首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Invasions by alien plants can alter biogeochemical cycles in recipient ecosystems. We test if Early Goldenrod (Solidago gigantea) alters P fractions. To that end, we compare invaded plots and adjacent, uninvaded resident vegetation for specific fractions of organic and inorganic P, phosphomonoesterase (PME) activity in topsoil, and immobilization of P in above‐ and belowground organs and in soil microbial biomass. Invaded plots had lower soil pH and 20%–30% higher labile P fractions (resin‐Pi, bicarb‐Pi, NaOH‐Pi), and the difference was consistent across seasons. There was no difference in microbial P. Alkaline‐PME activity was 30% lower in topsoil of invaded plots. Annual P uptake in aboveground phytomass was not markedly higher in Solidago. In contrast, P in belowground organs steadily increased in autumn in invaded plots, due to both increased biomass and increased P concentrations. This indicated higher net P immobilization in Solidago, far in excess of both resorption from senescing shoots and P requirements for aboveground biomass in subsequent year. Higher turnover rates of P in belowground organs and mobilization of sparingly soluble P forms through rhizosphere acidification may be involved in the observed differences in soil P status between invaded and uninvaded plots.  相似文献   

2.
Abstract

The interacting effects between topsoil water supply, nitrogen (N) placement and subsoil aluminum (Al) toxicity on wheat growth were studied in two split‐root pot experiments. The native nitrate‐N (NO3‐N) in the topsoil used in each experiment differed and were designated as high (3706 μM) and low (687 μM) for experiments one and two, respectively. Wheat was grown in pots that enabled the root system to be split so that half of the roots were in topsoil and the other half were in subsoils containing varying concentrations of soluble Al. Treatments were imposed which varied the supply of water to the topsoil (either ‘wet’ or ‘dry'). Placement of applied N in either the topsoil or subsoil had little effect on either shoot or root fresh weight, or on the length of roots produced in the subsoil section of the split pots. When water supply to the topsoil was decreased, both shoot and root growth of wheat declined and the yield decrease increased with subsoil Al. In the high‐N experiment, wheat grown in the low Al subsoil with the high native soluble subsoil (NO3 (3002 μM) was able to exploit the N and subsoil water, hence both shoot and root growth increased considerably in comparison to shoot and root growth of wheat grown in soils containing higher concentrations of subsoil Al. When the native NO3 was lower (i.e. the low‐N experiment) inadequate root proliferation restricted the ability of plants to use subsoil N and water irrespective of subsoil Al. The results from this study suggest that wheat, grown on yellow earths with Al‐toxic subsoils, will suffer yield reductions when the topsoil dries out (e.g. in the spring when winter rainfall ceases) because subsoil reserves of water and nitrogen are under utilised.  相似文献   

3.
Repeated application of phosphorus (P) as superphosphate either alone or in conjunction with cattle manure and fertilizer N may affect the P balance and the forms and distribution of P in soil. During 7 years, we monitored 0.5 M NaHCO3 extractable P (Olsen‐P) and determined the changes in soil inorganic P (Pi) and organic P (Po) caused by a yearly dose of 52 kg P ha—1 as superphosphate and different levels of cattle manure and fertilizer N application in a soybean‐wheat system on Vertisol. In general, the contents of Olsen‐P increased with conjunctive use of cattle manure. However, increasing rate of fertilizer nitrogen (N) reduced the Olsen‐P due to larger P exploitation by crops. The average amount of fertilizer P required to increase Olsen‐P by 1 mg kg—1 was 10.5 kg ha—1 without manure and application of 8 t manure reduced it to 8.3 kg ha—1. Fertilizer P in excess of crop removal accumulated in labile (NaHCO3‐Pi and Po) and moderately labile (NaOH‐Pi and Po) fractions linearly and manure application enhanced accumulation of Po. The P recovered as sum of different fractions varied from 91.5 to 98.7% of total P (acid digested, Pt). Excess fertilizer P application in presence of manure led to increased levels of Olsen‐P in both topsoil and subsoil. In accordance, the recovery of Pt from the 0—15 cm layer was slightly less than the theoretical P (P added + change in soil P — P removed by crops) confirming that some of the topsoil P may have migrated to the subsoil. The P fractions were significantly correlated with apparent P balance and acted as sink for fertilizer P.  相似文献   

