首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Many soil properties influence earthworm populations and activity. To determine which properties are of significance, a broad collection of soils was investigated. Samples from these different soils were kept bare at one site in large plots (3 Mg soil per plot) to liminate crop and weather interference and to isolate the dominating mechanisms of earthworm effects. Earthworm density, biomass, and tunnelling activity were assessed after 5 years of bare fallow. All earthworm parameters varied strongly. Earthworms increased soil respiration by their tunnelling activity, and in turn increased microbial activity and propagated the loss of organic C. Earthworm abundance ranged from 12 to 274 m-2 and was about 10 times greater than on cropped soils. The range in abundance was mainly caused by variations in the numbers of juveniles. The average soil moisture content was the only soil property among the many properties investigated that was consistently correlated with earthworm abundance and biomass. Even after 5 years of bare fallow with almost no addition of fresh plant biomass and with little water loss by plant transpiration, the earthworm population was controlled by water stress and not by food stress. We therefore conclude that high water consumption by productive crops may degrade the habitat for geophagous earthworms.  相似文献   

2.
为探究蚯蚓粪施用量对黄土区典型土壤团聚体及其结合碳的影响,该研究采用土柱培养试验,研究了黄绵土(CS)、黑垆土(DS)和风沙土(AS)团聚体和有机碳的数量及稳定性对不同蚯蚓粪施用量(0、1%、3%和5%)的响应。结果表明,施用蚯蚓粪后粒径不大于0.25 mm团聚体含量在CS和DS中降低了9.2%~24.7%和7.0%~21.3%;AS中在3%和5%用量条件下减少了25.9%~34.0%。3%用量蚯蚓粪对CS、DS和AS水稳性团聚体数量、平均重量直径、几何平均直径和粒径大于0.25 mm团聚体含量提高有显著作用,但用量增加至5%后效果未进一步改善。施用1%~5%用量蚯蚓粪可使土壤有机碳增加17.9%~66.9%,同时也提高了各级团聚体结合碳含量。施用蚯蚓粪后,不大于0.25mm团聚体对总有机碳贡献率在CS和DS中降低了21.4%~41.1%和15.7%~20.4%,3%和5%用量处理间没有差异。各级团聚体中易氧化碳含量随蚯蚓粪施用量的增加而增大。综合考虑土壤团聚体和有机碳对蚯蚓粪施用量的响应可知,3%用量蚯蚓粪即可有效提升土壤团聚体和有机碳稳定性。研究可为合理利用蚯蚓粪对黄土区土壤结构进行改良提供依据。  相似文献   

3.
Application of organic waste to saline alkaline soils is considered to be a good practice for soil remediation. The effects of applying different organic amendments (e.g., cattle dung, vermicompost, biofertilizer) and earthworm inoculations (Eisenia fetida) on saline soils and cotton growth were investigated during 1 year of cotton cultivation. Compared to the control (applied with inorganic NPK fertilizer), applying organic amendments improved soil physicochemical properties. Biofertilizer application improved available nutrient content, reduced short-term soil electrical conductivity, and produced the highest cotton yield, whereas cattle dung and vermicompost applications resulted in higher soil organic matter content. Application of organic amendments significantly increased soil microbial biomass carbon during the flowering period, which sharply declined at harvest. This was especially true for the biofertilizer treatment, which also exhibited lower nematode abundance compared with the other organic materials. Earthworm inoculation following cattle dung application failed to significantly change soil physicochemical properties when compared to the treatments without earthworm inoculation. Results suggest that biofertilizer application to saline soil would improve soil nutrient status in the short-term, whereas cattle dung application would improve soil organic matter content and increase soil organism abundance to a greater extent. However, different strategies might be required for long-term saline soil remediation.  相似文献   

4.
Soil arsenic (As) pollution from mining and industrial sources is a serious issue in China. Earthworms are considered ecosystem engineers and contribute to soil fertility development and maintenance of soil physico-chemical properties. In this study, earthworms were exposed to soils with different sodium arsenite concentrations (0, 5, 20, and 80 mg As kg-1) for 60 d to investigate the changes in soil properties and the responses of the earthworms (e.g., burrowing activity and respiration). Earthworm burrowing activity decreased with increasing arsenite concentrations, and earthworm respiration was significantly lower in soils with 20 and 80 mg As kg-1 compared to 0 mg As kg-1. Changes in soil properties were also observed after incubation of As-amended soil with earthworms. Specifically, soil pH decreased, while soil electrical conductivity and contents of soil NH3--N, Olsen-P, and available K increased. Our results suggest that arsenite negatively impacts the metabolic activity of earthworms, leading to reduced burrowing activity, which in turn modifies the effects of earthworms on soil fertility and remediation.  相似文献   

