首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With advances in biogas technology, lignocellulosic material may be increasingly included in feedstock due to the abundance of raw materials. The main goal of this study was to evaluate fertilizing and soil amendment effects of digestates based on lignin-rich feedstock. The digestates originated from reactors fed with manure co-digested with Salix, wheat straw or sugarcane bagasse, respectively. In pot experiments with three different soils, Italian ryegrass and reed canary grass were grown with 120 kg ha?1 total nitrogen or 150 kg ha?1 available nitrogen, respectively, given as either mineral fertilizer or digestate. Soil chemical and physical characteristics were determined after ended experiments. Additionally, an incubation study was carried out to estimate N mineralization from one digestate over time. Digestate addition resulted in similar yields compared to mineral fertilizer, varying from 0.5 (loam) to 1 kg dry matter m?2 (silt) for Italian ryegrass and 1.2 (loam) to 2.3 kg m?2 (silt) for reed canary grass. Digestates contributed to a favourable pH for plant growth, reduced bulk density in the loam and improved water retention characteristics in the sand. Biogas digestates based on lignin-rich feedstock appear promising as fertilizers and for soil amelioration but results have to be verified in field experiments.  相似文献   

2.
Changes to soil nutrient availability and increases for crop yield and soil organic C (SOC) concentration on biochar‐amended soil under temperate climate conditions have only been reported in a few publications. The objective of this work was to determine if biochar application rates up to 20 Mg ha?1 affect nutrient availability in soil, SOC stocks and yield of corn (Zea mays L.), soybean (Glycine max L.), and switchgrass (Panicum virgatum L.) on two coarse‐textured soils (loamy sand, sandy clay loam) in S Quebec, Canada. Data were collected from field experiments for a 3‐y period following application of pine wood biochar at rates of 0, 10, and 20 Mg ha?1. For corn plots, at harvest 3 y after biochar application, 20 Mg biochar ha?1 resulted in 41.2% lower soil NH on the loamy sand; the same effect was not present on the sandy clay loam soil. On the loamy sand, 20 Mg biochar ha?1 increased corn yields by 14.2% compared to the control 3 y after application; the same effect was not present on the sandy clay loam soil. Biochar did not alter yield or nutrient availability in soil on soybean or switchgrass plots on either soil type. After 3 y, SOC concentration was 83 and 258% greater after 10 and 20 Mg ha?1 biochar applications, respectively, than the control in sandy clay loam soil under switchgrass production. The same effect was not present on the sandy clay loam soil. A 67% higher SOC concentration was noted with biochar application at 20 Mg ha?1 to sandy clay loam soil under corn.  相似文献   

3.
Annual potassium (K) balances have been calculated over a 40‐year period for five field experiments located on varying parent materials (from loamy sand to clay) in south and central Sweden. Each experiment consisted of a number of K fertilizer regimes and was divided into two crop rotations, mixed arable/livestock (I) and arable only (II). Annual calculations were based on data for K inputs through manure and fertilizer, and outputs in crop removal. Plots receiving no K fertilizer showed negative K balances which ranged from 30 to 65 kg ha?1 year?1 in rotation I, compared with 10–26 kg ha?1 year?1 for rotation II. On sandy loam and clay soils, the K yield of nil K plots (rotation I) increased significantly with time during the experimental period indicating increasing release of K from soil minerals, uptake from deeper soil horizons and/or depletion of exchangeable soil K (Kex). Significant depletion of Kex in the topsoil was only found in the loamy sand indicating a K supply from internal sources in the sandy loam and clay soils. On silty clay and clay soils, a grass/clover ley K concentration of ~2% (dry weight) was maintained during the 40‐year study period on the nil K plots, but on the sandy loam, loam and loamy sand, herbage concentrations were generally less than 2% K.  相似文献   

4.
Agricultural application of anaerobic digestates can play an important role in plant nutrition. The effects of digestate treatment were studied in pot experiments, using sandy and loamy textured soils with distinct characteristics. Three different treatments were studied and compared: control, digestate, and irrigation treatments. Nitrogen loading was calculated on the bases of the digestate analysis. The same amounts of digestate and irrigation water were applied in the different treatments before sowing and at the V4–V6 stages of maize. Besides the conventional soil chemical analysis, invertase, dehydrogenase, catalase, and the abundance of some cultivable microbes were measured in two consecutive years. According to our results, irrigation and digestate treatments had greater impact in the case of sandy soils than in loamy textured soils. Digestate provides more effective phosphorus and potassium sources than nitrogen. Based on the results of discriminant analysis, the digestate application had a greater influence on soil chemical properties, followed by microbiological parameters.  相似文献   