4.
Phosphate (Pi), the fully oxidized and assimilated form of phosphorus (P), influences virtually all developmental and biochemical processes in plants; however, its availability and distribution are widely heterogeneous. Paradoxically, although total P is abundant in lithosphere, elusive soil chemistry of Pi renders the element the most dilute and the least mobile in natural and agricultural ecosystems, resulting in P deprivation due to its low mobility and high fixation capacity in the soil. Nonmycorrhizal Brassica does not produce specialized cluster/dauciform roots but is an effective P user compared to other crops. Using a soil low in P (Mehlich 3–extractable P) with or without P fertilization, Brassica cultivars showed substantial genetic diversity in P-utilization efficiency (PUE), P efficiency (PE), P-efficiency ratio (PER), and P-stress factor (PSF). Cultivars producing greater root biomass accumulated greater total P contents, which in turn was related negatively to PSF and positively to shoot and total biomass. Plant survival and reproduction rely on efficient strategies in exploring culture media for P. Acquisition of orthophosphate from extracellular sparse P sources may be enhanced by biochemical rescue strategies such as copious H+ efflux and/or carboxylates exudation into rhizosphere by roots via plasmalemma H+-ATPase and anion channels triggered by P starvation. The P-starvation-induced solution pH changes due to H+ efflux, and carboxylates exudations were estimated by low-P-tolerant and low-P-sensitive cultivars in solution culture experiments. Low-P-tolerant cultivars showed more decrease in pH compared to low-P-sensitive cultivars when cultivars were grown under a P-stress environment induced by using sparingly soluble P sources (rock phosphate and tricalcium phosphate). The P contents of cultivars were inversely related to decrease in culture media pH. Low P-tolerant cultivars presented enhanced H+-efflux and total carboxylates exudations compared to low-P-sensitive cultivars, resulting in more rhizosphere acidification to scavenge Pi, evidencing their adaptability to P starvation. These elegant P-stress-induced rescue strategies by tested cultivars provided the basis of enhanced P solubilization and acquisition of P from sparingly soluble P sources to combat P-starved environments.  相似文献   

5.
Phosphorus is one of the most limiting macronutrients for plant productivity in agriculture worldwide. The main reasons are the limited rock phosphate reserves and the high affinity of phosphate (P) to the soil solid phase, restricting the P availability to the plant roots. Plants can adapt to soils low in available P by changing morphological or/and physiological root features. Morphological changes include the formation of longer root hairs and a higher root : shoot ratio both parameters increasing the root surface which provides the shoot with P. This may be successful if the P availability in soil, i.e., the P concentration of the soil solution is not extremely low (> 1–2 µM P). If the P concentration of the soil solution is lower, the diffusive flux to the root surface will be very low and may not satisfy the P demand of the shoots. Under these conditions plants have developed strategies to increase the rhizosphere soil solution concentration by secreting mobilizing agents. The most effective way of P mobilization is the release of di‐ and tricarboxylic acid anions, especially oxalate and citrate. Citrate can accumulate in the rhizosphere up to concentrations up to 80 µmol g?1 soil. Cluster root formation is an efficient way of carboxylate accumulation in the cluster root rhizosphere improving P mobilization. Cluster roots strongly improve the acquisition of the mobilized P. Considering a single root, around 80–90% of the mobilized P diffuses away from the root. From the rhizosphere of cluster roots, most of the mobilized P is taken up by the cluster roots. Both, the strong accumulation of carboxylates in and the effective P uptake from the cluster‐root rhizosphere are the basis of the unique ability of P acquisition by cluster root‐forming plants. Plants that do not form cluster roots, e.g., red clover, can also accumulate carboxylates in the rhizosphere. Red clover accumulates high quantities of citrate in the rhizosphere soil. Model calculations show that the release of citrate by red clover roots and its accumulation in the rhizosphere strongly improve P acquisition by this plant species in various soils. Similar results are obtained with alfalfa. In sugar beet, oxalate release can strongly contribute to P acquisition. In summary, P acquisition can be strongly improved by the release of carboxylates and should be taken as a challenge for basic and applied research.  相似文献   

