首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
地下渗灌土壤水分运动数值模拟   总被引:2,自引:2,他引:2  
为了寻找一种准确实用的土壤水分运动模拟方法用于指导田间渗灌,该文对一种橡塑渗灌管田间渗灌过程进行监测,并采用Green-Ampt积水入渗模型和一维水平吸渗模型Philip解法分别对渗灌过程中土壤水分在垂直和水平方向的运动进行模拟,通过与田间实测值对比,检验模型的适用性。结果表明,应用Green-Ampt积水入渗模型模拟田间渗灌过程垂直方向土壤水分运动具有较好的准确性,一维水平吸渗模型Philip解法在水平方向的模拟则存在一定偏差。  相似文献   

2.
Two soil–water balance models were tested by a comparison of simulated with measured daily rates of actual evapotranspiration, soil water storage, groundwater recharge, and capillary rise. These rates were obtained from twelve weighable lysimeters with three different soils and two different lower boundary conditions for the time period from January 1, 1996 to December 31, 1998. In that period, grass vegetation was grown on all lysimeters. These lysimeters are located in Berlin‐Dahlem, Germany. One model calculated the soil water balance using the Richards equation. The other one used a capacitance approach. Both models used the same modified Penman formula for the estimation of potential evapotranspiration and the same simple empirical vegetation model for the calculation of transpiration, interception, and evaporation. The comparisons of simulated with measured model outputs were analyzed using the modeling‐efficiency index IA and the root mean squared error RMSE. At some lysimeters, the uncalibrated application of both models led to an underestimation of cumulative and annual rates of groundwater recharge and capillary rise, despite a good simulation quality in terms of IA and RMSE. A calibration of soil‐hydraulic and vegetation parameters such as maximum rooting depth resulted in a better fit between simulated and observed cumulative and annual rates of groundwater recharge and capillary rise, but in some cases also decreased the simulation quality of both models in terms of IA and RMSE. The results of this calibration indicated that, in addition to a precise determination of the soil water‐retention functions, vegetation parameters such as rooting depth should also be observed. Without such information, the rooting depth is a calibration parameter. However, in some cases, the uncalibrated application of both models also led to an acceptable fit between measured and simulated model outputs.  相似文献   

3.
The Miyun Reservoir is the most important water source for Beijing Municipality, the capital of China with a population of more than 12 million. In recent decades, the inflow to the reservoir has shown a decreasing trend, which has seriously threatened water use in Beijing. In order to analyze the influents of land use and cover change (LUCC) upon inflow to Miyun Reservoir, terrain and land use information from remote sensing were utilized with a revised evapotranspiration estimation formula; a water loss model under conditions of human impacts was introduced; and a distributed monthly water balance model was established and applied to the Chaobai River Basin controlled by the Miyun Reservoir. The model simulation suggested that not only the impact of land cover change on evapotranspiration, but also the extra water loss caused by human activities, such as the water and soil conservation development projects should be considered. Although these development projects were of great benefit to human and ecological protection, they could reallocate water resources in time and space, and in a sense thereby influence the stream flow.  相似文献   

4.
垃圾填埋场的CH4和渗滤液氮是两大污染因子。填埋覆土中因能进行CH4氧化而具有削减填埋场CH4排放的功能。同时,CH4可作为碳源促进反硝化。为此,该文研究了填埋场覆土中的CH4好氧氧化-反硝化耦合(AME-D)特性,以期为填埋场同步强化控制CH4排放和氮污染提供依据。结果表明:CH4、O2和NO3--N均显著影响填埋覆土中的CH4去除(p<0.05),三者影响的大小顺序为CH4>O2>NO3--N,且CH4和O2具有交互作用(p<0.05);CH4去除量随着初始CH4、O2体积分数的增大而增加,且与O2体积分数呈正相关关系(n=144,r=0.786,p<0.01)。CH4、O2和NO3--N明显影响CO2产生(p<0.01),且CH4和O2、O2和NO3--N均对CO2产生有交互作用(p<0.01)。CH4和O2对N2 产生有明显影响(p<0.01),且两者有交互作用(p<0.01),NO3--N质量分数对N2 产生影响不明显,但NO3--N和O2对N2 产生有交互作用。低O2体积分数下(<5%),添加NO3--N能促进N2产生,高O2体积分数下(≥10%),NO3--N对N2产生影响不明显。C/O比对AME-D的影响与CH4和O2体积分数有关,比较合适的C/O比为0.5~1。该试验条件下,当CH4和、O2的体积分数分别为20%,NO3--N质量分数为100 mg/kg时,耦合效果最佳。该文可为垃圾填埋场CH4排放生物控制提供参考。  相似文献   

