首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite a general consent about the beneficial contribution of arbuscular mycorrhizal fungi (AMF) on natural ecosystems, there is an intense debate about their role in agricultural systems. In this work, soybean (Glycine max L.) and sunflower (Helianthus annuus L.) field plots with different P availabilities were sampled across the Pampean Region of Argentina (> 150 samples from Mollisols) to characterize the relationship between available soil P and indigenous mycorrhizal colonization. A subsequent pot experiment with soybean and sunflower was carried out to evaluate the effect of P supply (0, 12, and 52 mg P kg–1) and AMF inoculation on AMF colonization and crop responsiveness to P in a Mollisol. Both crops showed high AMF colonization in the field (average: 55% for soybean and 44% for sunflower). While mycorrhizal colonization in soybean was significantly and negatively related to available soil P, no such trends were apparent in sunflower. Also, total biomass was 3.5 and 2.0 times higher in mycorrhizal than in nonmycorrhizal pot‐grown soybean under low‐ and medium‐P conditions, respectively. Sunflower, on the other hand, did not benefit from AMF symbiosis under medium and high P supply. While mycorrhization stimulated P‐uptake efficiency in soybean, the generally high P efficiency in sunflower was not associated with AMF symbiosis.  相似文献   

2.
利用大田试验研究了不同磷肥用量对甘蓝型春油菜产量、养分积累、磷素利用效率和经济效益的影响。结果表明,在低磷土壤上施用125 kg/hm2N和135 kg/hm2K2O基础上增施磷肥,可显著增加油菜不同部位产量,其中籽粒产量平均提高12.5%,生物量平均提高29.0%。施磷明显提高油菜地上部P素含量,有利于促进油菜K素营养累积,但对N素、K素含量无显著影响。随磷肥施用量的增加,磷肥偏生产力显著下降,施磷后磷肥农学效率、磷肥表观利用率和磷肥生理利用率平均分别为4.6 kg/kg P2O5、13.0%和40.2 kg/kg P2O5,磷肥对籽粒产量的贡献率仅为10.9%。根据经济效益分析结果,青海甘蓝型春油菜生产中磷肥用量以75 kg/hm2为宜。  相似文献   

3.
油菜硼高效的遗传   总被引:1,自引:0,他引:1  
Field experiments were conducted to study the inheritance of boron efficiency in oilseed rape (Brassica napus L.) by evaluating the boron (B) efficiency coefficient (BEC, the ratio of the seed yield at below the critical boron level to that at the boron-sufficient level) with 657 F2:3 lines of a population derived from a cross between a B-efficient cultivar, Qingyou 10, and a B-inefficient cultivar, Bakow. Qingyou 10 had high BEC as well as high seed yield at low available soil B. On the contrary, Bakow produced low seed yield at low B status. Boron deficiency decreased the seed yield of the F2:3 lines to different extents and the distribution of BEC of the population showed a bimodal pattern. When the 657 F2:3 lines were grouped into B-efficient lines and B-inefficient lines according to their BEC, the ratio of B-efficient lines to B-inefficient lines fitted the expected ratio (3:1), indicating that one major gene controlled the B-efficiency trait. 127 F2:3 lines selected from the population at random, with distribution of BEC similar to that of the overall population, were used to identify the target region for fine mapping of the boron efficiency gene.  相似文献   

4.
The short-term economic benefit has in recent years prompted farmers to grow oilseed rape (OSR) (Brassica napus L.) and thus the frequency of this crop increased in German crop rotations. Here, we investigate the impact of high-intensity OSR crop rotations on yield, yield formation, and blackleg disease (Leptosphaeria maculans) in a rotation experiment in the Hercynian dry region of Central Germany over two seasons (2014/2015?–?2015/2016). The preceding crop combinations compared were winter wheat (WW) (Triticum aestivum L.)-WW, WW-OSR, OSR-OSR, and an OSR monoculture. Furthermore, the fertilizer treatments 120 kg N ha?1 and 180 kg N ha?1 were analyzed.