6.
Organic acid concentration in the proteoid rhizosphere of White Lupin in different soil samples (Oxisol-Ap = Ox, Luvisol-Ap and Luvisol-C = LA and LC) was determined in order to study the influence of root-released carboxylates on the mobilization of phosphate, aluminum, and iron in the rhizosphere. In the LC, organic acids were accumulated as Casalts extractable with water. In the proteoid rhizosphere of this soil sample 55 μmol citrate and 8 μmol malate per g soil were found. In the Ox, no water extractable organic acids were present. However, determination of citrate in the solid phase of this soil by Diffuse Reflectance Infrared Fourier Transform Spectroscopy gave concentrations of 88 and 68 μmol citrate per g soil without and with P application, respectively. Displaced soil solution from the proteoid root rhizosphere of the Ox and the LA increased in Fe and Al concentrations from <50 μmol/L (soil from reference pots without plants) to more than 600 μmol Fe+Al/L. The concentration of P was increased by a factor of 2 despite of P uptake by the proteoid roots. The mobilization of Al, Fe, and P is attributed to ligand exchange of phosphate against citrate and to the solubilization of Al and Fe as carboxylate complexes.  相似文献   

7.
Improving phosphorus (P) accessibility in subsoils could be a key factor for sustainable crop management. This study aims to explain the quantity of different P fractions in subsoil and its biopore systems, and to test the hypothesis that crops with either fibrous (fescue) or tap‐root systems (lucerne and chicory) leave behind a characteristic P pattern in bulk subsoil, biopore linings and the rhizosphere. The crops were cultivated for up to 3 years in a randomized field experiment on a Haplic Luvisol developed from loess. Aqua regia‐extractable P (referred to as total P) and calcium acetate lactate‐extractable P (PCAL) were assessed at 0–30 (Ap horizon), 30–45 (E/B horizon), 45–75 and 75–105 cm subsoil depths. In addition, sequential P fractionation was performed on different soil compartments between 45 and 75 cm depths. The results showed that total P stocks below the Ap horizon (30–105 cm) amounted to 5.6 t ha?1, which was twice as large as in the Ap, although the Ap contained larger portions of PCAL. Both PCAL and sequential P extractions showed that biopore linings and the rhizosphere at the 45–75 cm depth were enriched, rather than depleted, in P. The content of inorganic P (81–90% of total P) increased in the following order: bulk soil = biopores <2 mm ≤ rhizosphere ≤ biopores >2 mm. Biopores >2 mm and rhizosphere soil were clearly enriched in resin‐ and NaHCO3‐extractable Pi and Po fractions. However, we failed to attribute these P distribution patterns to different crops, suggesting that major properties of biopore P originated from relict biopores, rather than being influenced by recent root systems. The stocks of the sum of these P fractions in the bulk subsoil (182 kg ha?1 at 45–75 cm depth) far exceeded those in the biopores (3.7 kg ha?1 in biopores >2 mm and 0.2 kg ha?1 in biopores <2 mm). Hence, these biopores may form attractive locations for root growth into the subsoil but are unlikely to sustain overall plant nutrition.  相似文献   

8.
9.
Root-induced changes in the rhizosphere may affect mineral nutrition of plants in various ways. Examples for this are changes in rhizosphere pH in response to the source of nitrogen (NH4-N versus NO3-N), and iron and phosphorus deficiency. These pH changes can readily be demonstrated by infiltration of the soil with agar containing a pH indicator. The rhizosphere pH may be as much as 2 units higher or lower than the pH of the bulk soil. Also along the roots distinct differences in rhizosphere pH exist. In response to iron deficiency most plant species in their apical root zones increase the rate of H+ net excretion (acidification), the reducing capacity, the rate of FeIII reduction and iron uptake. Also manganese reduction and uptake is increased several-fold, leading to high manganese concentrations in iron deficient plants. Low-molecular-weight root exudates may enhance mobilization of mineral nutrients in the rhizosphere. In response to iron deficiency, roots of grass species release non-proteinogenic amino acids (?phytosiderophores”?) which dissolve inorganic iron compounds by chelation of FeIII and also mediate the plasma membrane transport of this chelated iron into the roots. A particular mechanism of mobilization of phosphorus in the rhizosphere exists in white lupin (Lupinus albus L.). In this species, phosphorus deficiency induces the formation of so-called proteoid roots. In these root zones sparingly soluble iron and aluminium phosphates are mobilized by the exudation of chelating substances (probably citrate), net excretion of H+ and increase in the reducing capacity. In mixed culture with white lupin, phosphorus uptake per unit root length of wheat (Triticum aestivum L.) plants from a soil low in available P is increased, indicating that wheat can take up phosphorus mobilized in the proteoid root zones of lupin. At the rhizoplane and in the root (root homogenates) of several plant species grown in different soils, of the total number of bacteria less than 1 % are N2-fixing (diazotrophe) bacteria, mainly Enterobacter and Klebsiella. The proportion of the diazotroph bacteria is higher in the rhizosphere soil. This discrimination of diazotroph bacteria in the rhizosphere is increased with foliar application of combined nitrogen. Inoculation with the diazotroph bacteria Azospirillum increases root length and enhances formation of lateral roots and root hairs similarly as does application of auxin (IAA). Thus rhizosphere bacteria such as Azospirillum may affect mineral nutrition and plant growth indirectly rather than by supply of nitrogen.  相似文献   