5.
Organic farming is considered an effective means of reducing nitrogen losses compared with more intensive conventional farming systems. However, under certain conditions, organic farming may also be susceptible to large nitrogen (N) losses. This is especially the case for organic dairy farms on sandy soils that use grazed grass–clover in rotation with cereals. A study was conducted on two commercial organic farms on sand and loamy sand soils in Denmark. On each farm, a 3‐year‐old grass–clover field was selected. Half of the field was ploughed the first year and the other half was ploughed the following year. Spring barley (Hordeum vulgare L.) was sown after ploughing in spring. Measurements showed moderate N leaching during the pasture period (9–64 kg N ha?1 year?1) but large amounts of leaching in the first (63–216 kg N ha?1) and second (61–235 kg N ha?1) year after ploughing. There was a small yield response to manure application on the sandy soil in both the first and second year after ploughing. To investigate the underlying processes affecting the residual effects of pasture and N leaching, the dynamic whole farm model farm assessment tool (FASSET) was used to simulate the treatments on both farms. The simulations agreed with the observed barley N‐uptake. However, for the sandy soil, the simulation of nitrate leaching and mineral nitrogen in the soil deviated considerably from the measurements. Three scenarios with changes in model parameters were constructed to investigate this discrepancy. These scenarios suggested that the organic matter turnover model should include an intermediate pool with a half‐life of about 2–3 years. There might also be a need to include effects of soil disturbance (tillage) on the soil organic matter turnover.  相似文献   

6.
Sandy soils, with low productivity, could be improved by compost application to sustain crop production. This study aimed to examine the effect of three compost types (vegetable, fruit and yard waste compost, garden waste compost, and spent mushroom compost) on basic properties of a loamy sand and greenhouse tomato productivity. Disturbed and intact soil samples were taken from a decade-long compost field experiment on loamy sand with three compost types at application rate of 30 m3 ha?1 yr?1 (7.5 ton ha?1 yr?1). The soils were characterized for chemical and physical properties. Tomato was planted in a greenhouse using soil samples from the field and vegetative and yield parameters (plant height, stem diameter, leaf number, and fruit yield), water productivity, and harvest index were evaluated. All compost types significantly increased soil total carbon, total nitrogen, pH, electrical conductivity and significantly decreased bulk density, with no effect on plant available water compared to the control. Fresh and dry fruit weights were significantly increased after compost addition. Plant height, leaf number, stem diameter, and total biomass did not significantly improve after compost addition. Spent mushroom compost had greater effect in improving tomato productivity. A decade-long application of composts on loamy sand improved basic chemical and physical properties which were reflected in increased fruit yield in tomato. Since no negative effect of compost was observed, we suggest that sandy soils may serve as a safe end use option for these composts and potentially support crop growth.  相似文献   

7.
To establish a national inventory of soil organic carbon (SOC) stocks and their change over time, soil was sampled in 1986, 1997 and 2009 in a Danish nation‐wide 7‐km grid and analysed for SOC content. The average SOC stock in 0–100‐cm depth soil was 142 t C ha?1, with 63, 41 and 38 t C ha?1 in the 0–25, 25–50 and 50–100 cm depths, respectively. Changes at 0–25 cm were small. During 1986–97, SOC in the 25–50‐cm layer increased in sandy soils while SOC decreased in loam soils. In the subsequent period (1997–2009), most soils showed significant losses of SOC. From 1986 to 2009, SOC at 0–100 cm decreased in loam soils and tended to increase in sandy soils. This trend is ascribed to dairy farms with grass leys being abundant on sandy soils while cereal cropping dominates on loamy soils. A statistical model including soil type, land use and management was applied separately to 0–25, 25–50 and 50–100 cm depths to pinpoint drivers for SOC change. In the 0–25 cm layer, grass leys added 0.95 t C ha?1 year?1 and autumn‐sown crops with straw incorporation added 0.40 t C ha?1 year?1. Cattle manure added 0.21 t C ha?1 year?1. Most interestingly, grass leys contributed 0.58 t C ha?1 year?1 at 25–50 cm, confirming that inventories based only on top‐soils are incomplete. We found no significant effects in 50–100 cm. Our study indicates a small annual loss of 0.2 t C ha?1 from the 0–100 cm soil layer between 1986 and 2009.  相似文献   

