首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The DNDC (DeNitrification-DeComposition)-Rice model, one of the most advanced process-based models for the estimation of greenhouse gas emissions from paddy fields, has been discussed mostly in terms of the reproducibility of observed methane (CH4) emissions from Japanese rice paddies, but the model has not yet been validated for tropical rice paddies under alternate wetting and drying (AWD) irrigation management, a water-saving technique. We validated the model by using CH4 and nitrous oxide (N2O) flux data from rice in pots cultivated under AWD irrigation management in a screen-house at the International Rice Research Institute (Los Baños, the Philippines). After minor modification and adjustment of the model to the experimental irrigation conditions, we calculated grain yield and straw production. The observed mean daily CH4 fluxes from the continuous flooding (CF) and AWD pots were 4.49 and 1.22?kg?C?ha?1?day?1, respectively, and the observed mean daily N2O fluxes from the pots were 0.105 and 34.1?g?N?ha?1?day?1, respectively. The root-mean-square errors, indicators of simulation error, of daily CH4 fluxes from CF and AWD pots were calculated as 1.76 and 1.86?kg?C?ha?1?day?1, respectively, and those of daily N2O fluxes were 2.23 and 124?g?N?ha?1?day?1, respectively. The simulated gross CH4 emissions for CF and AWD from the puddling stage (2 days before transplanting) to harvest (97 days after transplanting) were 417 and 126?kg?C?ha?1, respectively; these values were 9.8% lower and 0.76% higher, respectively, than the observed values. The simulated gross N2O emissions during the same period were 0.0279 and 1.45?kg?N?ha?1 for CF and AWD, respectively; these values were respectively 87% and 29% lower than the observed values. The observed total global warming potential (GWP) of AWD resulting from the CH4 and N2O emissions was approximately one-third of that in the CF treatment. The simulated GWPs of both CF and AWD were close to the observed values despite the discrepancy in N2O emissions, because N2O emissions contributed much less than CH4 emissions to the total GWP. These results suggest that the DNDC-Rice model can be used to estimate CH4 emission and total GWP from tropical paddy fields under both CF and AWD conditions.  相似文献   

2.
Abstract

To assess their impacts on net global warming, total greenhouse gas emissions (mainly CO2, N2O and CH4) from agricultural production in arable land cropping systems in the Tokachi region of Hokkaido, Japan, were estimated using life cycle inventory (LCI) analysis. The LCI data included CO2 emissions from on-farm and off-farm fossil fuel consumption, soil CO2 emissions induced by the decomposition of soil organic matter, direct and indirect N2O emissions from arable lands and CH4 uptake by soils, which were then aggregated in CO2-equivalents. Under plow-based conventional tillage (CT) cropping systems for winter wheat, sugar beet, adzuki bean, potato and cabbage, on-farm CO2 emissions from fuel-consuming operations such as tractor-based field operations, truck transportation and mechanical grain drying ranged from 0.424 Mg CO2 ha?1 year?1 for adzuki bean to 0.826 Mg CO2 ha?1 year?1 for winter wheat. Off-farm CO2 emissions resulting from the use of agricultural materials such as chemical fertilizers, biocides (pesticides and herbicides) and agricultural machines were estimated by input–output tables to range from 0.800 Mg CO2 ha?1 year?1 for winter wheat to 1.724 Mg CO2 ha?1 year?1 for sugar beet. Direct N2O emissions previously measured in an Andosol field of this region showed a positive correlation with N fertilizer application rates. These emissions, expressed in CO2-equivalents, ranged from 0.041 Mg CO2 ha?1 year?1 for potato to 0.382 Mg CO2 ha?1 year?1 for cabbage. Indirect N2O emissions resulting from N leaching and surface runoff were estimated to range from 0.069 Mg CO2 ha?1 year?1 for adzuki bean to 0.381 Mg CO2 ha?1 year?1 for cabbage. The rates of CH4 removal from the atmosphere by soil uptake were equivalent to only 0.020–0.042 Mg CO2 ha?1 year?1. From the difference in the total soil C pools (0–20 cm depth) between 1981 and 2001, annual CO2 emissions from the CT and reduced tillage (RT) soils were estimated to be 4.91 and 3.81 Mg CO2 ha?1 year?1, respectively. In total, CO2-equivalent greenhouse gas emissions under CT cropping systems in the Tokachi region of Hokkaido amounted to 6.97, 7.62, 6.44, 6.64 and 7.49 Mg CO2 ha?1 year?1 for winter wheat, sugar beet, adzuki bean, potato and cabbage production, respectively. Overall, soil-derived CO2 emissions accounted for a large proportion (64–76%) of the total greenhouse gas emissions. This illustrates that soil management practices that enhance C sequestration in soil may be an effective means to mitigate large greenhouse gas emissions from arable land cropping systems such as those in the Tokachi region of northern Japan. Under RT cropping systems, plowing after harvesting was omitted, and total greenhouse gas emissions from winter wheat, sugar beet and adzuki bean could be reduced by 18%, 4% and 18%, respectively, mainly as a result of a lower soil organic matter decomposition rate in the RT soil and a saving on the fuels used for plowing.  相似文献   