5.
单坑变水头入渗条件下均质土壤水分运动的数值模拟   总被引:3,自引:2,他引:3  
变水头入渗条件下的土壤水分运动是蓄水坑灌的基本理论问题。该文根据土壤水动力学的基本理论,分析了蓄水坑变水头入渗的复杂边界条件,并推导了其坑水位变化与坑壁变水头入渗关系的数学表达式,进而建立了蓄水坑灌单坑变水头入渗及土壤水分运动的数学模型。采用ADI交替方向隐式差分格式将土壤水分运动方程离散,用Gauess-Seidel迭代算法求解非线性差分方程,实现了单坑变水头条件下的土壤水分运动的数值模拟。实验验证表明,数值计算结果与实测值有着较好的一致性。  相似文献   

6.
基于水量平衡原理的畦灌水流推进简化解析模型研究   总被引:1,自引:0,他引:1  
畦灌水流推进过程计算模型对确定灌水技术要素、田间平均入渗率和糙率有十分重要的作用。该文依据水量平衡模型,分析畦灌下渗水形状系数、地表储水形状系数的变化规律,结果表明下渗水形状系数受地表水推进过程中的推进距离和时间的幂指数影响很小,可用一个稳定值代替,由此建立了基于水量平衡原理的畦灌水流推进简化解析模型。结合已有文献资料和田间试验对模型进行检验,表明该模型具有计算求解方便、精度较高的优点,可用于畦灌合理灌水技术指标的确定。  相似文献   

7.
从作物水分胁迫系数的基本概念和FAO56的相关公式出发,考虑土壤临界含水量的时间变化,推导出了一个水分胁迫系数计算公式,该公式比较全面地表达了土壤供水能力、作物潜在腾发量与作物所受水分胁迫之间的关系。将该公式和另一幂函数公式应用于山西潇河冬小麦田间水量平衡分析,两者对土壤水分的动态模拟都达到了较高的精度,水量平衡计算结果也比较合理,模型的参数基本一致。与幂函数公式建立的模型相比,新公式建立的田间水量平衡模型具有待定参数少、求解结果稳定、易于收敛的优点,同时还能得到0~1 m土壤临界含水量变化曲线。该曲线反映了作物在土壤水分消退的过程中遭受不同程度水分胁迫的可能性大小,并得出土壤临界含水量在冬小麦生长前期较小,中期最大,后期较大。在返青~收获期,0~1 m深土壤临界含水量最大为290 mm,最小为215 mm,平均值为247 mm。这些结论对于农业用水管理具有一定的参考价值。  相似文献   

8.
冬小麦根层土壤水量平衡的系统动力学模型   总被引:1,自引:0,他引:1  
为获取冬小麦根系层水量转化情况,该文采用系统动力学的建模思想和Vensim软件构建了冬小麦一维逐日土壤水量平衡模型。模型将2m土层概化为十个串联的水箱,计算了灌溉降雨后的土壤水分下渗、土壤蒸发、作物蒸腾、毛管上升补给和水分重分配等物理过程。利用河北省石津灌区军齐干渠北二支一斗渠2007-2009年两季冬小麦的田间试验资料对模型进行了率定和验证,结果显示率定期和验证期的平均残差比例和分散均方根比例均在15%以内。三种极端条件测试和六种参数的敏感性测试以及与Hydrus-1模型的比较表明模型假定合理,没有发生结构性错误。对灌区两季冬小麦生育期的土壤水分转化进行模拟,结果表明降雨和灌溉是主要供水水源,毛管水上升量很小,底部渗漏较大,而土壤储水量变化很小。  相似文献   