8.
Digestates vary in composition and studies regarding their impact on C and N dynamics in soils are scarce. The objective was to analyse the C and N dynamics of digestates originating from various substrates applied to a sandy Cambisol and a silty Anthrosol. In three laboratory experiments (4–6 weeks), the effects of digestate properties, N rate and water content were tested. Averaged over both soils, 21% of the C supplied was emitted as CO2. Potential NH3 emissions during the first week ranged between 6% and 12% of NH4+ present in the digestates. The emission factors in the sandy Cambisol were on average 1.2 and 2 times higher for CO2 and potential NH3, respectively, compared to the silty Anthrosol. Similarly, net nitrogen mineralization in the sandy Cambisol was approximately twice the N mineralized in the silty Anthrosol. Net nitrification was not influenced by soil texture or different digestates, but increased with increasing application rates and had highest values at 75% of water holding capacity. Our results indicate that the type of substrate input for anaerobic digestion influences the properties of the digestate and therefore the dynamics of C and N. However, soil texture can affect these dynamics markedly.  相似文献   

9.
The fate of 15N-labeled potassium nitrate (8.5% 15N excess) was determined in 3-year-old Valencia orange trees grown in 1-m3 containers filled with different textured soils (sandy and loamy). The trees were fertilized either in spring (24 March) or summer (24 July). Spring fertilized trees gave higher fruit yields in sandy than in loamy soils, which exceeded summer fertilized trees in both cases. Summer fertilized trees had greater leaf biomass than spring fertilized trees. Fibrous root weight was 1.9-fold higher in sandy than in loamy soil. At the end of the cycle, tree N recovery from spring application was 45.7% for sandy and 37.7% for loamy soil; from summer fertilization, N recovery was 58.9% and 51.5% for sandy and loamy soils, respectively. The 15N recovered in the inorganic soil fraction (0?C90?cm) was higher for loamy (1.3%) than for sandy soil (0.4%). Fertilizer N immobilized in the organic matter was lower in sandy (2.5%) than in loamy soil (6.0%). Potential nitrate leaching from fertilizer (15NO 3 ? ?CN in the 90?C110-cm soil layer plus 15NO 3 ? ?CN in drainage water) was 34.8% higher in sandy than in loamy soil. The low N levels in sandy soil resulted from both higher NO 3 ? ?CN leaching losses and higher N uptake of plants grown in the former. The great root mass and higher soil temperatures could account for raised plant N uptake in sandy soil and in summer, respectively.  相似文献   

10.
Field experiments were conducted during summer (2013/2014) and winter (2014) in two different soil types to evaluate the effect of biochar and P fertilizer application on growth, yield, and water use efficiency of chickpea. Soil types include Rhodic Ferralsols (clay) in Thohoyandou and Leptic Cambisols (loamy sand) in Nelspruit, South Africa. Treatments consisted of a factorial combination of four biochar levels (0, 5, 10 and 20 t ha?1) and two phosphorus fertilizer levels (0 and 90 kg ha?1) arranged in a randomized complete block design and replicated three times. Biochar application at 5 t ha?1 significantly increased biomass, grain yield and water use efficiency of biomass production (WUEb) in the clay soil compared to 10 and 20 t ha?1. However, the increase was attributed to the addition of P fertilizer. Biochar application had no effect on yield components in the loamy sand soil, but P fertilizer addition increased number of seeds/pod in the loamy sand soil and number of pods/plant in the clay soil. Biochar and P fertilizer application on growth and yield of chickpea varied in soil types and seasons, as the effect was more prominent in the clay soil than the loamy sand soil during the summer sowing.  相似文献   

