首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adult Atlantic salmon (Salmo salar; approximately 800 g start weight) were fed diets with a high replacement of fish meal (FM) with plant proteins (70% replacement), and either fish oil (FO) or 80% of the FO replaced by olive oil (OO), rapeseed oil (RO) or soybean oil (SO) during 28 weeks in triplicate. Varying the lipid source only gave non‐significant effects on growth and final weight. However, a significantly reduced feed intake was observed in the SO fed fish, and both feed utilization and lipid digestibility were significantly reduced in the FO fed fish. Limited levels of dietary 18:3n‐3, precursor to EPA and DHA, resulted in no net production of EPA and DHA despite increased mRNA expression of delta‐5‐desaturase and delta‐6‐desaturase in all vegetable oil fed fish. Net production of marine protein, but not of marine omega‐3 fatty acids, is thus possible in Atlantic salmon fed 80% dietary vegetable oil and 70% plant proteins resulting in an estimated net production of 1.3 kg Atlantic salmon protein from 1 kg of FM protein. Production of one 1 kg of Atlantic salmon on this diet required only 800 g of wild fish resources (Fish in ‐ Fish out < 1).  相似文献   

2.
The main objective of this study was to evaluate the effect of methionine supplementation when reducing fishmeal levels in diets for white shrimp (Litopenaeus vannamei). Tested diets consisted of a positive control with 260 g/kg fishmeal (D1), two negative controls with 100 g/kg fishmeal and no amino acid (AA) supplementation (D2) or supplemented with lysine but not methionine (D3), and four additional diets with 100g/kg fishmeal supplemented with increasing levels of DL‐Met (1.0, 2.0 or 3.0 g/kg) (D4, D5, D6) or Met‐Met (1.0 g/kg) (D7). Each diet was fed to four groups of 30 shrimp for 8 weeks at a daily rate of 70 g/kg body weight. Reduction in fishmeal from 260 g/kg down to 100 g/kg did not significantly affect survival rate, feed conversion ratio (FCR), protein efficiency ratio (PER) or protein retention efficiency (PR%) of white shrimp. However, growth performance (final body weight, FBW; weight gain, WG; specific growth rate, SGR) was reduced when dietary fishmeal level was reduced from 260 g/kg (D1) to 100 g/kg without methionine supplementation (D2). The growth performance (FBW, WG and SGR) of shrimp was significantly increased by supplementation of the 100 g/kg fishmeal diet with increasing levels of DL‐Met (< .05). Same performance as positive control (D1) was achieved with diets containing 100 g/kg fishmeal and supplemented with 3.0 g/kg DL‐Met or 1.0 g/kg Met‐Met. The highest values of growth performance (FBW, WG and SGR) were found in shrimp fed D6 and D7 diets, which were significantly higher than those of shrimp fed D2 and D3 diets (< .05) but without statistical differences with shrimp fed D1, D4 and D5 diets (> .05). The highest values of whole‐body and muscle protein contents were found in shrimp fed D1 diet, which were significantly higher than those of shrimp fed all other diets (< .05). The highest value of intestinal tract proteolytic enzyme activity was found in shrimp fed Met‐Met‐supplemented diet (D7) and followed by the positive control diet (D1) and 3 g/kg DL‐Met‐supplemented diet (D6) (< .05). The highest values of apparent digestibility coefficients (ADCs) of dry matter and crude protein were found in Met‐Met‐supplemented diet (D7) and followed by the positive control diet (D1) (< .05). Shrimp fed the D1 diet showed the highest value of total essential amino acid (EAA) and was significantly higher than shrimp fed D2–D3 (< .05) but without significant difference with shrimp fed D4–D7 (> .05). In conclusion, results showed that same performance can be achieved with diets containing 260 or 100 g/kg fishmeal supplemented with 3.0 g/kg DL‐Met or 1.0 g/kg Met‐Met. Moreover, supplementation of limiting methionine in low‐fishmeal diets seems to improve the digestive proteolytic activity, improving digestibility of dry matter and protein, and eventually to promote growth of juvenile white shrimp in fishmeal reduction diets.  相似文献   