10.
With the emphasis on sustainable agriculture, attention has been increasingly turning to recycling of crop residues as a component of fertility management strategies for tropical soils. We assessed the effects of soybean residue (SR) and wheat residue (WR) applied either alone or in combination with fertilizer P (FP) on dynamics of labile P, distribution of P fractions, and P sorption in a semiarid tropical Alfisol by conducting a 16 w long incubation experiment. The amount of P added through crop residues, FP or their combinations was kept constant at 10 mg P (kg soil)–1. Addition of SR or WR resulted in net increase of labile inorganic (Pi) and organic P (Po) and microbial P throughout the incubation period, except that the WR decreased labile Pi during first 2 w due to Pi immobilization. The P immobilization associated with WR addition was, however, offset when fertilizer P was combined with WR. Generally, the increases in labile‐P fractions were larger with the SR and SR+FP than with the WR and WR+FP. The sequential fractionation of soil P at the end of 16 w indicated that a major part of added fertilizer P transformed into moderately labile and stable P fractions as evident from the increased NaOH‐Pi and HCl‐P in the FP treatment. In contrast, the addition of SR and WR alone or in combination with FP favored a build‐up in NaHCO3‐Pi and ‐Po and NaOH‐Po fractions while causing a decrease in NaOH‐Pi and HCl‐P fractions. The addition of these crop residues also effectively decreased the P‐sorption capacity and hence reduced the standard P requirement of the soil (i.e., the amount of P required to maintain optimum solution P concentration of 0.2 mg P l–1) by 24%–43%. Results of the study, thus, imply that soybean and wheat crop residues have the potential to improve P fertility of Alfisols by decreasing P‐sorption capacity and by redistributing soil P in favor of labile‐P fractions and promoting accretion of organic P.  相似文献   

11.
Abstract

Improving phosphorus (P) fertilizer efficiency while minimizing environmental impacts requires better understanding of the dynamics of applied P in soils. This study assessed the fate of fertilizer P applied in Quebec Humaquepts. A pot experiment with five textural Humaquepts, each receiving 0 (P0), 10 (P10), 20 (P20) and 40 (P40) mg P kg?1 soil was conducted under barley (Hordeum vulgare L.)-soybean (Glycine max L.) rotations. A modified Hedley procedure was used for soil P fractionation. The clayey soils reached a plateau of dry matter at less P applied than the coarser-textured soils. Plant P uptake, soil labile inorganic P (resin-P?+?NaHCO3-Pi) and moderately labile inorganic P (NaOH-Pi) increased proportionally with P rate. The coarser-textured soils had lower contents of labile and moderately labile Pi, but a larger increase in labile Pi than the finer-textured soils after receiving P additions. The applied P was retained primarily as soil labile Pi, accounting for 43–69% of total soil recovery of applied P, compared to 20–30% recovered as moderately labile Pi, and 7–29% assumed to be sparingly soluble P (HCl-P?+?H2SO4-P). The labile Pi recovery of applied P was linearly depressed with clay content, compared to a quadratic relation for the moderately labile Pi recovery. The results suggest the importance of accounting for soil texture along with soil P adsorption capacity when assessing the efficiency of applied P, P accumulation in soils and subsequently P nutrient management.  相似文献   