11.
This study evaluated the effect of biochar and phosphorus fertilizer application on selected soil physical and chemical properties in two contrasting soil types: Rhodic Ferralsols (clay) in Thohoyandou and Leptic Cambisols (loamy sand) in Nelspruit, South Africa. Field experiments were conducted in summer and winter. Treatments consisted of a factorial combination of four biochar levels (0, 5, 10 and 20 t ha?1) and two phosphorus fertilizer levels (0 and 90 kg ha?1) arranged in a randomized complete block design with three replicates. Chickpea was the test crop. Soil bulk density, aggregate stability, porosity, total C, total N, C:N ratio, K and Mg were determined. Biochar (10 t ha?1) and phosphorus increased bulk density and decreased porosity at 0–5 and 15–20 cm soil depth on a loamy sand soil in both seasons. The interaction between biochar and phosphorus increased total C and total N on a clay soil in the summer sowing. However, in the loamy sand soil, biochar (10 t ha?1) increased total C, C:N ratio, K and Mg in the summer sowing. The effect of biochar was more evident in the loamy sand soil than the clay soil suggesting that the influence of biochar may be soil-specific.  相似文献   

12.
Two field experiments in which straw has been removed or incorporated for 17 yr (loamy sand) and 10 yr (sandy clay loam) were sampled to examine the effect of straw on the C and N contents in whole soil samples, macro-aggregate fractions and primary particle-size separates. The particle size composition of the aggregate fractions was determined. Aggregates were isolated by dry sieving. Straw incorporation increased the number of 1–20 mm aggregates in the loamy sand but no effect was noted in the sandy clay loam. Straw had no effect on the particle size composition of the various aggregate fractions. After correction for loose sand that accumulated in the aggregate fractions during dry sieving, macro-aggregates appeared to be enriched in clay and silt compared with whole soil samples. Because of the possible detachment of sand particles from the exterior surface of aggregates during sieving operations, it was inferred that the particle size composition of macro-aggregates is similar to that of the bulk soil. The organic matter contents of the aggregate fractions were closely correlated with their clay + silt contents. Differences in the organic matter content of clay isolated from whole soil samples and aggregate fractions were generally small. This was also true for the silt-size separates. In both soils, straw incorporation increased the organic matter content of nearly all clay and silt separates; for silt this was generally twice that observed for clay. The amounts of soil C, derived from straw, left in the loamy sand and sandy clay loam at the time of sampling were 4.4 and 4.5 t ha?1, corresponding to 12 and 21% of the straw C added. The C/N ratios of the straw-derived soil organic matter were 11 and 12 for the loamy sand and sandy clay loam, respectively.  相似文献   

13.
Increasing the retention of nutrients by agricultural soils is of great interest to minimize losses of nutrients by leaching and/or surface runoff. Soil amendments play a role in nutrient retention by increasing the surface area and/or other chemical processes. Biochar (BC) is high carbon-containing by-product of pyrolysis of carbon-rich feedstocks to produce bioenergy. Biosolid is a by-product of wastewater treatment plant. Use of these by-products as amendments to agricultural soils is beneficial to improve soil properties, soil quality, and nutrient retention and enhance carbon sequestration. In this study, the adsorption of NH4-N, P, and K by a sandy soil (Quincy fine sand (QFS)) and a silty clay loam soil (Warden silty loam (WSL)) with BC (0, 22.4, and 44.8 mg ha?1) and biosolid (0 and 22.4 mg ha?1) amendments were investigated. Adsorption of NH4-N by the QFS soil increased with BC application at lower NH4-N concentrations in equilibrium solution. For the WSL soil, NH4-N adsorption peaked at 22.4 mg ha?1 BC rate. Biosolid application increased NH4-N adsorption by the WSL soil while decreased that in the QFS soil. Adsorption of P was greater by the WSL soil as compared to that by the QFS soil. Biosolid amendment significantly increased P adsorption capacity in both soils, while BC amendment had no significant effects. BC and biosolid amendments decreased K adsorption capacity by the WSL soil but had no effects on that by the QFS soil. Ca release with increasing addition of K was greater by the WSL soil as compared to that by the QFS soil. In both the soils, Ca release was not influenced by BC amendment while it increased with addition of biosolid. The fit of adsorption data for NH4-N, P, and K across all treatments and in two soils was better with the Freundlich model than that with the Langmuir model. The nutrients retained by BC or biosolid amended soils are easily released, therefore are readily available for the root uptake in cropped soils.  相似文献   