5.
Earthworm activity is observed at long‐term monitoring sites as an indicator of soil function to assess changes resulting from environmental and management conditions. In order to assess changes, characteristic values of earthworm populations under different site conditions have to be known. Therefore, a classification scheme for site‐specific earthworm populations was developed for soil in agricultural use, taking interactions between earthworm populations and soil properties into account. Characteristics of sites grouped by means of a cluster analysis after principal‐component analysis served as a basis for the derivation of the classification scheme. Soil variables found to characterize site differences with respect to earthworm populations were the texture of the topsoil, the texture of the subsoil, and the soil organic‐matter (SOM) content. The textural classes of the topsoil were divided into five groups comprising sandy soils (Ss), silty sand soils (Su), slightly loamy sand soils (Sl2), medium to strongly loamy sand soils (Sl3/Sl4), and loam and clay soils. Soil organic matter was divided into grades of equal size in a range from <1%, 1%–2% up to >6%. The variables “earthworm abundance” and “earthworm species” were selected to represent earthworm populations and were divided into six groups ranging from very low to extremely high. Defined groups of earthworm populations showed a clear structure in relation to soil textural groups and the content of SOM. From this distribution, a classification scheme was derived as basis for prognostic values of site‐specific earthworm populations, thus enabling the interpretation of changes over time. For some soil textural groups, selected variables appeared to enable the derivations of expected earthworm densities and species composition outside the range of the given database, but for some soil textural groups, broader databases will be needed to specify these derivations.  相似文献   

6.
蚯蚓粪对土壤团聚体组成和入渗过程水分运移的影响   总被引:9,自引:5,他引:4  
通过室内土壤团聚体组成分析试验和土柱一维垂直入渗试验,探究蚯蚓粪对土壤团聚体组成、抗水蚀稳定性以及入渗过程中水分运移特性的影响。结果表明:(1)蚯蚓粪可以有效降低土壤容重,增加0.25~2 mm粒级大团聚体的数量,分形维数D从2.84减小至2.65,减小了6.69%,显著提高了土壤团聚体抗水蚀稳定性;(2)施加比例为1/20时,可以显著增加湿润锋的运移距离,而后随着施加比例的增大,湿润锋距离有不同程度的减小,但均大于未施加蚯蚓粪的处理,且各处理下的湿润锋运移距离与入渗时间的关系均可用幂函数描述;(3)蚯蚓粪比例的增大可以显著提高累积入渗量和稳定阶段的入渗速率,当施加比例为1/3时,累积入渗量较对照组增大48.74%;其中Kostiakov-Lewis模型对入渗过程的模拟准确度最高,也更接近实测值。  相似文献   