3.
We explored how currently manufactured feeds, under real‐world conditions and across geographically distinct locations, promoted flesh n‐3 long‐chain polyunsaturated fatty acid (LC‐PUFA, i.e. 20:5n‐3 + 22:6n‐3) levels in various life stages of farmed Atlantic Salmon (Salmo salar). Potential effects on flesh LC‐PUFA included: (1) diet and fish weight at one Canadian east coast farm, (2) diet and farm location across six east coast farms, and (3) diet and farm location between east and west coast farms. For objectives 1 and 2, salmon were fed a currently manufactured feed (labelled as feeds A, B or C) and harvested at 1, 3 and 5 kg. LC‐PUFA levels in 5 kg (harvest size) fish were then compared to previously published values for west coast farmed Atlantic Salmon (Obj. 3). Combined results revealed that variability in LC‐PUFA levels was better explained by diet than by fish weight or farm location. Fish size, however, was also important for two reasons. First, feeding a high LC‐PUFA diet early in life appeared important for ensuring high LC‐PUFA levels at harvest size. Second, salmon flesh LC‐PUFA levels increased with fish size, but only when dietary LC‐PUFA was provided above an apparent threshold value (~3000 mg per 100 g or 10% of total fatty acids) that likely promoted LC‐PUFA incorporation and storage. Overall, our comparison makes new recommendations for feed manufacturers and demonstrates that farmed Atlantic Salmon reared under real‐world conditions on currently available salmon feeds were good sources of n‐3 LC‐PUFA to consumers.  相似文献   

4.
The oilseed Camelina sativa has been studied as a lipid source for farmed salmonids, but recommended inclusion as a protein source has not been determined. This study evaluated low inclusion of camelina high‐oil residue meal (HORM) at 20, 40 and 60 g/kg of the diet, to determine an adequate level for Atlantic salmon parr (Salmo salar) and rainbow trout (Oncorhynchus mykiss). Salmon and trout were fed experimental diets containing up to 60 g/kg HORM for 16 weeks. At 40 g/kg HORM, trout and salmon growth performance were similar to those fed a control diet. However, at 60 g/kg HORM, trout showed lower final weight, weight gain and feed intake than those fed the control diet. Rainbow trout fed 40 and 60 g/kg HORM showed significantly lower whole body ash (p = .005), slightly lower whole body protein levels and higher fat than the control. In salmon fed 60 g/kg HORM diets, whole body ash (p = .024), and the submucosal layer of the intestine was thicker than the control (p = .007). Current results indicate that up to 40 g/kg HORM can be included in diets for rainbow trout and salmon juveniles.  相似文献   

5.
The binding of carotenoids to the myofibrillar protein F‐actin purified from the white muscle of Atlantic salmon (Salmo salar L.) was studied using in vitro reconstitution. The binding of astaxanthin and canthaxanthin was saturable, and analysis revealed the presence of a single carotenoid‐binding site. The dissociation constants (Kd) for actin prepared from 2.5 kg FW (Fresh Weight) fish were 1.04 ± 0.13 μg carotenoid per milligram of actin and 0.54 ± 0.11 μg/mg for astaxanthin and canthaxanthin, respectively. The saturation binding level (Bmax) for astaxanthin was 1.39 ± 0.07 μg/mg and 1.04 ± 0.08 μg/mg for canthaxanthin. These values were higher for F‐actin prepared from organic and small (~0.5 kg FW) salmon than for non‐organic and larger, mature fish. The structural specificity of carotenoid binding revealed a preference for carotenoids that possess a keto group at C‐4 on the β end group of the molecule, but the presence of hydroxyl groups at C‐3 or C‐4 reduced overall binding efficiency. The study suggests that the ability of myofibrillar proteins to bind carotenoids is not a limiting factor governing the deposition of carotenoids in the muscle of salmonids.  相似文献   