14.
Land application of municipal solid waste (MSW) compost increases soil organic matter content and influences soil physical properties. This study was conducted to measure the effect of compost on the water holding capacity of soil and water status in corn (Zea mays L.) from 1993 to 1995. The soil was a Hubbard loamy sand (sandy, mixed, Udorthentic Haploboroll) cropped to irrigated corn at the Sand Plain Research Farm at Becker, MN. Compost treatments on dry weight basis were 0 and 90 Mg ha?1 yr?1 from 1993 to 1995, and a one time application at 270 Mg ha?1 in 1993. The soil moisture retention curves were generated in 1994 and corn leaf water potential and soil bulk density were measured each growing season. Based on water retention curves, the addition of compost increased the water holding capacity of soil without significant increase in the estimated available water. This was contradicted by field measurements which showed that compared to a fertilized control one compost source at the 270 Mg ha?1 rate in the year of application increased plant water stress by 0.22 MPa, likely due to salt loading. In the year after the application of the 270 Mg ha?1, two compost sources increased soil water content and corn yield 0.14 cm3 cm?3 and 0.9 Mg ha?1 respectively. The yield increase was also associated with a reduction in plant water stress of 0.14 MPa due to one of the compost sources.  相似文献   

15.
Abstract

Silicon (Si) is a beneficial nutrient for sugarcane (Saccharum spp.) and yield responses to Si amendment have been determined on soils with low soluble Si. Because a soil test Si calibration has not been published for sugarcane grown on Florida mineral soils, the objectives were to determine sugarcane yield response to silicon soil amendment on two mineral soils (Entisol and Spodosol) and to relate sucrose yield to soil-extractable Si. Calcium silicate application rates were 0, 3.4, and 6.7?Mg ha?1 (Site 1) and 0, 2.2, 4.5, and 6.7?Mg ha?1 (Site 2) in small-plot (120 m2 plot?1) experiments, with Si application resulting in significant increases in biomass and sucrose ha?1. Calcium silicate requirements of 6.7 and 4.3?Mg ha?1 were determined with initial acetic acid-extractable Si of 21 and 46?g m?3, respectively. Nonlinear models indicated that Si amendments will be required with acetic acid-extractable Si <105?g m?3.  相似文献   

16.
Soil degradation affects soil properties such as structure, water retention, porosity, electrical conductivity (EC), sodium adsorption ratio (SAR), and soil flora and fauna. This study was conducted to evaluate the response of contrasting textured soils irrigated with water having different EC:SAR ratios along with amendments: gypsum (G), farm manure (FM), and mulch (M). Water of different qualities viz. EC 0.6 + SAR 6, EC 1.0 + SAR 12, EC 2.0 + SAR 18, and EC 4.0 + SAR 30 was used in different textured soils with G at 100% soil gypsum requirement, FM at 10 Mg ha?1, and M as wheat straw was added on surface soil at 10 Mg ha?1. Results revealed that the applied amendments in soils significantly decreased pHs and electrical conductivity (ECe) of saturated paste and SAR. Four pore volumes of applied water with leaching fraction 0.75, 0.77, and 0.78 removed salts 3008, 4965, and 5048 kg ha?1 in loamy sand, silty clay loam, and sandy clay loam soils, respectively. First four irrigations with LF of 0.82, 0.79, 0.75, and 0.71, removed 5682, 5000, 3967, and 2941 kg ha?1 salts, respectively. The decreasing order for salt removal with amendments was FM > G > M > C with LF = 0.85, 0.84, 0.71, and 0.68, respectively. This study highlights a potential role of soil textures to initiate any mega program for reclamation of saline-sodic soils in the perspective of national development strategies.  相似文献   

17.
The application of partially decomposed animal manure can acidify the soil by nitrification and may cause problems with phosphorus (P) availability. This study investigated the influence of applying wood ash to two soils amended with partially decomposed cattle or chicken manure on pH and P. The treatments consisted of two soils, a clay loam and sandy loam, each amended with partially decomposed chicken or cattle manure applied at 0, 5, or 15 t ha?1, and wood ash was applied to each manure treatment at rates of 0 or 2 t ha?1. The addition of wood ash significantly increased pH, thereby making more P available in soil and maize (Zea mays L.) tissues for both soils after being amended by manure. Both chicken and cattle manure significantly increased all the measured variables compared to the unamended soils. These results suggest that wood ash is an important amendment that could be used to amend partially decomposed manure, thereby not jeopardizing P availability to crops.  相似文献   