12.
碳酸氢根与水肥同层对玉米幼苗生长和吸收养分的影响   总被引:4,自引:1,他引:4  
把水分(NaHCO3溶液或纯水)供应于底施了铵态或硝态N肥的土层内,以研究HCO3-及水肥供应方式对石灰性土壤上玉米生长及养分吸收的影响。结果表明,在限制灌水量的条件下,在土壤上层供应HCO3-显著抑制根系生长,但在下层供应对生长无明显影响;当施用不同形态N素时,HCO3-对N素吸收并无明显影响;此外,供应HCO3-溶液能明显提高灌水土层的土壤pH。总体来看,在供试条件下,HCO3-对玉米幼苗生长量、根系分布及养分吸收量的影响均较为有限,而后三者主要受施肥灌水层次的影响,即:在土壤上层施肥灌水,幼苗生长量显著降低;而在下层施肥灌水是一种节水节肥的水肥供应方式。但下层施肥灌水不利于植株的直立性。因为下层施肥灌水时根系主要分布在下层,在上层分布数量极少;而上层施肥灌水根系在上下两层中的分布无明显差异;下层施肥灌水的玉米植株,其N、P、K吸收量远高于上层施肥灌水的植株。  相似文献   

13.
ABSTRACT

Cadmium (Cd) and lead (Pb) are toxic trace elements which are not essential for plants but can be easily taken up by roots and accumulated in various organs, and cause irreversible damages to plants. A pot experiment was carried out to investigate the individual and combined effects of Cd (0, 10, 20 mg kg?1) and Pb (0, 500, 1000 mg kg?1) level in a calcareous soil on the status of mineral nutrients, including K, P, Ca, Mg, S, Fe, Mn, Cu, and Zn, in alfalfa (Medicago sativa L.) plants. Soil Pb level considerably (P ≤ 0.05) affected the concentrations of more elements in plants than soil Cd level did, and there were combined effects of soil Cd level and Pb level on the concentrations of some nutrients (Ca, Mg, and Cu) in plants. The effects of soil Cd level and Pb level on plant nutrient concentrations varied among plant parts. Cd and Pb contamination did not considerably affect the exudation of carboxylates in the rhizosphere. An increase in rhizosphere pH and exudation of significant amounts of carboxylates (especially oxalate) in the rhizosphere might contribute to the exclusion and detoxification of Cd and Pb. Neither shoot dry mass nor root dry mass was significantly influenced by soil Cd level, but both of them were considerably reduced (by up to 25% and 45% on average for shoot dry mass and root dry mass, respectively) by increasing soil Pb level. The interaction between soil Cd level and Pb level was significant for root dry mass, but not significant for shoot dry mass. The results indicate that alfalfa is tolerant to Cd and Pb stress, and it is promising to grow alfalfa for phytostabilization of Cd and Pb on calcareous soils contaminated with Cd and Pb.  相似文献   

14.
Variation in soil texture has a profound effect on soil management, especially in texturally complex soils such as the polder soils of Belgium. The conventional point sampling approach requires high sampling intensity to take into account such spatial variation. In this study we investigated the use of two ancillary variables for the detailed mapping of soil texture and subsequent delineation of potential management zones for site‐specific management. In an 11.5 ha arable field in the polder area, the apparent electrical conductivity (ECa) was measured with an EM38DD electromagnetic induction instrument. The geometric mean values of the ECa measured in both vertical and horizontal orientations strongly correlated with the more heterogeneous subsoil clay content (r = 0.83), but the correlation was weaker with the homogenous topsoil clay content (r = 0.40). The gravimetric water content at wilting point (θg(?1.5 MPa)) correlated very well (r = 0.96) with the topsoil clay content. Thus maps of topsoil and subsoil clay contents were obtained from 63 clay analyses supplemented with 117θg(?1.5 MPa) and 4048ECa measurements, respectively, using standardized ordinary cokriging. Three potential management zones were identified based on the spatial variation of both top and subsoil clay contents. The influence of subsoil textural variation on crop behaviour was illustrated by an aerial image, confirming the reliability of the results from the small number of primary samples.  相似文献   