Higher OSR cropping intensity decreased seed yields, however, with a variation among years and oil yield was highest when OSR was following WW-WW over both years. Minor differences were observed among the yield components, but significantly less pods per m2 were developed in a long-term OSR monoculture. The disease assessment clearly showed an increased blackleg incidence and severity when OSR was grown successively.

Results of our study emphasize that high-intensity OSR production will very likely be unsustainable over the long term associated with yield losses and increased infestation levels of blackleg disease.  相似文献   

5.
Genotypic variation in nitrogen (N) efficiency of rapeseed is caused by differences in reproductive growth. This might be related to genotypic variation in sulfur (S) utilization. In this study it was tested if S deficiency in growing plant parts is induced under N-limiting conditions due to high sulfate accumulation in mature leaves which is poorly remobilized. Leaf S remobilization was compared under high and low N supply in four rapeseed cultivars that were grown in hydroponics with leaf-senescence induction by shading. Low N conditions did not increase sulfate accumulation in mature leaves. Total S remobilization from the leaves was higher under N-limiting than N-sufficient conditions. The proposed S deficiency in young plant parts therefore may not be more probable under low than under high N conditions. However, genotypic variation in S uptake and remobilization was found under N-limiting conditions only and might therefore contribute to genotypic variation in reproductive growth.  相似文献   

6.
The Czech Republic is characterized by a low Se soil content, resulting in Se deficiency in crops, humans, and animals. This study investigated the response of oilseed rape to foliar application of selenate solution in a microscale field experiment conducted at two locations differing in soil and climatic conditions but with comparable total Se contents. Sodium selenate (Na2SeO4) was applied at two rates (25 and 50 g Se ha?1). The potential effect of Se application on the uptake of essential elements was also evaluated. The foliar Se application resulted in an effective stepwise increase in the Se contents of all the plant components studied (leaves > stems > roots > siliques ~ seeds), as expected. No significant influence of Se fortification on the other investigated macro- and microelements was observed. However, the soil and climatic conditions influenced the Se uptake, such that a higher Se content was observed in plants grown in the most acidic location (Cambisol soil) that had a higher oxidizable carbon content and higher average annual rainfall compared to the less acidic location (Luvisol soil). These observations indicated the necessity to optimize the Se application for the particular soil and climatic conditions to achieve a maximum biofortification effect.  相似文献   

7.
When the spreading of a disease depends on the proportion of infected residues remaining at soil surface it is of crucial importance to analyse the effects of tillage practices on the vertical distribution of stubble. This is the case with phoma stem canker (blackleg), whose epidemics are initiated in autumn, by air-borne ascospores released from stubble located at the soil surface. We compared initial vertical distribution of oilseed rape residues to those observed after sowing and various tillage operations (rotary harrowing, stubble disking, chiselling and mouldboard ploughing). Almost 20% of the initially buried residue was brought back to soil surface with seeding. Rotary harrow brought 40% of the residue buried in the 0–10 cm layer up to the surface and left unburied about 70% of surface residue. Stubble disking appeared to be more efficient for residue burial than chiselling. Mouldboard plough was the only tool that buried all residues. A simple model was developed that predicted burial and return to the soil surface of potentially infected residues as a function of tillage practices used after harvest. Simulation of different tillage sequences showed that the order in which tools were used also affected location of residues. Our results highlighted the importance of tillage in the cultural control of phoma stem canker and will contribute to the definition of integrated pest management strategies for oilseed rape.  相似文献   

8.
Kinetics of phosphorus absorption were investigated with mycorrhizal and nonmycorrhizal soybean (Glycine max Merr.) plants which were grown in a greenhouse and growth chamber and with nutrient solutions. Mycorrhizal plants depleted phosphorus from a dilute (<30uM) nutrient solution three times faster and had lower apparent efflux of phosphorus than the uninfected plants. The affinity (Km) of roots for phosphorus from the solution was not increased by mycorrhizal infection. The results indicate that enhanced phosphorus absorption by mycorrhizal roots of soybean is due to an increase in the number of uptake sites per unit area of root (v max).  相似文献   