6.
Regulation of arterial partial pressure of O2 (PaO2) in Atlantic salmon (Salmo salar) was investigated during resting conditions in normoxic and hyperoxic water. Dorsal aorta cannulated adult Atlantic salmon (1.2–1.6 kg, n = 8) were exposed to 2 week sequential periods of normoxia [16.7 ± 1.1 kPa (mean ± SD)] and hyperoxia (34.1 ± 4.9 kPa) in individual tanks containing seawater (33.7 ± 0.2 ppt) at stable temperature conditions (8.7 ± 0.7°C) and a light regime of L:D = 12:12. Tank design and sampling procedures were optimized to provide suitable shelter and current for the fish, and to allow repeated, undisturbed sampling of blood from free-swimming fish. Fish were sampled regularly through the experimental period. PwO2, PaO2, blood ion composition (Na+, K+, Cl), acid–base status (pH, PCO2, HCO3 ), haematocrit and glucose were measured. The most frequently observed PaO2 values were in the range of 60–80% of PwO2, both during normoxia and hyperoxia, and PaO2 values were significantly lower during normoxia than during hyperoxia. Blood pH, PCO2 and HCO3 were significantly elevated during hyperoxia, while, Na+, Cl and Hct were significantly lower. K+ and glucose showed no significant differences. This study demonstrates a lack PaO2 regulation in Atlantic salmon to low partial pressures, in contrast to previous reports for many aquatic gill breathing animals. Both during normoxia and hyperoxia, PaO2 reflects PwO2, and alterations in external PO2 consequently result in proportional arterial PO2 changes. Physiological adaptation to hyperoxia, as illustrated by changes in several blood parameters, does not include down-regulation of PaO2 in Atlantic salmon. The lack of PaO2 regulation may make Atlantic salmon vulnerable to the oxidative stress caused by increased free radical formation in hyperoxic conditions.  相似文献   

7.
This study investigated the effects of glutamate (Glu) in low‐phosphorus diets on growth performance, haematological indices, antioxidant enzyme activity, immune‐related gene expression and resistance to Aeromonas hydrophila in juvenile mirror carp (Cyprinus carpio) (5.07 ± 0.02 g). Fish were fed either graded levels of Glu (0 g/kg, 5 g/kg,  10 g/kg and 20 g/kg, named G0, G0.5, G1 and G2, respectively) in a low‐phosphorus diet (15 g/kg NaH2PO4, 0.49), or a normal phosphorus diet ( 20 g/kg NaH2PO4, 0.61) without added Glu (C), for 8 weeks. At the end of the feeding trial, the fish were challenged with A. hydrophila. Compared with G0 group, 10 g/kg and 20 g/kg Glu supplementation of the low‐phosphorus diet significantly improved the final weight, WGR, SGR and PER, and decreased FCR (p < .05). Glu supplementation of the low‐phosphorus diet significantly enhanced the T‐AOC, SOD activity and GSH content in intestine (p < .05). Glu supplementation significantly reduced MDA content in foregut and midgut and increased CAT activity in midgut and hindgut (p < .05). Regarding immune‐related gene expression, Glu supplementation significantly diminished the up‐regulation of intestinal TNF‐α, IL‐1β and IL‐8 mRNA levels induced by phosphorus deficiency (p < .05). The survival rate of the G1 group was significantly higher than that of the G0 group (p < .05). In conclusion, 10 g/kg Glu supplementation in low‐phosphorus diets can improve the growth performance, enhance the activity of intestinal antioxidant enzymes and strengthen the immune function of juvenile mirror carp.  相似文献   

8.
Studies were conducted to determine the absorption, excretion and requirement of dietary phosphorus (P) by Atlantic salmon (Salmo salar). Triplicate groups of salmon parr, initial weight 15 ± 0.5±g , were fed, diets containing 4, 5, 6, 7, 8, 9, 11 and 13 mg P and 20 KJ of digestible energy (DE) per±g of diet (dry matter basis, DMB) to satiation for 16 weeks. The basal diet containing 4 mg P g-1 (0.15 mg available P per KJ DE) was supplemented with graded levels of calcium phosphate, Ca(H2PO4)2H2O to formulate the eight experimental diets. The fish were reared in fresh water at a temperature of 15 °C on a 12 h photoperiod. Vertebrae ash increased from 316 to 516 mg g-1 fat-free dry matter with an increase in dietary P content. P requirement was estimated by using a four-parameter sigmoidal equation. The data suggests that a diet of 0.28 mg available P per KJ DE is needed for Atlantic salmon. Phosphate and calcium levels in plasma and bone increased, whereas levels of magnesium and liver cholecalciferol decreased, with an increase in dietary P.Phosphate excretion in urine and apparent availability of P were determined in deficient and replete fish. In deficient fish, the urine phosphate concentration was 0.10 mmol L-1 before feeding and 0.25 mmol l-1 after feeding, whereas in replete fish these concentrations were 1.09 and 5.11 mmol l-1, respectively. The increase in urine phosphate concentration was higher in replete fish than in deficient fish, however, the apparent absorption of P was found to be significantly lower in replete fish than in deficient fish. These results suggest that similarly to terrestrial vertebrates, P homeostasis in Atlantic salmon is controlled by absorption in the intestine, conservation in the kidney and storage in the bones.  相似文献   