3.
Rewetting of agriculturally used peatlands has been proposed as a measure to stop soil subsidence, conserve peat and rehabilitate ecosystem functioning. Unintended consequences might involve nutrient release and changes in the greenhouse gas (GHG) balance towards CH4-dominated emission. To investigate the risks and benefits of rewetting, we subjected soil columns from drained peat- and clay-covered peatlands to different water level treatments: permanently low, permanently inundated and fluctuating (first inundated, then drained). Surface water and soil pore water chemistry, soil-extractable nutrients and greenhouse gas fluxes were measured throughout the experiment. Permanent inundation released large amounts of nutrients into pore water, especially phosphorus (up to 11.7 mg P-PO4 l?1) and ammonium (4.8 mg N-NH4 l?1). Phosphorus release was larger in peat than in clay soil, presumably due to the larger pool of iron-bound phosphorus in peat. Furthermore, substantial amounts of phosphorus and potassium were exported from the soil matrix to the surface water, risking the pollution of local species-rich (semi-)aquatic ecosystems. Rewetting of both clay and peat soil reduced CO2 emissions. CH4 emissions increased, but, in contrast to the expectations, the fluxes were relatively low. Calculations showed that rewetting reduced net cumulative GHG emissions expressed as CO2 equivalents.  相似文献   

4.
研究不同农业管理措施下小麦农田N2O、CO2、CH4等温室气体的综合增温潜势,有助于科学评价农业管理措施在减少温室气体排放和减缓全球变暖方面的作用,为制定温室气体减排措施提供依据。本研究采用静态明箱气相色谱法对华北平原高产农区4种农业管理措施下冬小麦农田土壤温室气体(CO2、CH4和N2O)季节排放通量进行了监测,估算了不同农业管理措施下小麦季的综合温室效应。结果表明,华北太行山前平原冬小麦农田土壤是CO2、N2O的排放源,CH4的吸收汇。不同农业管理措施对不同温室气体的排放源和吸收汇强度的影响不同,增施氮肥、充分灌溉促进了土壤CO2、N2O的生成,强化了土壤CO2和N2O排放源的特征;但却抑制了土壤对CH4的氧化,弱化了土壤作为大气CH4吸收汇的特征。2009—2010年和2010—2011年冬小麦生长季T1(传统模式)、T2(高产高效模式)、T3(再高产模式)和T4(再高产高效和土壤生产力提高模式)处理土壤排放的温室气体碳当量分别依次为8 880 kg(CO2).hm 2、8 372 kg(CO2).hm 2、9 600 kg(CO2).hm 2、9 318kg(CO2).hm 2和13 395 kg(CO2).hm 2、12 904 kg(CO2).hm 2、13 933 kg(CO2).hm 2、13 189 kg(CO2).hm 2。各处理间温室气体排放差异主要是由于施肥和灌溉措施的不同引起的,秸秆还田与否是造成年度间温室气体排放存在差异的主要原因。T2处理综合增温潜势相对较低,产量和产投比相对较高,为本区域冬小麦优化管理模式。  相似文献   