18.
Brazilian industry produces huge amounts of tannery sludge as residues, which is often disposed by landfilling or land application. However, consecutive amendment of such composted industrial wastes may cause shifts in soil microbial biomass (SMB) and enzyme activity. This study aimed to evaluate SMB and enzyme activity after 3-year consecutive composted tannery sludge (CTS) amendment in tropical sandy soils. Different amounts of CTS (0.0, 2.5, 5.0, 10.0, and 20.0 t ha-1) were applied to a sandy soil. The C and N contents of SMB, basal and substrate-induced respiration, respiratory quotient (qCO2), and enzyme activities were determined in the soil samples collected after CTS amendment for 60 d at the third year. After 3 years, significant changes were found in soil microbial properties in response to different CTS amounts applied. The organic matter and Cr contents significantly increased with increasing CTS amounts. SMB and soil respiration peaked following amendment with 10.0 and 20.0 t ha-1 of CTS, respectively, while qCO2 was not significantly affected by CTS amendment. However, soil enzyme activity decreased significantly with increasing CTS amounts. Consecutive CTS amendment for 3 years showed inconsistent and contrasting effects on SMB and enzyme activities. The decrease in soil enzyme activities was proportional to a substantial increase in soil Cr concentration, with the latter exceeding the permitted concentrations by more than twofold. Thus, our results suggest that a maximum CTS quantity of 5.0 t ha-1 can be applied annually to tropical sandy soil, without causing potential risks to SMB and enzyme activity.  相似文献   

19.
Abstract

Corn (Zea mays L.) grown on sandy Coastal Plain soils may be subject to sulfur (S) deficiency due to the low levels of available S in the soil. The diagnosis of S deficiency in the field is sometimes ambiguous since mineralization of soil organic matter or root growth into the subsoil may supply adequate S to the crop. Yield response to S fertilizers has been more frequent since incidental additions of S to the soil by air pollution and fertilizer applications have been reduced. This study was conducted to identify S deficiency in corn grown on sandy Coastal Plain soils and to determine the effects of S source, rate and method of application on grain yield. Irrigated corn was grown on Norfolk loamy sand and Tifton loamy sand near Leesburg and Moultrie, Georgia, respectively in 1987. Grain yields were increased with addition of 11 kg S ha‐1 compared to the check treatment. Increased rates of S up to 88 kg ha‐1 did not increase grain yields above the 11 kg ha‐1 rate. There was no difference between banded or broadcast application of (NH4)2SO4 or between elemental S and (NH4)2SO4 as S sources. Earleaf S concentrations of 1.6 g kg‐1 and extractable soil S concentrations of 4.0 to 8.7 mg kg‐1 were associated with S deficiency. Visual symtoms of S deficiency were observed in the check treatments throughout the growing season at both experimental sites. The results indicate that visual symptoms and tissue analysis can be used to identify S deficiency. Extractable soil S may be useful in determining the possible response to S fertilizer especially if the subsoil is sampled.  相似文献   

20.
Abstract

Rice is a plant that requires high levels of silica (Si). As a silicate (SiO2) source to rice, coal fly ash (hereafter, fly ash), which has an alkaline pH and high available silicate and boron (B) contents, was mixed with phosphor‐gypsum (hereafter, gypsum, 50%, wt wt?1), a by‐product from the production of phosphate fertilizer, to improve the fly ash limitation. Field experiments were carried out to evaluate the effect of the mixture on soil properties and rice (Oryza sativa) productivity in silt loam (SiL) and loamy sand (LS) soils to which 0 (FG 0), 20 (FG 20), 40 (FG 40), and 60 (FG 60) Mg ha?1 were added. The mixture increased the amount of available silicate and exchangeable calcium (Ca) contents in the soils and the uptake of silicate by rice plant. The mixture did not result in accumulation of heavy metals in soil and an excessive uptake of heavy metals by the rice grain. The available boron content in soil increased with the mixture application levels up to 1.42 mg kg?1 following the application of 60 Mg ha?1 but did not show toxicity. The mixture increased significantly rice yield and showed the highest yields following the addition of 30–40 Mg ha?1 in two soils. It is concluded that the fly ash and gypsum mixture could be a good source of inorganic soil amendments to restore the soil nutrient balance in rice paddy soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号