9.
This study evaluated the effect and phosphorus equivalency value of dietary microbial phytase based on growth performance and nutrient utilization of Channel catfish (Ictalurus punctatus). An all plant‐protein basal diet containing 7.9 g/kg total Phosphorus (P) (Phytate P of 4.5 g/kg) was supplemented with graded levels 0, 300, 500, 1,000, 1,500 and 2,000 U phytase/kg of diet or with 3, 5, 8, 12 g/kg of Ca(H2PO4)2, namely with 0.7, 1.2, 2.0, 3.09 g/kg P as Ca(H2PO4)2. Triplicate groups of Channel catfish (Ictalurus punctatus) juveniles (initial weight, 1.70 ± 0.04 g) were fed the experiment diets for 90 days. The results indicated that dietary phytase supplementation significantly improved growth performance, apparent digestibility coefficient of P and P retention, and decreased feed conversion ratio (FCR), faecal P content and P excretion per gain. Line relation was found between the effects of P and phytase supplementation levels, and the linear response equations of the effects of P and phytase levels were generated and used to calculate the P equivalency values. The average function of P equivalency values (Y, g/kg) of microbial phytase (X, U/kg of diet) was developed: Y = 0.1695 + 0.0021X; R= 0.996. The results showed that about 0.38 g of P/kg diet was released by per 100 U of phytase over the range of 300–2,000 U of phytase/kg diet for Channel catfish (Ictalurus punctatus) fed all plant‐protein diet.  相似文献   

10.
An 8‐week feeding trial was conducted to assess the interaction between dietary protein levels and fish growth, digestibility and activity of immunity‐related enzymes of Plectropomus leopardus. Five diets with different protein levels (400 g/kg, 450 g/kg, 500 g/kg, 550 g/kg and 600 g/kg protein) were designed. P. leopardus fed with 500 g/kg, 550 g/kg and 600 g/kg dietary protein, showed higher weight gain rates than fish fed 400 g/kg and 450 g/kg dietary protein. Ingestion rate in fish fed with 500 g/kg dietary protein was significantly higher than those with other diets. P. leopardus fed with 500 g/kg, 550 g/kg and 600 g/kg dietary protein, showed that feed coefficients were significantly lower than those fed with 400 g/kg and 450 g/kg dietary protein. Net protein utilization was significantly lower in fish fed with 400 g/kg diet than those with other diets. Fish fed with 400 g/kg and 450 g/kg dietary protein had an apparent feed digestibility coefficient for dry matter that was significantly lower than that with other diets. Protease activity was highest in fish fed on 500 g/kg dietary protein. Fish fed with 500 g/kg dietary protein, had the highest superoxide dismutase activity. Fish fed with 600 g/kg dietary protein, had the highest alkaline phosphatase activity. Thus, a diet containing 500 g/kg protein is recommended for P. leopardus aquaculture.  相似文献   

11.
12.
Eight of the existing 9.1 m (30 ft) diameter circular culture tanks at the White River National Fish Hatchery in Bethel, Vermont, were retrofitted and plumbed into two 8000 L/min partial water reuse systems to help meet the region's need for Atlantic salmon (Salmo salar) smolt production. The partial reuse systems were designed to increase fish production on a limited but biosecure water resource, maintain excellent water quality, and provide more optimum swimming speeds for salmonids than those provided in traditional single-pass or serial-reuse raceways. The two systems were stocked with a total of 147,840 Atlantic salmon parr in May of 2005 (mean size 89 mm and 8.5 g/fish) and operated with 87–89% water reuse on a flow basis. By the time that the smolt were removed from the systems between March 28 to April 12, 2006, the salmon smolt had reached a mean size of 24 cm and 137 g and hatchery staff considered the quality of the salmon to be exceptional. Overall feed conversion was <1:1. The Cornell-type dual-drain circular culture tanks were found to be self-cleaning and provided mean water rotational velocities that ranged from a low of 0.034 m/s (0.2 body length per second) near the center of the tank to a high of 39 cm/s (2.2 body length per second) near the perimeter of the tank. The fish swam at approximately the same speed as the water rotated. System water quality data were collected in mid-September when the systems were operated at near full loading, i.e., 24 kg/m3 maximum density and 52.1 and 44.1 kg/day of feed in system A and system B, respectively. During this evaluation, afternoon water temperatures, as well as dissolved oxygen (O2), carbon dioxide (CO2), total ammonia nitrogen (TAN), and total suspended solids (TSS) concentrations that exited the culture tank's sidewall drains averaged 14.8 and 15.9 °C, of 7.9 and 8.2 mg/L (O2), 4.0 and 3.2 mg/L (CO2), 0.72 and 0.67 mg/L (TAN), and 0.52 and 0.13 mg/L (TSS), respectively, in system A and system B. Dissolved O2 was fairly uniform across each culture tank. In addition, water temperature varied diurnally and seasonally in a distinct pattern that corresponded to water temperature fluctuations in the nearby river water, as planned. This work demonstrates that partial reuse systems are an effective alternative to traditional single-pass systems and serial-reuse raceway systems for culture of fish intended for endangered species restoration programs and supplementation programs such as salmon smolt.  相似文献   