5.
Although the Midwestern United States is one of the world's major agricultural production areas, few studies have assessed the effects of the region's predominant tillage and rotation practices on greenhouse gas emissions from the soil surface. Our objectives were to (a) assess short-term chisel (CP) and moldboard plow (MP) effects on soil CO2 and CH4 fluxes relative to no-till (NT) and, (b) determine how tillage and rotation interactions affect seasonal gas emissions in continuous corn and corn–soybean rotations on a poorly drained Chalmers silty clay loam (Typic Endoaquoll) in Indiana. The field experiment itself began in 1975. Short-term gas emissions were measured immediately before, and at increasing hourly intervals following primary tillage in the fall of 2004, and after secondary tillage in the spring of 2005, for up to 168 h. To quantify treatment effects on seasonal emissions, gas fluxes were measured at weekly or biweekly intervals for up to 14 sampling dates in the growing season for corn. Both CO2 and CH4 emissions were significantly affected by tillage but not by rotation in the short-term following tillage, and by rotation during the growing season. Soil temperature and moisture conditions in the surface 10 cm were significantly related to CO2 emissions, although the proportion of variation explained by temperature and moisture was generally very low (never exceeded 27%) and varied with the tillage system being measured. In the short-term, CO2 emissions were significantly higher for CP than MP and NT. Similarly, mean seasonal CO2 emissions during the 2-year period were higher for CP (6.2 Mg CO2-C ha−1 year−1) than for MP (5.9 Mg CO2-C ha−1 year−1) and NT (5.7 Mg CO2-C ha−1 year−1). Both CP and MP resulted in low net CH4 uptake (7.6 and 2.4 kg CH4-C ha−1 year−1, respectively) while NT resulted in net emissions of 7.7 kg CH4-C ha−1 year−1. Mean emissions of CO2 were 16% higher from continuous corn than from rotation corn during the two growing seasons. After 3 decades of consistent tillage and crop rotation management for corn and soybean producing grain yields well above average in the Midwest, continuous NT production in the corn–soybean rotation was identified as the system with the least soil-derived C emissions to the atmosphere from among those evaluated prior to and during corn production.  相似文献   

6.
Methane (CH4) and nitrous oxide (N2O) emissions from a paddy nursery at the rice seedling stage were measured on a daily basis by using the conventional rice cultivar Nangeng 56 under both conventional (NG-C) and reduced (NG-R) sowing density, and the hybrid rice Changyou 3 under both conventional (CY-C) and reduced (CY-R) sowing density. High N2O and CH4 emissions were observed during the first and last 2?weeks, respectively. Cumulative CH4 emissions were significantly (P?<?0.001) affected by sowing density rather than by the rice cultivar. Cumulative CH4 emissions reached 68.2?kg?C?ha?1 in the CY-C treatment and 121.6?kg?C?ha?1 in the NG-C treatment, which were significantly (P?<?0.001) higher than the emissions at reduced sowing densities (15.9?kg?C?ha?1 in the CY-R treatment and 20.9?kg?C?ha?1 in the NG-R treatment). Under the conventional sowing density, cumulative CH4 emissions during the seedling stage were comparable to data of rice-growing season. Both the rice cultivar and the sowing density significantly (P?<?0.05–0.01) affected cumulative N2O emissions. Relative to the CY cultivar, the NG cultivar increased global warming potential (GWP) over a 100-year horizon by 62.1% and 70.7% under the reduced and conventional sowing densities, respectively. The GWP of N2O and CH4 during the seedling stage was equivalent to the GWP of the entire rice-growing season in this region, indicating that the seedling stage is an important greenhouse gas emission source of rice agriculture.  相似文献   