9.
Selenite is a form of selenium (Se) commonly found in Se-excessive soils. To regulate the Se content in plants in high-Se areas, a potted soil experiment was performed on oilseed rape (Brassica napus L.) to evaluate the effects of varied amounts of sulfur (S) on the biomass, accumulation and distribution of Se in B. napus under the conditions of different amounts of Se in the soil. The results showed that the seedlings of B. napus were more sensitive to Se than the mature plants were. The addition of S significantly alleviated the growth inhibition in seedlings and facilitated the growth of mature plants under higher Se (15 mg kg?1) conditions. S treatment significantly decreased soil pH within the range of 0.22–0.60. An appropriate moderate amount (150 mg kg?1) of S exerted the strongest inhibition on Se concentration and accumulation in B. napus at the seedling stage, but a higher amount (300 mg kg?1) of S led to a more significant decrease in the mature plants under higher Se conditions, with the maximum reduction in various parts of B. napus reaching 51.3–60.9% and 42.5–53.4%, respectively. The application of S only affected the uptake of Se, and not the translocation of Se; the accumulation of Se in B. napus follows the sequence of pod ≈ stem > rapeseed > root, and the distribution ratio is approximately 1.00:0.97:0.69:0.49. Overall, the application of S alleviated the inhibitory effect on growth caused by excessive Se by reducing the Se concentration in B. napus and facilitating its growth, suggesting that S treatment is a suitable and highly cost-effective method to regulate the content of Se in B. napus.  相似文献   

10.
The problem raised here is the intensification of technology in field crops of winter oilseed rape. Is there a justification for this by explaining what relationship between the yield and individual yielding traits are formed in hybrid and population cultivars. During years 2012–2015 field studies to evaluate five hybrid and five population cultivars response on the standard and high-input technology in winter oilseed rape production have been executed in Poland. High-input technology included: double foliar application (in autumn, and in spring) of micro-nutrients, additional top fertilisation of 40?kg N per ha in spring, double application of the amino-acid bio-stimulators, and additional growth regulator. According to the principle component analysis made for both technologies it was found that hybrids and population cultivars displayed varied response which is explained here on the basis of morphological, growth, and yield elements. The high-input technology improved the yield responded elements e.g. number of siliques and number of seeds per silique as well as winter hardiness. This impact was more evident for population cultivars than for hybrids. We state that high-input technology, as the proposal in this paper, that provided 9.6% increase in seed yield, is biologically justified for winter oilseed rape crop and can be recommended in North and central European countries.  相似文献   

11.
Abstract

Biofortification of soybean grains with lithium (Li) is a strategy to improve a food with high social acceptance, in order to promote health benefits. The aim of this work was to evaluate the development of plants and the production of biofortified soybeans with two Li sources. The experiment was conducted in a completely randomized design with five replicates. Ten treatments were obtained in a 2x5 factorial scheme, comprising two sources of Li (LiOH - Li hydroxide and Li2SO4 - Li sulfate) and five doses (0, 30, 60, 90 and 120?mg kg?1) in stages V4 and R1. The supply of Li promoted significant effects (p?≤?0.05) on the morphology, yield components and nutritional status of soybean plants. The highest grain yield was obtained with the use of Li2SO4 at the estimated dose of 45.7?mg kg?1. The plants accumulated Li between 8.00 and 11.20?mg kg ?1, respectively, with the use of Li2SO4 and LiOH. In the grains, the highest concentrations of Li were obtained with the application of 120?mg kg?1. Li2SO4 and LiOH are good sources for biofortification of soybean grains.  相似文献   