9.
Abstract

Most waste rock dumps of Uranium mining in the Eastern German Ore Mountains near Schlema site are covered with an 80 cm compacted loam sublayer and a vegetated 20 cm top layer by mixing of compost and mineral soil (vol. 50%/vol. 50%). The cover is quite fertile and leads to a considerable reduction of water infiltration into the heaps. However, soil forming processes alter the physical properties of the cover affecting soil hydrology, stability and growth conditions. Within 6 years after placement self-compaction increased dry bulk density of the top soil (10 – 20 cm depth) from 1.15 – 1.35 g cm?3. As a consequence, the air filled macropores decreased from >20 vol.-% to 8 vol.-%, whereas the water storing medium pores increased by 9 vol.-%. In contrast, dry bulk density of the pre-compacted mineral sublayer remained unchanged at 1.72 g cm?3. Nevertheless, even in 30 – 60 cm depth, a significant increase in plant available water-holding capacity occurred. Initial soil dynamics are likely to improve the hydrological efficency and stability of the cover system. On the other hand, there is already some evidence for structural cracks and preferential water flow, which counteract the positive effects of self-consolidation and therefore requires further research.  相似文献   

10.
Soil erosion is a threat to the water quality constituents of sediments and nutrients and can cause long-term environmental damages. One important parameter to quantify the risk of soil loss from erosion is the crop and cover management factor (C-factor), which represents how cropping and management practices affect the rates and potential risk of soil erosion. We developed remotely sensed data-driven models for dynamic predictions of C-factor by implementing dynamic land cover modeling using the SWAT (Soil and Water Assessment Tool) model on a watershed scale. The remotely sensed processed variables included the enhanced vegetation index (EVI), the fraction of photosynthetically active radiation absorbed by green vegetation (FPAR), leaf area index (LAI), soil available water content (AWC), slope gradient (SG), and ratio of area (AR) of every hydrologic response unit (HRU) to that of the total watershed, comprising unique land cover, soil type, and slope gradient characteristics within the Fish River catchment in Alabama, USA between 2001 and 2014. Linear regressions, spatial trend analysis, correlation matrices, forward stepwise multivariable regression (FSMR), and 2-fold cross-validation were conducted to evaluate whether there were possible associations between the C-factor and EVI with the successive addition of remotely sensed environmental factors. Based on the data analysis and modeling, we found a significant association between the C-factor and EVI with the synergy of the environmental factors FPAR, LAI, AWC, AR, and SG (predicted R2 (Rpred2) = 0.51; R2 = 0.68, n = 3 220, P < 0.15). The results showed that the developed FSMR model constituting the non-conventional factors AWC (Rpred2 = 0.32; R2 = 0.48, n = 3 220, P < 0.05) and FPAR (Rpred2= 0.13; R2 = 0.28, n = 3 220, P = 0.31) was an improved fit for the watershed C-factor. In conclusion, the union of dynamic variables related to vegetation (EVI, FPAR, and LAI), soil (AWC), and topography (AR and SG) can be utilized for spatiotemporal C-factor estimation and to monitor watershed erosion.  相似文献   

11.
不同田间工程措施条件下降水入渗规律的数值模拟   总被引:3,自引:0,他引:3  
采用数值模拟方法针对北京市主要土壤类型研究了不同工程措施(免耕、深松、免耕覆盖、深松覆盖)条件下的降水入渗问题。在研究过程中,考虑了雨滴打击下地表密实问题,即考虑地表密实的降雨入渗问题。地表密实使土壤入渗能力降低,覆盖可以避免表层土壤密实保持土壤入渗能力。深松可使土壤入渗能力提高,在该实验条件下120min入渗量裸地和覆盖分别可以增加入渗1.79cm和2.28cm;适宜的松土深度裸地为15~20cm,覆盖为30cm。提高降水入渗的田间工程措施为深松覆盖,松土深度30cm。  相似文献   