7.
为了研究生物炭及秸秆还田对干旱区玉米农田温室气体通量的影响,以内蒙古科尔沁地区玉米农田为试验对象,采用静态箱-气相色谱法对分别施入生物炭0 t·hm-2(CK)、15 t·hm-2(C15)、30 t·hm-2(C30)、45 t·hm-2(C45)及秸秆还田(SNPK)的土壤进行温室气体(CO2、CH4和N2O)通量的原位观测,并估算生长季CH4和N2O的综合增温潜势(GWP)与排放强度(GHGI)。结果表明:添加生物炭能够显著减少土壤CO2和N2O的排放量,并促进土壤对CH4的吸收作用。其中处理C15对CO2的减排效果最好,与对照相比CO2排放量降低21.16%。随着施入生物炭量的增加,生物炭对N2O排放的抑制作用不断增强,处理C45对减排效果最好,与对照相比N2O排放量降低86.25%。处理C15对土壤吸收CH4的促进效果最好,CH4吸收量增加56.62%;处理C45对CH4的排放有促进作用,使生长季土壤吸收CH4减少81.36%。SNPK对温室气体的减排作用接近处理C15。添加生物炭和秸秆还田对提高玉米产量和降低农田GWP与GHGI均有显著效果,施用生物炭及秸秆还田均有效提高了科尔沁地区的玉米产量,且玉米产量随着施入生物炭含量的增大而提升。从GWP上来看,施用15 t·hm-2生物炭对温室气体减排的整体效果最好。从GHGI上来看,施用生物炭及秸秆还田均具有一定的经济效益和减排意义,其中施用15 t·hm-2生物炭的综合效益最高。因此综合经济效益与环境因素,建议科尔沁地区农田在种植玉米时添加15 t·hm-2生物炭,如不具备购买生物炭条件,可以考虑秸秆还田来实现玉米增产与温室气体减排。  相似文献   

8.
To evaluate the benefits of application of biochar to coastal saline soil for climate change mitigation, the effects on soil organic carbon (SOC), greenhouse gases (GHGs) and crop yields were investigated. Biochar was applied at 16 t ha?1 to study its effects on crop growth (Experiment I). The effects of biochar (0, 3.2, 16 and 32 t ha?1) and corn stalk (7.8 t ha?1) on SOC and GHGs were studied using 13C stable isotope technology and a static chamber method, respectively (Experiment II). Biochar increased grain mass per plant of the wheat by 27.7% and increased SOC without influencing non‐biochar SOC. On average, 92.3% of the biochar carbon and 16.8% of corn‐stalk carbon were sequestered into the soil within 1 year. The cumulative emissions of CO2, CH4 and N2O were not affected significantly by biochar but cornstalk application increased N2O emissions by 17.5%. The global warming mitigation potential of the biochar treatments (?3.84 to ?3.17 t CO2‐eq. ha?1 t?1 C) was greater than that of the corn stalk treatment (?0.11 t CO2‐eq ha?1 t?1 C). These results suggest that biochar application improves saline soil productivity and soil carbon sequestration without increasing GHG emissions.  相似文献   

9.
Abstract

Biochar application has been recognized as an effective option for promoting carbon (C) sequestration, but it may also affect the production and consumption of methane (CH4) and nitrous oxide (N2O) in soil. A 1-year field experiment was conducted to investigate the effects of rice husk charcoal application on rice (Oryza sativa L.) productivity and the balance of greenhouse gas exchanges in an Andosol paddy field. The experiment compared the treatments of rice husk charcoal applied at 10, 20 and 40 Mg ha?1 (RC10, RC20 and RC40, respectively), rice husk applied at 20 Mg ha?1 (RH20), and the control (CONT). Rice straw and grain yields did not significantly differ among the treatments. The seasonal cumulative CH4 emissions were 38–47% higher from RC10, RC20 and RC40 than from the CONT. However, the increases were not in proportion to the application rates of rice husk charcoal, and their values did not significantly differ from the CONT. On the contrary, the RH20 treatment significantly increased the cumulative CH4 emission by 227% compared to the CONT. The N2O emissions during the measurement were not affected by the treatments. As a result, the combined global warming potential (GWP) of CH4 and N2O emissions was significantly higher in RH20 than in the other treatments. There was a positive linear correlation between C storage in the top 10 cm of soil and the application rate of rice husk charcoal. The increases in soil C contents compared to the CONT corresponded to 98–149% of the C amounts added as rice husk charcoal and 41% of the C added as rice husk. Carbon dioxide (CO2) fluxes in the off season were not significantly different among RC10, RC20, RC40 and CONT, indicating that C added as rice husk charcoal remained in the soil during the fallow period. The CO2 equivalent balance between soil C sequestration and the combined GWP indicates that the rice husk charcoal treatments stored more C in soil than the CONT, whereas the RH20 emitted more C than the CONT. These results suggest that rice husk charcoal application will contribute to mitigating global warming without sacrificing rice yields.  相似文献   