12.
A 3‐year field experiment was carried out to determine the significance of root‐growth characteristics contributing to N‐uptake efficiency of two oilseed rape (Brassica napus L.) cultivars differing in N efficiency. Two N treatments were applied, and the core and minirhizotron techniques were used to study root‐length density and number of living roots, respectively. Fertilizer‐N supply increased shoot dry matter, grain yield, total N uptake, and total soil Nmin contents particularly in the top soil. Although significant differences occurred in all parameters between years, the interactions between years and cultivars were mostly not significant. Compared to cv. Capitol, the N‐efficient cv. Apex was characterized by a higher grain yield at N0 and a higher N uptake during reproductive growth. This genotype also had a higher root‐length density and more living fine roots particularly in the topsoil layer. Root growth of this genotype was especially high from beginning of shooting to beginning of flowering, while shoot growth and N uptake during vegetative growth were comparatively low. Our results suggest that N‐efficient cultivars can be characterized by a high investment in root growth during the vegetative stage with a comparatively slow shoot growth and N‐uptake rate until beginning of flowering, which, however, continues during reproductive growth. High root production only during reproductive growth seems to be less effective to achieve high N efficiency, because this may lead to a shortage of assimilates for seed filling. High root‐length density at vegetative stages may thus be advantageous for N uptake and reproductive growth and could be a useful morphological character for the selection and breeding of N‐efficient cultivars.  相似文献   

13.
ABSTRACT

Rapeseed acreage has been increasing fast in the last few decades and cultivated areas have expanded into lower latitudes because of the high value of its seed. This work evaluates the effect of date of sowing and nitrogen (N) fertilization on crop productivity and N use efficiency in a Mediterranean environment. The experiment was arranged in a split-plot design with the dates of sowing as the main-plots and N rates the sub-plots. Rapeseed recovered 128 to 212 kg N hm-2 before top-dress N application in late winter if sown before the last week of September. Seed yield was very dependent on the date of sowing, varying from 3.4 to 6.2 Mg hm-2 on the first sowing date in September to 0.3 to 1.0 Mg hm-2 on the last sowing date in November. The daily loss in seed production was 68.9 kg hm-2 (or 482.3 kg hm-2 per week) or 1.53 % (or 10.7 % per week). N rate significantly increased seed yield within each sowing date but did not allow late-sowed plants to regain the productivity levels of those sown earlier. Apparent N recovery and agronomic N efficiency were particularly dependent on the growing conditions associated to different sowing dates.  相似文献   

14.
Phosphorus (P) availability to crops in organic systems can be a major issue, with the use of readily available forms often restricted. One product that can be used in organically managed systems, that is also relatively easily accessible to growers, is phosphate rock, although its solubility and therefore crop availability is often poor. One possible approach to improve this situation is co‐composting phosphate rock with selected organic waste materials. Various ratios of phosphate rock and cabbage (Brassica oleracea L.) residues were co‐composted and the products tested at different rates of application. The effects were assessed over 12 weeks using oilseed rape (Brassica napus L.) and perennial ryegrass (Lolium perenne L.) as bioassay crops in a pot experiment. At harvest, estimates of P derived from cabbage and phosphate rock for the lowest of two rates of compost were ≈ 2 and 10 mg P pot–1 for oilseed rape, compared to 5 and 2 mg P pot–1 for perennial ryegrass, respectively. Roots tended to have higher P concentrations than shoots. The crops showed differences in their abilities to access various P sources, with oilseed rape effectively taking P from phosphate rock, whereas perennial ryegrass was more effective at accessing cabbage‐derived P (the main substrate in the compost). Oilseed rape was able to take up 20% of the total P applied as phosphate rock, whereas perennial ryegrass took up less than 5% of the total P applied from this material. Both pre‐ and post‐application solubilisation/transformation mechanisms were involved in supplying plant‐available P. Quantifying the relative contribution from individual P sources remains problematic even within this relatively simple system.  相似文献   

15.
In order to optimize nitrogen (N) fertilization and to reduce the environmental impact of oilseed rape without decreasing yield, a clearer understanding of N dynamics inside the plant is crucial. The present investigation therefore aimed to study the effects of different N‐application rates on the dynamics of N uptake, partitioning, and remobilization. The experiment was conducted on winter oilseed rape (Brassica napus L. cv. Capitol) under three levels of N input (0, 100, and 200 kg N ha–1) from stem elongation to maturity using 15N‐labeling technique to distinguish between N uptake and N retranslocation in the plant. Nitrogen fertilization affected the time‐course of N uptake and also the allocation of N taken up from flowering to maturity. Most pod N came from N remobilization, and leaves accounted for the largest source of remobilized N regardless the N‐application rate. However, the contribution of leaves to the remobilized N pool increased with the N dose whereas the one of taproot decreased. Stems were the main sink for remobilized N from stem elongation to flowering. Leaves remained longer on N200 than on N0 and N100 plants, and N concentration in fallen leaves increased with the N treatment and in N100 plants along an axial gradient from the basal to the upper leaves. Overall, these results show that the timing of N supply is more crucial than the N amount to attain a high N efficiency.  相似文献   