12.
Methane oxidation in a cover soil of a landfill located in a boreal climate was studied at temperatures ranging from 1-19 °C and with water content of 7-34% of dry weight (dw), corresponding to 17-81% of water-holding capacity (WHC) in order to better understand the factors regulating CH4 oxidation at low temperatures. CH4 consumption was detected at all the temperatures studied (1-19 °C) and an increase in CH4 consumption rate in consecutive incubations was obtained even at 1 °C, indicating activation or increase in enzymes and/or microorganisms responsible for CH4 oxidation. CH4 consumption was reduced with low water content (17%WHC) at all temperatures. The response of CH4 consumption to temperature was high with Q10 values from 6.5 to 8.4 and dependent on water content: at 33%WHC or more an increase in water content was accompanied by a decrease in Q10 values. The responses of CH4 consumption to water content varied at different temperatures so that at 1-6 °C, CH4 consumption increased along with water content (33-67%WHC) while at 12-19 °C the response was curvilinear, peaking at 50%WHC. CH4 consumption was less tolerant (higher Q10 values; 6.5-8.4) of low temperatures compared to basal respiration (Q10 values for CO2 production and O2 consumption 3.2-4.0). Overall, the present results demonstrate the presence of CH4-oxidizing microorganisms, which are able to consume CH4 and to be activated or grow at low temperatures, suggesting that CH4 oxidation can reduce atmospheric CH4 emissions from methanogenic environments even in cold climates.  相似文献   

13.
基于模块化和面向对象化程序设计思想,根据土壤水分平衡过程和作物生长发育的特点,采用VisualBasic程序设计语言,实现了界面友好的土壤水分平衡与作物生长模拟模型。在土壤、作物和气象参数数据文件的支持下,对红壤性水稻土上的作物生长过程进行了模拟和验证,田间验证结果表明,冬小麦田间0~5,5~15,30~35cm三个土壤深度土壤含水量模拟值与实测值相对误差分别为7.0%、8.1%、4.5%。小麦、早稻、晚稻、玉米产量模拟值与实测值之间的相对误差分别为6.7%、2.4%、5.3%、1.9%。  相似文献   

14.
层状土垂直一维入渗土壤水分运动数值模拟与验证   总被引:4,自引:0,他引:4  
[目的]为进一步认识层状土垂直一维入渗土壤水分运动规律。[方法]依据非饱和土壤水分运动理论,建立了垂直一维土壤饱和—非饱和水分运动的数学模型,并用SWMS-2D软件进行求解。采用已有文献资料,对均质土和层状土的土壤剖面含水率、土壤湿润锋运移值和累积入渗量及入渗速率等指标的实测值与模拟值进行分析验证。[结果]实测值与模拟值具有较好的一致性,所提出的数学模型既适用于均质土壤,也适用于层状土壤。[结论]所建模型能比较真实地反映均质土和层状土垂直一维入渗土壤水分运动的状况,证明利用SWMS-2D软件对层状土柱中土壤水分运动进行模拟具有可行性。  相似文献   

15.
张雅楠  吕刚 《水土保持学报》2023,37(5):345-351,362
表土回覆是露天煤矿排土场生态修复的关键步骤,覆土厚度直接影响植物生长和复垦成本,为研究露天煤矿排土场不同覆土厚度对土壤水分入渗及植物水分利用的影响,采用室内土柱模拟试验,设置10,20,30,40,50 cm共5个覆土厚度,分别进行垂直入渗试验和室内盆栽试验(玉米),并结合氢氧同位素稳定示踪技术,研究不同覆土厚度土壤入渗和玉米水分利用特征,筛选研究区排土场最佳覆土厚度。结果表明:覆土厚度为10~30 cm(27.05~33.02 mm/min)的初始入渗速率显著高于40~50 cm(21.59~24.89 mm/min)的初始入渗速率(p<0.05),稳定入渗速率随覆土厚度的增加而增大,当覆土厚度高于40 cm后,随着覆土厚度的增加稳定入渗速率维持在3 mm/min左右。矸石层入渗过程受覆土层的影响较大,覆土厚度高于40 cm后,矸石层入渗速率基本稳定在土层连接面的入渗速率上。不同覆土厚度下玉米木质部水氢氧同位素值与土壤水氢氧同位素随土层变化曲线交点主要集中在覆土层,因此,玉米生长水分主要来源于覆土层。覆土厚度越大,2条线交点增多、交点分布范围增大,玉米对土壤水分的利用范围越大,...  相似文献   