10.
We studied the effects of soil management and changes of land use on soils of three adjacent plots of cropland, pasture and oak (Quercus robur) forest. The pasture and the forest were established in part of the cropland, respectively, 20 and 40 yr before the study began. Soil organic matter (SOM) dynamics, water-filled pore space (WFPS), soil temperature, inorganic N and microbial C, as well as fluxes of CO2, CH4 and N2O were measured in the plots over 25 months. The transformation of the cropland to mowed pasture slightly increased the soil organic and microbial C contents, whereas afforestation significantly increased these variables. The cropland and pasture soils showed low CH4 uptake rates (<1 kg C ha−1 yr−1) and, coinciding with WFPS values >70%, episodes of CH4 emission, which could be favoured by soil compaction. In the forest site, possibly because of the changes in soil structure and microbial activity, the soil always acted as a sink for CH4 (4.7 kg C ha−1 yr−1). The N2O releases at the cropland and pasture sites (2.7 and 4.8 kg N2O-N ha−1 yr−1) were, respectively, 3 and 6 times higher than at the forest site (0.8 kg N2O-N ha−1 yr−1). The highest N2O emissions in the cultivated soils were related to fertilisation and slurry application, and always occurred when the WFPS >60%. These results show that the changes in soil properties as a consequence of the transformation of cropfield to intensive grassland do not imply substantial changes in SOM or in the dynamics of CH4 and N2O. On the contrary, afforestation resulted in increases in SOM content and CH4 uptake, as well as decreases in N2O emissions.  相似文献   

11.
We examined net greenhouse gas exchange at the soil surface in deciduous forests on soils with high organic contents. Fluxes of CO2, CH4 and N2O were measured using dark static chambers for two consecutive years in three different forest types; (i) a drained and medium productivity site dominated by birch, (ii) a drained and highly productive site dominated by alder and (iii) an undrained and highly productive site dominated by alder. Although the drained sites had shallow mean groundwater tables (15 and 18 cm, respectively) their average annual rates of forest floor CO2 release were almost twice as high compared to the undrained site (1.9±0.4 and 1.7±0.3, compared to 1.0±0.2 kg CO2 m−2 yr−1). The average annual CH4 emission was almost 10 times larger at the undrained site (7.6±3.1 compared to 0.9±0.5 g CH4 m−2 yr−1 for the two drained sites). The average annual N2O emissions at the undrained site (0.1±0.05 g N2O m−2 yr−1) were lower than at the drained sites, and the emissions were almost five times higher at the drained alder site than at the drained birch site (0.9±0.35 compared to 0.2±0.11 g N2O m−2 yr−1). The temporal variation in forest floor CO2 release could be explained to a large extent by differences in groundwater table and air temperature, but little of the variation in the CH4 and N2O fluxes could be explained by these variables. The measured soil variables were only significant to explain for the within-site spatial variation in CH4 and N2O fluxes at the undrained swamp, and dark forest floor CO2 release was not explained by these variables at any site. The between-site spatial variation was attributed to variations in drainage, groundwater level position, productivity and tree species for all three gases. The results indicate that N2O emissions are of greater importance for the net greenhouse gas exchange at deciduous drained forest sites than at coniferous drained forest sites.  相似文献   

12.
This study provides a comparative assessment of greenhouse gas (GHG) emissions when converting a reclaimed minesoil that was previously under meadow to miscanthus (Miscanthus  × giganteus ) and maize (Zea mays L.) land uses in Ohio, USA. Additionally, effluent from an anaerobic digester at rates of 0, 75, 150, and 225 kg N ha−1 rates was also assessed for C and nutrient fertilization. Results from the study show that land use conversion to maize had the highest net release of GHG equivalent of 6·6 Mg CO2equ ha−1 y−1, on average, across effluent application rates. Under miscanthus land use with no and high effluent application rates, net GHG equivalent on average was 4·3 Mg CO2equ ha−1 y−1, which was larger when compared with that under the meadow land use (1·6 Mg CO2equ ha−1 y−1). Miscanthus land use under medium rates of effluent application had similar net GHG equivalent (7·1 Mg CO2equ ha−1 y−1) to the maize land use. The application of effluent did increase CO2–C and N2O–N emissions; but increases in above‐ground–below‐ground biomass production (1·6 Mg C ha−1) in the meadow land use and C input from effluent retained in the soil in the miscanthus and maize land uses offset most of the effluent‐induced GHG equivalent emissions. Contribution of cumulative N2O–N to GHG equivalent emissions in general was 11% when no effluent was applied and 22% when effluent was applied across land uses. Findings from this study show that land use changes from antecedent meadow to maize and miscanthus during the first year of establishment would result in net increase of GHG emissions. Published 2017. This article is a U.S. Government work and is in the public domain in the USA  相似文献   