7.
In the deserts of Kuwait in general and in Al‐Salmi area in particular, soil compaction and sealing are the most significant mechanisms of land degradation. In the present study, soil compaction and sealing in the Al‐Salmi area are assessed. The study is based on analysis of satellite images and aerial photographs, besides field measurements and laboratory investigations. Based on this study, a recent map is prepared for the concerned area. It shows three different soil classes. These are highly compacted (8\8 per cent), slightly compacted (1\7 per cent), and almost non‐compacted or natural (89\5 per cent). Soil compaction in Al‐Salmi area causes adverse changes in soil physical properties, e.g. infiltration rate, bulk density and soil strength. The infiltration capacity of the compacted soils has decreased by 18\46 to 91\96 per cent in comparison with non‐compacted soils. The bulk density for the compacted soil varies between 1\6 and 1\7 g cm−3, whereas it varies between 1\2 and 1\35 g cm−3 in the non‐compacted soils, that is an increased of 29\97 per cent. In some sites, the physical properties show small or no difference between compacted and natural soils due to the effect of soil sealing (crustation). Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
接种蚯蚓对加入不同植物残体土壤微生物特性的影响   总被引:1,自引:0,他引:1  
于建光  胡锋  李辉信  王同  王前进 《土壤》2012,44(4):588-595
通过室内试验,研究不同类型土壤和植物残体施用下接种蚯蚓对土壤微生物群落组成及活性的影响,为将蚯蚓引入农田及水土流失区提供理论依据。供试土壤为黏粒含量较低的灰潮土和黏粒含量较高的典型红壤,供试植物残体为高碳氮比的玉米秸秆和低碳氮比的三叶草,供试蚯蚓为体型较大的威廉腔环蚓(Metaphire guillelmi)。结果表明:接种蚯蚓对微生物量碳(MBC)无显著影响;不同土壤无论是否施用植物残体,接种蚯蚓均使土壤基础呼吸(BR)显著增大,尤其是不施用植物残体时;两种土壤中不施用植物残体和施用三叶草时,接种蚯蚓均使代谢熵(qCO2)增大,而施用玉米秸秆接种蚯蚓使qCO2有下降趋势。Biolog孔平均颜色变化(AWCD)在接种蚯蚓时均增大,基质利用丰富度(S)和多样性指数(H)也增大,且未施用秸秆时的变化较为明显;主成分分析(PCA)表明接种蚯蚓后土壤微生物群落组成与结构发生了明显变化。土壤微生物群落特性变化受蚯蚓、土壤及植物残体间交互作用的影响。  相似文献   

9.
Earthworms are target organisms both for scientists studying the biological component of soils and for farmers concerned with monitoring the quality of their soils. Different expellants are used to extract earthworms from the soil but differences in chemical properties and efficiency between commercial mustard and allyl isothiocyanate (AITC) solutions remain unknown. The objectives of this study were to compare (i) the concentration of irritating product (allyl isothiocyanate AITC) in two expellant solutions (diluted mustard or AITC solution) and (ii) their efficiency in extracting earthworms from the soil.AITC concentration was analyzed according to a new method, based on AITC solvent extraction and HPLC quantification, in one commercial mustard brand to assess its variability within and between batches of jars. According to mustard spiking with AITC standard solution, extraction recovery was estimated as 98 ± 2%. Earthworm field data were collected in spring 2012 in 22 cultivated fields located in east Île-de-France, comparing pure AITC to commercial mustard solutions. Species diversity, abundance and biomass of earthworms per plot were measured.We showed that AITC concentration in commercial mustard varied according to the use by date but not according to the batch. We thus recommend using the freshest mustard available from the same batch. Moreover, AITC solution was found to be about four times more concentrated in AITC than the commercial mustard solution. Despite this result, no significant differences were found in the efficiency of commercial mustard or AITC solutions to bring earthworms to the soil surface in terms of abundance, biomass or diversity. We thus discuss the advantage and drawbacks of using both expellants in the field.  相似文献   

10.
The effects of tillage treatment and axle load resulting from wheeled traffic on tilled soil (0 to 20 cm) were evaluated by measuring the changes in soil physical properties (bulk density and infiltration rate) and by measuring the impact on water retention in comparison with controlled plots. Data obtained from the experimental plots showed that infiltration rate was strongly affected by tillage treatments in 0‐ to 20‐cm depths. Dry bulk density was affected in 0‐ to 20‐cm depths by tillage treatments and axle load. Tillage system changed the ability of the soils to hold moisture and decreased the plant‐available water capacity.  相似文献   