13.
The objective of this study was to evaluate hydrolysis lignin (H‐lignin), derived from wood biomass, as a multifunctional component of aquafeeds. Atlantic salmon (28.8 ± 1.1 g) were fed diets for 16 weeks, which included two H‐lignin types (HL1 and HL2) at 15, 30 or 50 g/kg (wt/wt) or a control diet (no added H‐lignin). HL1 was extracted with water such that no soluble sugar and oligosaccharides remain, while HL2 contains a higher fraction of water‐soluble sugars and oligosaccharides. Pellet durability and density were measured. After 16 weeks, salmon were measured for weight and length, and whole carcass, hindgut and digesta contents were sampled. Pellet durability increased from the control to 30 g/kg H‐lignin but decreased at 50 g/kg. Salmon fed diets with HL1 at 15 and 30 g/kg showed higher weight gain and lower feed conversion ratio compared with salmon fed the control diet and 50 g/kg HL1. There were no significant differences in whole‐body composition or intestinal morphology. Microbial characterization (16S) revealed lower abundance of Proteobacteria, higher abundance of Mycoplasmataceae and increasing Lactobacillaceae abundance with higher HL1 inclusion. This study demonstrates that HL1 (at 15 and 30 g/kg) shows potential as a functional feed additive for salmon.  相似文献   

14.
A 14‐week trial was conducted to investigate the effects of antinutritional factors (ANFs) commonly present in soybean ingredients, singly and in combination, on Atlantic salmon (Salmo salar L.) fed from start‐feeding. The experimental diets consisted of a negative control fish meal diet (FM), and a positive control diet with 167 g kg?1 soybean meal inclusion (SBM) and four diets based on the FM diet supplemented with 2 g kg?1 soya‐saponins (SAP), 1.5 g kg?1 isoflavones (IFL), 0.3 g kg?1 phytosterols (PHS) or a mixture of these (MIX). Fish fed the SAP diet showed significantly higher growth performance than those fed FM, while the IFL treatment significantly decreased growth performance of salmon fry. Fish fed the IFL diet had significantly lower maltase activity and higher trypsin activity in proximal intestine than fish fed the FM diet. Histological differences were observed in the liver of fish fed the IFL diet, characterized by reduced size of the hepatocytes. Fish fed the PHS and IFL diets showed the highest frequencies of skeletal deformities among the six treatments. In conclusion, the results indicate that purified isoflavones may negatively affect growth performance, intestinal function, liver metabolism and bone formation of salmon fry.  相似文献   

15.
《水生生物资源》2002,15(4):217-223
This study was carried out to investigate the effect of feeding diets containing herring or anchvoy oil, on flesh quality parameters of Atlantic salmon (Salmo salar). Two extruded experimental diets with the same basal composition but one coated with herring oil and the other with anchovy oil, were each fed during 24 weeks to salmon with an average initial weight of 1.8 kg. Salmon grew to a final weight of 3.9 kg. Growth, condition factor and biometric parameters were not affected by the dietary treatment. No significant differences were found for intramuscular fat. Monounsaturated fatty acid (MUFA) concentrations were highest in the group fed the diet containing herring oil, in both neutral and polar lipids, while the group fed the diet containing the anchovy oil showed a higher concentration of n-3 fatty acids in both fractions of intramuscular lipids. The n-3/n-6 ratio was higher in the neutral lipid fraction of fish fed the southern hemisphere oil, while no significantly differences were found for the polar lipid fraction. No differences were found on muscle α-tocopherol levels. Muscle homogenates from fish fed the anchovy oil showed the highest thiobarbituric acid reactive substances (TBARS) after 9 days of storage. However no differences were found between groups on the induced oxidation tests. It is concluded that the origin of the fish oil has no effect on growth perfomance, but there is a marked effect on fatty acid composition and susceptibility to lipid oxidation.  相似文献   