13.
Elevated CO2 stimulates N2O emissions in permanent grassland   总被引:1,自引:1,他引:0  
To evaluate climate forcing under increasing atmospheric CO2 concentrations, feedback effects on greenhouse gases such as nitrous oxide (N2O) with a high global warming potential should be taken into account. This requires long-term N2O flux measurements because responses to elevated CO2 may vary throughout annual courses. Here, we present an almost 9 year long continuous N2O flux data set from a free air carbon dioxide enrichment (FACE) study on an old, N-limited temperate grassland. Prior to the FACE start, N2O emissions were not different between plots that were later under ambient (A) and elevated (E) CO2 treatments, respectively. However, over the entire experimental period (May 1998–December 2006), N2O emissions more than doubled under elevated CO2 (0.90 vs. 2.07 kg N2O-N ha−1 y−1 under A and E, respectively). The strongest stimulation occurred during vegetative growth periods in the summer when soil mineral N concentrations were low. This was surprising because based on literature we had expected the highest stimulation of N2O emissions due to elevated CO2 when mineral N concentrations were above background values (e.g. shortly after N application in spring). N2O emissions under elevated CO2 were moderately stimulated during late autumn–winter, including freeze–thaw cycles which occurred in the 8th winter of the experiment. Averaged over the entire experiment, the additional N2O emissions caused by elevated CO2 equaled 4738 kg CO2-equivalents ha−1, corresponding to more than half a ton (546 kg) of CO2 ha−1 which has to be sequestered annually to balance the CO2-induced N2O emissions. Without a concomitant increase in C sequestration under rising atmospheric CO2 concentrations, temperate grasslands may be converted into greenhouse gas sources by a positive feedback on N2O emissions. Our results underline the need to include continuous N2O flux measurements in ecosystem-scale CO2 enrichment experiments.  相似文献   