11.
毛娜    刘通  江恒  李祥东    程炯  魏孝荣  邵明安 《水土保持研究》2023,30(1):70-76,82
生态修复是南方红壤丘陵区土地退化治理的有效手段之一,但现有研究较少关注土壤动物在生态修复过程中的作用。以退化的赤红壤为研究对象,基于盆栽试验,采用全因子设计方法模拟多种生态系统(裸土vs.黑麦草)×蚯蚓(不接种vs.接种蚯蚓)×水分(湿润vs.干旱),以揭示蚯蚓对干旱条件下退化土壤植被修复前后土壤理化性质和植被生产力的调控作用。结果表明:蚯蚓显著提高了湿润和干旱条件下黑麦草生物量。蚯蚓对土壤有机碳影响不显著,蚯蚓活动提高了裸土生态系统土壤总氮、硝态氮、铵态氮含量,以及黑麦草生态系统土壤速效磷含量。干旱胁迫降低黑麦草生物量,对土壤有机碳影响不显著,但显著改善蚯蚓存在土壤的pH值。黑麦草生物量与土壤总磷、硝态氮、铵态氮和速效磷显著正相关。偏最小二乘路径分析表明蚯蚓活动显著提高土壤全量和速效养分含量,湿润条件下速效养分对植被生物量具有显著正效应,干旱条件下其作用不显著。综上,蚯蚓活动改善土壤肥力状况,促进植被生长,蚯蚓活动可缓解干旱对植被生长的不利影响。研究结果对深入认识蚯蚓对生态系统作用具有重要意义,为退化土地生态修复管理提供科学依据。  相似文献   

12.
Recent research shows that most soils are more or less water repellent. Already subcritical water repellency may cause incomplete soil wetting and preferential flow. Both processes potentially reduce the residence time of water and solutes in the vadose zone, resulting in an enhanced risk of groundwater contamination. The objective of the present paper is, therefore, to evaluate the impact of reduced soil wettability on the soil water infiltration rate and to investigate the tendency towards preferential flow with the analysis of the immobile water content in the infiltration zone. In november 2002, a field experiment was done in a coniferous forest, 30 km N of Hannover, Germany. Soil hydrophobicity was quantified by measuring the contact angles. The hydraulic conductivity of the podsolic sandy soil was measured depth‐dependent with a double‐ring tension infiltrometer in three soil horizons. To quantify possible preferential‐flow effects, a LiBr‐Tracer was added to the infiltrating water to evaluate the mobile water‐content fraction after infiltration. Additionally, infiltration rates of water were compared with infiltration rates of ethanol which were determined after water infiltration at the same locations. Results show that the actual water repellency of field‐moist soil was mainly subcritical (contact angle <90°). Water infiltration rates were reduced due to subcritical repellency by a factor of 3–170 compared with ethanol infiltration rates (exclusion of wetting effects). This spatially variable infiltration behavior was not clearly reflected neither by the small‐scale contact‐angle measurements nor by the analysis of the average immobile soil water content in the infiltration zone. We conclude that this specific infiltration behavior of water caused by small‐scale wettability effects may temporarily reduce the local connectivity of water‐flow pathways.  相似文献   

13.
This work assesses relationships between characteristic aggregate microstructures related to biological activity in soils under different long‐term land use and the distribution and extractability of metal pollutants. We selected two neighbouring soils contaminated with comparable metal loads by past atmospheric deposition. Currently, these soils contain similar stocks, but different distributions of zinc (Zn) and lead (Pb) concentrations with depth. One century of continuous land use as permanent pasture (PP) and conventional arable (CA) land, has led to the development of two soils with different macro‐ and micro‐morphological characteristics. We studied distributions of organic matter, characteristic micro‐structures and earthworm‐worked soil by optical microscopy in thin sections from A, B and C horizons. Concentrations and amounts of total and EDTA‐extractable Zn and Pb were determined on bulk samples from soil horizons and on size‐fractions obtained by physical fractionation in water. Large amounts of Zn and Pb were found in 2–20‐µm fractions, ascribed to stable organo‐mineral micro‐aggregates influenced by root and microbial activity, present in both soils. Unimodal distribution patterns of Zn, Pb and organic C in size‐fractions were found in horizons of the CA soil. In contrast, bimodal patterns were observed in the PP soil, because large amounts of Zn and Pb were also demonstrated in stable larger micro‐aggregates (50–100‐µm fractions). Such differing distribution patterns characterized all those horizons markedly influenced by earthworm activity. Larger earthworm activity coincided with larger metal EDTA‐extractability, particularly of Pb. Hence, land use‐related biological activity leads to specific soil microstructures affecting metal distribution and extractability, both in surface and subsurface horizons.  相似文献   