16.
Accumulation of 14C in various tissues and organs was studied in three different groups of 0.8‐kg Atlantic salmon Salmo salar force‐fed with 14C1‐glucose in order to evaluate if metabolism of glucose depended on adaptation to dietary carbohydrate level. The salmon had been fed diets supplemented with 0, 100 and 200 g maize dextrin kg?1 for 10 months before the experiment. The fish were force‐fed 6.65 × 104 Bq of 14C1 glucose kg?1 BW, in gelatin capsules. Fish for analysis were obtained 16 h later. 14C was measured in blood plasma, gill, kidney, liver and white muscle, and in lipid extract of liver. The liver contained most 14C, followed by heart, blood plasma, gill and liver lipid extract, while kidney and muscle contained the least 14C per gram or millilitre tissue. The muscle contained most radioactivity, on an estimated total tissue basis, followed by liver, blood plasma, gill, liver lipid extract, kidney and heart tissue. Thirty‐eight per cent of the orally administered 14C was recovered in the salmon adapted to the diet without dextrin after 16 h. This was significantly (P < 0.05) higher than the 30% and 32% recovered in the salmon adapted to diets with 10% and 20% dextrin. This effect on adaptation to dietary dextrin level in glucose uptake or metabolism was supported by a trend (P < 0.10) toward higher radioactivity per gram or millilitre of each individual tissue in the fish adapted to the diet without dextrin, when compared with the other two adaptation regimes.  相似文献   

17.
Growth performance, muscle cellularity, flesh quality, and plasma ghrelin were investigated in 0+ and 1+ farmed Atlantic salmon (Salmo salar L.) from 40 g to 4.3 kg. Reduced meal frequency was introduced in both smolt groups from ~1.5 kg; one meal per second day (<5 °C) to one daily meal (>5 °C), while control groups were fed one to three daily meals. Results show that 0+ salmon had higher final fibre number and density, pigment content, red colour intensity, firmer flesh, and lower fillet fat content than 1+ salmon at 4.3 kg, affected by season and smolt type. Muscle fibre recruitment was an important determinant of fillet firmness and colour, possibly influenced by the prenatal temperature regime. Fish fed reduced meal frequency showed temporal reduced feeding ration, but growth performance was not compromised in any smolt groups at harvest. However, fillet fat, gaping, and colour decreased by less frequent feeding, with permanent effects in 1+ salmon for gaping and fat. Reduced meal frequency is therefore considered to be a promising tool for managing important flesh quality attributes in salmon without compromising growth performance. It is also suggested that ghrelin stimulates short‐term appetite, and perhaps also in the longer term.  相似文献   

18.
Thyroid hormones (THs) play important roles in regulating growth, development and physiological functions in vertebrates. To study the role of short‐term effects of thyroxine (T4) on metabolism and growth in female Sterlet sturgeon, thirty fish with a weight of 707.97 ± 37.15 g were divided into six tanks. Fish were injected intraperitoneal with (a) coconut oil alone (control), (b) 1 mg T4 kg per BW in coconut oil (T1) and (c) 10 mg T4 kg per BW in coconut oil (T10). Blood samples were collected at 0, 4, 7, 14, 28 and 60 days for plasma biochemical analysis, and body length and mass were determined at day 60. Based on results, higher growth was indicated in T10 group. The highest T4 levels were observed on day 4 in the T1 and T10 treatments and gradually declined during the trial. Plasma T3 levels were highest on days 4 and 7 in the T1 and T10 groups, respectively. Plasma triglyceride levels were significantly elevated on day 28 in the T1 group and on day 60 in the T10 group. Plasma glucose concentrations were significantly elevated on days 7 and 14 in T10 group. Overall, the present results suggest that a single injection of T4 can improve growth via changes in the metabolic profile of Sterlet sturgeon.  相似文献   