14.
The effects of compost application on soil carbon sequestration potential and carbon budget of a tropical sandy soil was studied. Greenhouse gas emissions from soil surface and agricultural inputs (fertiliser and fossil fuel uses) were evaluated. The origin of soil organic carbon was identified by using stable carbon isotope. The CO2, CH4 and N2O emissions from soil were estimated in hill evergreen forest (NF) plot as reference, and in the corn cultivation plots with compost application rate at 30 Mg ha−1 y−1 (LC), and at 50 Mg ha−1 y−1 (HC). The total C emissions from soil surface were 8·54, 10·14 and 9·86 Mg C ha−1 y−1 for NF, HC and LC soils, respectively. Total N2O emissions from HC and LC plots (2·56 and 3·47 kg N2O ha−1 y−1) were significantly higher than from the NF plot (1·47 kg N2O ha−1 y−1). Total CO2 emissions from fuel uses of fertiliser, irrigation and machinery were about 10 per cent of total CO2 emissions. For soil carbon storage, since 1983, it has been increased significantly (12 Mg ha−1) under the application of 50 Mg ha−1 y−1 of compost but not with 30 Mg ha−1 y−1. The net C budget when balancing out carbon inputs and outputs from soil for NF, HC and LC soils were +3·24, −2·50 and +2·07 Mg C ha−1 y−1, respectively. Stable isotope of carbon (δ13C value) indicates that most of the increased soil carbon is derived from the compost inputs and/or corn biomass. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
K. SMITH  D. WATTS  T. WAY  H. TORBERT  S. PRIOR 《土壤圈》2012,22(5):604-615
Tillage and fertilization practices used in row crop production are thought to alter greenhouse gas emissions from soil.This study was conducted to determine the impact of fertilizer sources,land management practices,and fertilizer placement methods on greenhouse gas(CO2,CH4,and N2O)emissions.A new prototype implement developed for applying poultry litter in subsurface bands in the soil was used in this study.The field site was located at the Sand Mountain Research and Extension Center in the Appalachian Plateau region of northeast Alabama,USA,on a Hartsells fine sandy loam(fine-loamy,siliceous,subactive,thermic Typic Hapludults).Measurements of carbon dioxide(CO2),methane(CH4),and nitrous oxide(N2O)emissions followed GRACEnet (greenhouse gas reduction through agricultural carbon enhancement network)protocols to assess the effects of different tillage(conventional vs.no-tillage)and fertilizer placement(subsurface banding vs.surface application)practices in a corn(Zea mays L.)cropping system.Fertilizer sources were urea-ammonium nitrate(UAN),ammonium nitrate(AN)and poultry litter(M)applied at a rate of 170 kg ha-1 of available N.Banding of fertilizer resulted in the greatest concentration of gaseous loss(CO2 and N2O)compared to surface applications of fertilizer.Fertilizer banding increased CO2 and N2O loss on various sampling days throughout the season with poultry litter banding emitting more gas than UAN banding.Conventional tillage practices also resulted in a higher concentration of CO2 and N2O loss when evaluating tillage by sampling day.Throughout the course of this study,CH4 flux was not affected by tillage,fertilizer source,or fertilizer placement method.These results suggest that poultry litter use and banding practices have the potential to increase greenhouse gas emissions.  相似文献   

16.
Afforestation of grasslands can increase C sequestration and provide additional economic and environmental benefits. Pine plantations, however, have often been found to deplete soil organic C and trigger detrimental effects on soils. We examined soil characteristics under a 45-year-old Pinus radiata stand and under adjacent grassland on maritime dunes in temperate Argentina. Soil under the pine plantation had greater soil organic C (+93%), total N (+55%) and available P (+100%) concentrations than under grassland. Carbon was stored under the pinestand at an estimated mean accretion rate of 0.64 Mg ha?1 y?1. At 0- to 25-cm depth, soil C amounted to 61 Mg ha?1 under pine and 27 Mg ha?1 under grassland. Soil C accumulated more on dune slopes (35 Mg ha?1 y?1) than on ridges(29 Mg ha?1 y?1) and bottoms (12 Mg ha?1 y?1). Compared with the grassland, soil acidity, cation-exchange capacity, base losses (K > Ca = Mg) and C/N ratio increased under pine. Spatial heterogeneity in soil characteristics was greater under pine than under grassland. Such variability was non-systematic and did not support the ‘single-tree influence circle’ concept. Afforestation increased C in soil, forest floor and tree biomass in dunes with ustic climate regime.  相似文献   

17.
Increasing greenhouse gas emissions from anthropogenic activities continue to be a mounting problem worldwide. In the semi-natural Miscanthus sinensis Andersson; grasslands of Aso, Kumamoto, Japan, which have been managed for thousands of years, we measured soil methane (CH4) and nitrous oxide (N2O) emissions before and after annual controlled burns. We estimated annual soil carbon (C) accumulation, and CH4 and N2O emissions induced by biomass burning in 2009 and 2010, to determine the impacts of this ecosystem and its management on global warming. Environmental factors affecting soil CH4 and N2O fluxes were unknown, with no effect of annual burning observed on short-term soil CH4 and N2O emissions. However, deposition of charcoal during burning may have enhanced CH4 oxidation and N2O consumption at the study site, given that emissions (CH4: ?4.33 kg C ha?1 yr?1, N2O: 0.17 kg N ha?1 yr?1) were relatively lower than those measured in other land-use types. Despite significant emission of CH4 and N2O during yearly burning events in early spring, the M. sinensis semi-natural grassland had a large annual soil C accumulation, which resulted in a global warming potential of ?4.86 Mg CO2eq ha?1 yr?1. Consequently, our results indicate that long-term maintenance of semi-natural M. sinensis grasslands by annual burning can contribute to the mitigation of global warming.  相似文献   