14.
Effects of earthworms on Zn fractionation in soils   总被引:11,自引:0,他引:11  
Laboratory incubation experiments were conducted to examine the effect of earthworm (Pheretima sp.) activity on soil pH, zinc (Zn) fractionation and N mineralization in three soils. No Zn uptake by earthworms was observed. Zinc addition decreased pH of red soil (soil 1) and hydragric paddy soil (soil 3) by 0.5 and 0.2 unit, respectively, but had no effect on alluvial soil (soil 2). The effect of Zn on soil pH was possibly due to a specific adsorption mechanism between Zn and oxides. Earthworm activity significantly decreased the pH of the red soil, a key factor affecting Zn solubility, but not of the other two soils. Earthworm activity significantly increased DTPA-Zn (DTPA-extractable) and OxFe-Zn (NH2OH-HCl-extractable) in the red soil, but had little effect on other fractions. In the alluvial soil, earthworm activity significantly increased OxFe-Zn but decreased organic-Zn (organic-associated Zn). In the hydragric paddy soil, earthworm activity significantly increased MgCl2-Zn (MgCl2-extractable) and organic-Zn. The level of CaCl2-extractable Zn in all three soils was not affected by earthworm activity. Nitrogen mineralized as a result of earthworm activity was equivalent to 110, 120 and 30 kg N ha-1 in soils 1, 2 and 3, respectively. Zinc added at rates less than 400 mg Zn kg-1 did not seem to affect the activity of N-mineralizing microorganisms. The present results indicated the possibility of increasing the metal bioavailability of relatively low level metal-contaminated soils, with a higher organic matter content, by earthworm inoculation.  相似文献   

15.
蚯蚓粪对土壤入渗和水稳性团聚体组成均有显著影响,通过在黄土区空闲农田坡耕地试验小区采用混施和层施的方式分别施入0,200,400,600,800 g/m^2 5个不同梯度的蚯蚓粪,研究其对降雨条件下坡面径流泥沙和养分流失的调控作用。结果表明:(1)2种施加方式均有效延缓了产流起始时间,且层施800 g/m^2处理下的产流起始时间较CK推迟了3.88 min,延缓效果最为明显;(2)层施800 g/m^2处理下可以显著减小产流前期的径流增大速率,并推迟进入稳定入渗阶段的时间,累积径流量随时间的变化均可以很好地用幂函数描述;(3)混施和层施800 g/m^2的2种处理下,稳定产沙率分别较CK显著减小79.61%和86.74%;累积泥沙量随时间变化均可以用幂函数描述,且初始产沙率均随蚯蚓粪施加量的增大呈显著减小趋势。(4)较混施而言,层施可以显著减小径流中硝态氮的浓度,且施加量越大,效果越明显。总之,蚯蚓粪施入均会对黄土区空闲坡耕地水土养分流失起到一定的调控作用,当施加量较大且施加方式为层施时,可以起到良好的保水控沙控肥效果。  相似文献   

16.
The saturated and near‐saturated hydraulic conductivity of soils, ku, is a sensitive indicator of soil structure and a key parameter for solute transport and soil aeration. In this contribution, we present and numerically investigate a double‐disk method to determine ku in the laboratory by steady‐state percolation at different suction steps. Tension infiltration of water takes place at the top of a soil column through a porous disk with a smaller diameter than the soil sample. This leaves part of the soil surface open and ensures a proper soil ventilation. Drainage takes place at the base through a porous disk with the full diameter of the soil column at exactly the same tension as applied to the top boundary. Since the infiltration area is less than the percolation area, the water flow diverges and the equality of steady flow rate and hydraulic conductivity, which characterizes the standard unit‐gradient experiment, is no longer valid. To develop a general relationship between observed steady flow rate and unsaturated hydraulic conductivity, the experiment was simulated with the Richards‐equation solver HYDRUS 2D/3D, for twelve different soil classes. We found for tensions in the range 1 cm < 10 cm, an infiltration disk diameter of 4.5 cm diameter and a sample diameter of 8 cm diameter that the flux rate at any given tension was about 0.7 times the respective hydraulic conductivity, with an error of less than 10%.  相似文献   