16.
17.
18.
Field experiments over a 3 y period were conducted in a winter wheat‐maize double‐cropping system at the Dongbeiwang Experimental Station, Beijing, China. Three different treatments of irrigation (sprinkler “suboptimal” and “optimized”; conventional flood irrigation) and N fertilization (none, according to Nmin soil tests, conventional) were studied with respect to effects on soil water balance, nitrate leaching, and grain yield. Under sprinkler irrigation, evaporation losses were higher due to a more frequent water application. On the other hand, in this treatment nitrate leaching was smaller as compared to flood irrigation, where abundant seepage fluxes >10 mm d–1 along preferential flow paths occurred. For quantifying nitrate leaching, passive samplers filled with ion‐exchange resins appeared to be better suited than a method which combined measurements of suction‐cup concentrations with model‐based soil water fluxes. As a result of the more balanced percolation regime (compared to that under conventional flood irrigation), there was a tendency of higher salt load of the soil solution in the rooting zone. Given a seepage rate of 50 mm, a winter wheat grain production of 5–6 t ha–1 required a total water addition of about 430 mm. Fertilizer treatments >100 kg N ha–1 did not result in any additional yield increase. An even balance between withdrawing and recharge of groundwater cannot be achieved with “optimized” irrigation, but with a reduction of evapotranspiration losses, adapted cropping systems, and/or by tapping water resources from reservoirs in more distant areas with surpluses.  相似文献   

19.
The agroecosystem models THESEUS and OPUS were tested with data obtained from three agricultural experimental field plots on sandy soils without groundwater located at the moraine landscape in East Brandenburg, Germany. At each of these plots, a separate agricultural management practice was applied. Measurements of soil water contents, pressure heads, above‐ground crop biomass, and crop yield from these three plots were compared with the corresponding simulation results of both models. The comparisons of simulated with measured outputs were analyzed using the modeling‐efficiency index IA. According to these analyses, both models simulated adequately the time courses of volumetric soil water contents and above‐ground crop biomass, but the time courses of pressure heads were predicted with a lower quality by both models. As for the pressure heads, the yields simulated with both models showed greater discrepancies in comparison with the observed ones. This indicates the need of a site‐specific parameter calibration of the crop‐growth modules, especially for that included in OPUS .  相似文献   

20.
Crop water parameters, including actual evapotranspiration, transpiration, soil evaporation, crop coefficients, evaporative fractions, aerodynamic resistances, surface resistances and percolation fluxes were estimated in a commercial mango orchard during two growing seasons in Northeast Brazil. The actual evapotranspiration (Ea) was obtained by the eddy covariance (EC) technique, while for the reference evapotranspiration (E0); the FAO Penman–Monteith equation was applied. The energy balance closure showed a gap of 12%. For water productivity analysis the Ea was then computed with the Bowen ratio determined from the eddy covariance fluxes. The mean accumulated Ea for the two seasons was 1419 mm year−1, which corresponded to a daily average rate of 3.7 mm day−1. The mean values of the crop coefficients based on evapotranspiration (Kc) and based on transpiration (Kcb) were 0.91 and 0.73, respectively. The single layer Kc was fitted with a degree days function. Twenty percent of evapotranspiration originated from direct soil evaporation. The evaporative fraction was 0.83 on average. The average relative water supply was 1.1, revealing that, in general, irrigation water supply was in good harmony with the crop water requirements. The resulting evapotranspiration deficit was 73–95 mm per season only. The mean aerodynamic resistance (ra) was 37 s m−1 and the bulk surface resistance (rs) was 135 s m−1. The mean unit yield was 45 tonne ha−1 being equivalent to a crop water productivity of 3.2 kg m−3 when based on Ea with an economic counterpart of US$ 3.27 m−3. The drawback of this highly productive use of water resources is an unavoidable percolation flux of approximately 300 mm per growing season that is detrimental to the downstream environment and water users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号