16.
Abstract

Phytoremediation is a good technique for removing cadmium (Cd) from farmland soils. To remove Cd from these soils effectively, it is necessary for Cd ions to be transported to the shoot organs for later harvest. However, the mechanism of Cd translocation to shoot organs via xylem vessels has not yet been elucidated. We selected oilseed rape plants (Brassica napus L.) and established a method to collect xylem exudates from these plants. After 3 days of Cd treatment (10 µmol L?1 and 30 µmol L?1) the Cd concentrations in the xylem exudates were approximately 6.5 µmol L?1 and 16 µmol L?1, respectively. The detection of Cd in the xylem exudate indicated that Cd was moving to shoot organs via xylem vessels. The effect of these Cd treatments on the amino acid, organic acid and protein composition of xylem exudates from oilseed rape plants was investigated. The level of amino acids and organic acids detected was enough to bind Cd transported via the xylem. Sodium dodecylsulfate-polyacrylamide gel electrophoresis analysis revealed that proteins with molecular weights of 36 kDa and 45 kDa clearly increased in the exudates with Cd treatment. The possibility that these compounds are binding Cd in the xylem exudates was discussed.  相似文献   

17.
18.
利用酸性黄棕壤进行连续2年的盆栽试验,研究了钼肥和磷肥配合施用对甘蓝型油菜产量和子粒含油量、油产量、蛋白质含量、硫甙和芥酸含量以及脂肪酸组分等品质指标的影响。钼肥和磷肥各设置3个水平,分别为Mo 0、0.15、0.30 mg /kg土和P2O5 0、0.20、0.40 g /kg土,共9个处理。结果表明:施钼能够显著(P0.05)提高油菜子粒产量和生物学产量,显著增加油菜子粒含油量、油产量及油酸、亚油酸含量,降低子粒硫甙、亚麻酸和硬脂酸的含量;施磷则能够极显著提高子粒产量和子粒油产量,显著增加生物学产量和亚油酸含量,降低芥酸、硫甙及二十碳烯酸的含量;钼肥和磷肥对提高油菜子粒产量、油产量和油酸含量,降低芥酸含量存在显著(P0.05)的协同效应。因此,钼肥和磷肥在提高油菜产量、改善油菜子粒品质方面均具有良好的作用,且两者配合施用效果更好。  相似文献   

19.
This paper describes the effect of plant growth-promoting bacteria on sunflower growth and its phytoremediation efficiency under Cd-contaminated soils. Four levels of bacteria inoculation (non-inoculation, inoculation by Bacillus safensis, Kocuria rosea and co-inoculation by Bacillus safensis+Kocuria rosea) and four Cd concentrations (0, 50, 100 and 150 mg Cd per kg soil) were arranged as factorial experiment based on a completely randomized design (CRD). Results showed that Cd significantly decreased growth by decreasing the shoot and root length and biomass (p < 0.01). In addition, Cd dramatically decreases photosynthetic pigments, Fe transport to shoot and Zn uptake (p < 0.01). Bacterial inoculation increased Fe and Zn uptake by plants, Cd concentration in the aboveground part of plants and Cd uptake by the enhancement of Cd concentration in plant tissue and biomass production. Results showed that the highest shoot Cd uptake was ?observed in ?inoculated plants by Bacillus safensis at Cd100 (20.35 mg pot?1). However, in average of Cd treatments, the performance of co-inoculation in Cd uptake (13.04 mg pot?1) was better than singular inoculation (10.68 and 12.58 mg pot?1 for Bacillus safensis and Kocuria rosea, respectively). Results revealed that bacterial inoculation increased the Cd uptake performance in shoot and total biomass by 30% and 25%, respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号