantly reduced (< 0.05). Dietary P levels also affected the mineralization (ash and P) of whole body, vertebrae and scale (< 0.05). Quadratic analysis based on P contents in whole body, vertebrae, scale and ash content in vertebra indicated that the available P requirements were 10.4, 9.8, 10.0 and 10.3 g kg?1, respectively. However, no differences were found in the whole‐body moisture, crude protein, serum calcium (Ca) contents or Ca/P value, as well as the viscerosomatic index (VSI) and hepatosomatic index (HSI) among all the treatments (> 0.05). Triglyceride (TG), total cholesterol (TC), high‐density lipoprotein cholesterol (HDL‐C) and low‐density lipoprotein cholesterol (LDL‐C) decreased significantly, while serum P content, HDL‐C/TC and HDL‐C/LDL‐C value increased significantly with dietary available P levels (< 0.05). No significant changes in superoxide dismutase activity and malondialdehyde (MDA) content were observed (> 0.05), but serum catalase (CAT) and glutathione peroxidase (GPx) activities and the ratio of CAT/SOD and GPx/SOD increased significantly with increasing dietary P levels (< 0.05). In conclusion, the optimal P requirement of juvenile snakehead in practical feed was 9.6 g kg?1. Signs of P deficiency were characterized by poor growth, slightly reduced mineralization and the antioxidant capacity and an increase in body lipid content.  相似文献   

15.
A growth trial was conducted to estimate the optimum concentration of dietary magnesium (Mg) for grass carp (Ctenopharyngodon idella). Triplicate groups of grass carp (5.56 ± 0.02 g) were fed diets containing graded levels (187, 331, 473, 637, 779 and 937 mg kg?1) of Mg for 8 weeks. Weight gain, specific growth rate and feed efficiency were linearly increased up to 637 mg kg?1 dietary Mg and then levelled off beyond this level. For body composition, dietary Mg levels higher than 473 mg kg?1 significantly decreased the moisture content but increased the lipid content of whole body, muscle and liver. Dietary Mg levels higher than 473 mg kg?1 significantly decreased the ash contents of vertebrae, scales and muscle. Mg contents in whole body, vertebrae, scales and plasma were increased up to 637 mg kg?1 dietary Mg and then levelled off beyond this level. However, Ca and P contents seem to be inversely related to dietary Mg. Dietary Mg levels higher than 473 mg kg?1 significantly decreased Zn and Fe contents in whole body and vertebrae. Broken‐line analysis indicated that 687 mg kg?1 dietary Mg was required for maximal tissue Mg storage, as well as satisfied for the optimal growth.  相似文献   

16.
A‐56 days feeding trial was conducted to evaluate the growth performance, feed utilization, biochemical composition, antioxidant status, lipid metabolism and immunity parameters of Chu's croaker Nibea coibor fed diets supplemented with different levels of conjugated linoleic acid (CLA): 0% (control), 0.5%, 1%, 1.5% and 2%. Each diet was randomly assigned to triplicate groups of 25 fish (initial body weight: 12.8 ± 0.1 g) in 15 floating cage. Weight gain (WG) and specific growth rate (SGR) were not significantly affected. 2% of dietary CLA led to significant lower lipid content in both whole body and liver (< .05). Muscle lipid content was significantly lower in fish fed 1.5% and 2% CLA (< .05). Saturated fatty acid (SFA) increased while monounsaturated fatty acid (MUFA) decreased with increasing dietary CLA in tissues (< .05). Increasing CLA significantly promoted hepatic lipase (HL), lipoprotein lipase (LPL), serum lysozyme (LSZ) and immunoglobulin M (IgM) while decreased serum triglyceride (TG) in both liver and serum (< .05). Liver Superoxide dismutase (SOD), catalase (CAT) and total antioxidant capacity (t‐AOC) increased while malondialdehyde (MDA) decreased (< .05). Our study shown that Chu's croaker can successfully incorporate CLA in tissues up to 2% dietary lipid without growth inhibition, and that CLA increased fish quality due to the increased parameters of lipid metabolism, specific immunity, hepatic antioxidant and CLA accumulation, and the reduction of tissue fat deposition.  相似文献   