19.
Stress in response to anesthesia with benzocaine, MS-222, metomidate and isoeugenol was studied in Atlantic salmon (Salmo salar), Atlantic halibut (Hippoglossus hippoglossus), and Atlantic cod (Gadus morhua) with no concomitant stress from handling or confinement in association with anesthesia or sampling. All of the anesthetics tested induced a stress response in all species, displayed by a release of cortisol to the water. MS-222 anesthesia elicited the highest cortisol release rates, reaching maximum levels 0.5 h post-exposure and returning to basal levels after 3–4 h. Benzocaine anesthesia caused a bimodal response where the initial peak in cortisol release rate was followed by a second increase lasting towards the end of the trial (6 h). This bimodality was more profound in Atlantic salmon than in Atlantic halibut and Atlantic cod. Metomidate anesthesia induced the lowest release of cortisol of the agents tested in both Atlantic halibut and Atlantic cod, but resulted in a bimodal response in Atlantic salmon where the initial increase in cortisol release was followed by a larger increase peaking at 2–2.5 h post exposure before returning to basal levels after 5 h. The stress induced in Atlantic salmon by isoeugenol anesthesia resembled that of MS-222, but did not reach the same elevated level. Overall, the cortisol release was most profound in Atlantic salmon followed by Atlantic halibut and Atlantic cod.  相似文献   

20.
Ocean net pen production of Atlantic salmon is approaching 2 million metric tons (MT) annually and has proven to be cost- and energy-efficient. Recently, with technology improvements, freshwater aquaculture of Atlantic salmon from eggs to harvestable size of 4–5 kg in land-based closed containment (LBCC) water recirculating aquaculture systems (RAS) has been demonstrated as a viable production technology. Land-based, closed containment water recirculating aquaculture systems technology offers the ability to fully control the rearing environment and provides flexibility in locating a production facility close to the market and on sites where cost of land and power are competitive. This flexibility offers distinct advantages over Atlantic salmon produced in open net pen systems, which is dependent on access to suitable coastal waters and a relatively long transport distance to supply the US market. Consequently, in this paper we present an analysis of the investment needed, the production cost, the profitability and the carbon footprint of producing 3300 MT of head-on gutted (HOG) Atlantic salmon from eggs to US market (wholesale) using two different production systems—LBCC-RAS technology and open net pen (ONP) technology using enterprise budget analysis and carbon footprint with the LCA method. In our analysis we compare the traditional open net pen production system in Norway and a model freshwater LBCC-RAS facility in the US. The model ONP is small compared to the most ONP systems in Norway, but the LBCC-RAS is large compared to any existing LBCC-RAS for Atlantic salmon. The results need to be interpreted with this in mind. Results of the financial analysis indicate that the total production costs for two systems are relatively similar, with LBCC-RAS only 10% higher than the ONP system on a head-on gutted basis (5.60 US$/kg versus 5.08 US$/kg, respectively). Without interest and depreciation, the two production systems have an almost equal operating cost (4.30 US$/kg for ONP versus 4.37 US$/kg for LBCC-RAS). Capital costs of the two systems are not similar for the same 3300 MT of head-on gutted salmon. The capital cost of the LBCC-RAS model system is approximately 54,000,000 US$ and the capital cost of the ONP system is approximately 30,000,000 US$, a difference of 80%. However, the LBCC-RAS model system selling salmon at a 30% price premium is comparatively as profitable as the ONP model system (profit margin of 18% versus 24%, respectively), even though its 15-year net present value is negative and its return on investment is lower than ONP system (9% versus 18%, respectively). The results of the carbon footprint analysis confirmed that production of feed is the dominating climate aspect for both production methods, but also showed that energy source and transport methods are important. It was shown that fresh salmon produced in LBCC-RAS systems close to a US market that use an average US electricity mix have a much lower carbon footprint than fresh salmon produced in Norway in ONP systems shipped to the same market by airfreight, 7.41 versus 15.22 kg CO2eq/kg salmon HOG, respectively. When comparing the carbon footprint of production-only, the LBCC-RAS-produced salmon has a carbon footprint that is double that of the ONP-produced salmon, 7.01 versus 3.39 kg CO2eq/kg salmon live-weight, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号