18.
Abstract

As a means of economic disposal and to reduce need for chemical fertilizer, waste generated from swine production is often applied to agricultural land. However, there remain many environmental concerns about this practice. Two such concerns, contribution to the greenhouse effect and stratospheric ozone depletion by gases emitted from waste‐amended soils, have not been thoroughly investigated. An intact core study at Auburn University (32 36′N, 85 36′W) was conducted to determine the source‐sink relationship of three greenhouse gases in three Alabama soils (Black Belt, Coastal Plain, and Appalachian Plateau regions) amended with swine waste effluent. Soil cores were arranged in a completely random design, and treatments used for each soil type consisted of a control, a swine effluent amendment (112 kg N ha?1), and an ammonium nitrate (NH4NO3) fertilizer amendment (112 kg N ha?1). During a 2‐year period, a closed‐chamber technique was used to determine rates of emission of nitrous oxide (N2O)–nitrogen (N), carbon dioxide (CO2)–carbon (C), and methane (CH4)–C from the soil surface. Gas probes inserted into the soil cores were used to determine concentrations of N2O‐N and CO2‐C from depths of 5, 15, and 25 cm. Soil water was collected from each depth using microlysimeters at the time of gas collection to determine soil‐solution N status. Application of swine effluent had an immediate effect on emissions of N2O‐N, CO2‐C, and CH4‐C from all soil textures. However, greatest cumulative emissions and highest peak rates of emission of all three trace gases, directly following effluent applications, were most commonly observed from sandier textured Coastal Plain and Appalachian Plateau soils, as compared to heavier textured Black Belt soil. When considering greenhouse gas emission potential, soil type should be a determining factor for selection of swine effluent waste disposal sites in Alabama.  相似文献   

19.
Peatlands typically exhibit significant spatial heterogeneity which can lead to large uncertainties when catchment scale greenhouse gas fluxes are extrapolated from chamber measurements (generally <1 m2). Here we examined the underlying environmental and vegetation characteristics which led to within-site variability in both CH4 and N2O emissions and the importance of such variability in up-scaling. We also consider within-site variation in the controls of temporal dynamics. Net annual emissions (and coefficients of variation) for CH4 and N2O were 1.06 kg ha−1 y−1 (300%) and 0.02 kg ha−1 y−1 (410%), respectively. The riparian zone was a significant CH4 hotspot contributing ∼12% of the total catchment emissions whilst covering only ∼0.5% of the catchment area. In contrast to many other studies we found smaller CH4 emissions and greater uptake in chambers containing either sedges or rushes. We also found clear differences in the drivers of temporal CH4 dynamics across the site, e.g. water table was important only in chambers which did not contain aerenchymous plants. We suggest that depending on the heterogeneity of the site, flux models could be improved by incorporating a number of spatially distinct sub-models, rather than a single model parameterized using whole-catchment averages.  相似文献   

20.
A field experiment was conducted to study the effects of combination of straw incorporation and water management on fluxes of CH4, N2O and soil heterotrophic respiration (Rh) in a paddy field in subtropical central China by using a static opaque chamber/gas chromatography method. Four treatments were set up: two rice straw incorporation rates at 0 (S1) and 6 (S2) t ha?1 combined with two water managements of intermittent irrigation (W1, with mid-season drainage) and continuous flooding (W2, without mid-season drainage). The cumulative seasonal CH4 emissions for the treatments of S1W2, S2W1 and S2W2 increased significantly by 1.84, 5.47 and 6.63 times, respectively, while seasonal N2O emissions decreased by 0.67, 0.29 and 1.21 times, respectively, as compared to S1W1 treatment. The significant increase in the cumulative Rh for the treatments S1W1, S2W1 and S2W2 were 0.54, 1.35 and 0.52 times, respectively, in comparison with S1W2. On a seasonal basis, both the CO2-equivalents (CO2e) and yield-scaled CO2e (GHGI) of CH4 and N2O emissions increased with straw incorporation and continuous flooding, following the order: S2W2>S2W1>S1W2>S1W1. Thus, the practices of in season straw incorporation should be discouraged, while mid-season drainage is recommended in paddy rice production from a point view of reducing greenhouse gas emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号