17.
An 8‐week feeding trial was conducted to investigate the effects of dietary carbohydrate to lipid ratio (CHO: L) on growth, feed utilization, body composition and digestive enzyme activities of golden pompano, Trachinotus ovatus. Five iso‐nitrogenous (450 g/kg protein) and iso‐energetic (19 MJ/kg gross energy) diets with varying CHO: L ratios of 0.68, 1.02, 1.62, 2.61 and 4.35, respectively, were fed to triplicate groups of 30 fish (average 13.8 ± 0.1 g). Results showed that dietary CHO: L ratios did not show any significant influence on survival of golden pompano (> .05) but significantly affected its growth performance and feed utilization (< .05). Fish fed diets with CHO: L ratios at 1.62 and 2.61 exhibited the highest final body weight, weight gain ratio, specific growth rate, feed efficiency ratio and protein efficiency ratio. Fish body lipid and liver glycogen contents were also significantly influenced by CHO: L ratio (< .05). Hepatic amylase activity increased firstly and then decreased as the dietary CHO: L ratio increased, while lipases activity decreased with increasing dietary CHO:L level. The regression model analysis showed that the most suitable dietary CHO: L ratio (protein 450 g/kg) to reach the highest weight gain ratio is 2.38.  相似文献   

18.
A growth trial was conducted to estimate the optimum concentration of dietary available phosphorus (P) for grass carp (Ctenopharyngodon idella). Triplicate groups of grass carp (5.59 ± 0.02 g) were fed diets containing graded levels (2.36, 4.27, 6.31, 8.36, 10.4 and 14.8 g kg?1) of available P for 8 weeks. Grass carp fed with the P‐supplemented diets had significantly higher specific growth rate, weight gain, protein efficiency ratio and feed efficiency than fish fed with the basal diet. In whole‐body composition, protein content increased, while lipid content decreased with the increase in P level in diet (P < 0.05). Fish fed with the P‐supplemented diets had significantly higher whole body, vertebrae and scales mineralization (P < 0.05), but Ca/P ratios were not influenced. The blood chemistry analysis showed that dietary available P had distinct effects on P, Ca and Mg contents, as well as on the contents of triacylglycerol and total cholesterol. Broken‐line analysis indicated that 8.49 g kg?1 dietary available P was required for maximal tissue storage and mineralization as well as optimal growth.  相似文献   

19.
This study was conducted to investigate whether dietary supplementation of black soldier fly (Hermetia illucens Linnaeus) pulp (BSFP) affects growth performance, antioxidant capacity and intestinal health of juvenile mirror carp (Cyprinus carpio var. specularis). A total of 270 juvenile mirror carp (13.68 ± 0.02 g) were randomly allotted to five dietary treatments, BSFP0, BSFP25, BSFP50, BSFP75 and BSFP100, in which BSFP was included in the basal diet at 0, 43.7, 87.3, 131 and 174.7 g/kg, respectively. Then, fish were fed to apparent satiation for 8 weeks. Fish growth performance and nutrient utilization were not different among the five groups (p > .05). Increasing BSFP dietary content significantly decreased whole‐body lipid content but increased kidney index (p < .05). The general relative intestine length was significantly higher in the BSFP100 group than the BSFP0 group (p < .05). Increasing BSFP dietary content significantly increased serum catalase activity and decreased malonaldehyde content (p < .05). The intestinal villus height, villus area and muscle layer thickness were significantly lower in the BSFP100 group than the BSFP0 group (p < .05). No significant differences in the activity of intestinal trypsin, lipase and amylase were observed among all groups (p > .05). In conclusion, this study indicated that BSFP at the level below 131 g/kg could be added in diet of juvenile mirror carp without any negative effect on growth performance and intestinal health. Dietary BSFP inclusion at low levels decreased the whole‐body lipid content and increased the antioxidant activity of juvenile mirror carp.  相似文献   

20.
A 60‐day feeding trial was conducted to determine the effects of copper nanoparticles (Cu‐NPs) and vitamin C (VC) on red sea bream. Besides the control diet (D1), six diets were supplemented with Cu‐NPs and VC [0/800 (D2), 0/1,000 (D3), 0/1,200 (D4), 2/800 (D5), 2/1,000 (D6) and 2/1,200 (D7) mg Cu‐NPs/VC per kg]. Cu‐NP was a significant factor on final weight (FBW), weight gain (WG) and specific growth rate (SGR), feed intake (FI), feed (FER) and protein efficiency ratios (PER), protein gain (PG) and protein retention (PR), body protein and lipid contents, protease (PA) and bactericidal activities (BA) and tolerance against stress (LT50%) (< .05). In addition, BA and LT50% were significantly affected by either Cu‐NPs or VC (< .05). Fish fed Cu‐NPs or/and VC‐supplemented diets showed higher FBW, WG, SGR, PG, PR, FI, PA, LA and BA values when compared with the control group (< .05). FER, PER and body lipid content were significantly enhanced in D4, D5, D6 and D7 groups; meanwhile, body protein and LT50% were significantly enhanced in D5, D6 and D7 groups when compared with D1 group (< .05). In conclusion, dietary Cu‐NPs or/and VC improved growth and health of red sea bream.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号