17.
袁新田  焦加国  朱玲  刘满强  李辉信  胡锋 《土壤》2011,43(6):968-974
通过室内培养试验,研究在施用有机物条件下接种蚯蚓对土壤团聚体的分布、团聚体的水稳性以及不同粒径的水稳性团聚体中有机碳含量的影响.干筛结果表明,不同秸秆施用方式下,蚯蚓接种能显著促进各个处理中>2 mm团聚体含量的增加,且在秸秆混施的处理中表现得尤为明显,团聚体含量增加了2.95倍;湿筛结果表明,蚯蚓在不施和混施秸秆的处理中能显著降低土壤黏砂粒含量,即增加土壤中水稳性团聚体的含量,但是在表施秸秆的处理中显著降低了0.25~ 0.053 mm粒级团聚体含量,使之分散为黏砂粒.蚯蚓和秸秆对土壤团聚体分布和水稳性的影响都达到显著水平.蚯蚓对水稳性微团聚体的影响极显著,而秸秆的作用更多地表现在水稳性大团聚体上.在秸秆表施和秸秆混施条件下,接种蚯蚓均显著促进了微团聚体碳含量的增加,分别为相应对照的2.1和1.2倍.蚯蚓作用能显著降低黏砂粒有机碳在全碳中含量,增加团聚体有机碳含量,主要是由于蚯蚓的作用能促进黏砂粒黏结为团聚体.  相似文献   

18.
Soil organic matter (SOM) plays a central role in the functioning of ecosystems, and is beneficial from agronomic and from environmental point of view. Alternative cultural systems, like direct seeding mulch-based cropping (DMC) systems, enhance carbon (C) sequestration in agricultural soils and lead to an increase in soil macrofauna. This study aimed at evaluating in field mesocosms the effects of earthworms on SOM dynamics and aggregation, as influenced by residue quality and management.In the highlands of Madagascar, buckets were filled with 2 mm-sieved clayey Inceptisol. The effects of earthworm addition (Pontoscolex corethrurus), residue addition (rice, soybean, and no addition), and localization of the residues (mulched or buried) were studied. After 5 months, soil from mesocosms with earthworms had significantly lower C concentration and higher proportion of large water-stable macroaggregates (>2000 μm) than those without earthworms, because of the production of large macroaggregates by earthworms. Earthworm effect on soil aggregation was greater with rice than with soybean residues. Casts (extracted from mesocosms with earthworms) were slightly enriched in C and showed significantly higher mineralization than the non-ingested soil (NIS), showing that at the time scale of our study, the carbon contained in the casts was not protected against mineralization. No difference in microbial biomass was found between casts and NIS.Complementary investigations are necessary to assess long-term effects of earthworm addition on SOM dynamics, the conditions of occurrence of physical protection, and the impact of earthworms on the structure of the microbial community.  相似文献   

19.
20.
In structured soils, water and reactive solutes can preferentially move through larger inter‐aggregate pores, cracks, and biopores. The surface roughness of such macropores is crucial for describing microbial habitats and the exchange of water and solutes between macropores and the soil matrix together with other properties. The objective of this study was to compare the roughness of intact structural surfaces from the Bt‐horizons of five Luvisols developed on loess and glacial till and to test the applicability of confocal laser scanning microscopy. Samples of 5 to 10 cm edge length with intact structural surfaces including cracks with and without clay‐organic coatings, earthworm burrow walls, and root channels were prepared manually. The surface roughness of these structures was determined with a confocal laser scanning microscope of the type Keyence VK‐X100K. The root‐mean‐squared roughness (Rq) the curvature (Rcu) and the ratio between surface area and base area (RA) were calculated from selected surface regions of interest of 0.342 mm2 with an elevation resolution of 0.02 µm. The roughness was smaller for coated as compared to uncoated cracks and earthworm burrows of the Bt‐horizons. This reduction of roughness by the illuviation of clayey material was similar for the structural surfaces of the coarser textured till‐Bt and the finer‐textured loess‐Bt. This similarity suggested a dominant effect of pedogenesis and a minor effect of the parent material on the roughness levels of structural surfaces in the Bt‐horizons. An expected “smoothing” effect of burrow wall surfaces by earthworm activity was not reflected in the roughness values compared to those of uncoated cracks at the chosen spatial scale. However, for root channel walls from one loess‐Bt, the roughness was reduced as compared to that of other structures. These results suggest that the surface roughness of the structural surface types should separately be considered when describing preferential flow and macropore‐matrix exchange or analysing root growth, microbial habitats, and colloidal transport in structured soils. The confocal laser scanning microscopy technique was found useful for characterizing the roughness of intact structural surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号