15.
Living plants change the local environment in the rhizosphere and consequently affect the rate of soil organic matter (SOM) decomposition. The rate may increase for 3‐ to 5‐folds, or decrease by 10 % to 30 % by plant cultivation. Such short‐term changes of rate (intensity) of SOM decomposition are due to the priming effect. In the presence of plants, a priming effect occurs in the direct vicinity of the living roots, and it is called rhizosphere priming effect (RPE). Plant‐mediated and environmental factors, such as, plant species, development stage, soil organic matter content, photosynthesis intensity, and N fertilization which affect RPE are reviewed and discussed in this paper. It was concluded that root growth dynamics and photosynthesis intensity are the most important plant‐mediated factors affecting RPE. Environmental factors such as amount of decomposable C in soil and Nmin content are responsible for the switch between following mechanisms of RPE: concurrence for Nmin between roots and microorganisms, microbial activation or preferential substrate utilization. Succession of mechanisms of RPE along the growing root in accordance with the rhizodeposition types is suggested. Different hypotheses for mechanisms of filling up the C amount loss by RPE are suggested. The ecosystematic relevance of priming effects by rhizodeposition relates to the connection between exudation of organic substances by roots, the increase of microbial activity in the rhizosphere through utilization of additional easily available C sources, and the subsequent intensive microbial mobilization of nutrients from the soil organic matter.  相似文献   

16.
A pot experiment was conducted to investigate the mobilization of sparingly soluble inorganic andorganic sources of phosphorus (P) by red clover (Trghlium pmtense L.) whose roots were colonized by the arbuscular mycorrhizal (AM) fungus Glomus mosseae and in association with the phosphate-solubilizing (PS) bacterium Bacillus megaterium ACCC10010. Phosphate-solubilizing bacteria and rock phosphate hada synergistic effect on the colonization of plant roots by the AM fungus. There was a positive interaction between the PS bacterium and the AM fungus in mobilization of rock phosphate, leading to improved plant P nutrition. In dual inoculation with the AM fungus and the PS bacterium, the main contribution to plant P nutrition was made by the AM fungus. Application of P to the low P soil increased phosphatase activityin the rhizosphere. Alkaline phosphatase activity was significantly promoted by inoculation with either the PS bacterium or the AM fungus.  相似文献   

17.
It has been reported for many soils that maize (Zea mays L.) has a higher soil‐P critical level than soybean (Glycine max L.) and sunflower (Helianthus annuus L). The objective of this work was to compare the rhizosphere P depletion in these three species in order to investigate if they differ in their capacity to acquire soil P. Sequential P fractionation and pH were determined in rhizosphere and nonrhizosphere soil samples from field and greenhouse experiments. Neither sunflower (the species with highest rhizosphere acidification) nor soybean or maize showed a significant relationship between P depletion and rhizosphere pH. The labile P fraction and the NaOH‐Pi fraction had lower values in the rhizosphere than in the bulk soil in 38% and 77% of the studied cases, respectively. Sunflower and especially maize presented a more intense Pi depletion than soybean. The comparison between sunflower and maize revealed that neither of them took a clear advantage over the other in terms of P depletion. Rhizosphere Pi depletion was associated with the amount of P acquired by the plants. We conclude that the accessibility to different P pools does not explain the differences in soil‐P critical levels among the three species.  相似文献   

18.
As a cover crop, buckwheat (Fagopyrum esculentum) may increase soil‐P availability. Buckwheat was grown in low‐P and P‐fertilized field plots, and organic anions were measured in rhizosphere soil. Soil‐P availability was not affected by buckwheat, but the concentration of rhizosphere tartrate2– was significantly higher (p < 0.005) in low‐P vs. P‐fertilized plots. This suggests that organic‐anion root exudation may have a role in buckwheat‐rhizosphere P dynamics.  相似文献   

19.
Short‐rotation forestry (SRF) on arable soils has high potentials for biomass production and leads to long‐term no‐tillage management. In the present study, the vertical distributions of soil chemical and microbial properties after 15 y of SRF with willows and poplar (Salix and Populus spp.) in 3‐ and 6‐year rotations on an arable soil were measured and compared to a pertinent tilled arable site. Two transects at different positions in the relief (upper and lower slope; transect 1 and 2) were investigated. Short‐rotation forestry caused significant changes in the vertical distribution of all investigated soil properties (organic and microbial C, total and microbial N, soil enzyme activities), however, the dimension and location (horizons) of significant effects varied. The rotation periods affected the vertical distribution of the soil properties within the SRF significantly. In transect 1, SRF had higher organic‐C concentrations in the subsoil (Bv horizon), whereas in transect 2, the organic‐C concentrations were increased predominantly in the topsoil (Ah horizon). Sufficient plant supply of P and K in combination with decreased concentrations of these elements in the subsoil under SRF pointed to an effective nutrient mobilization and transfer from the deeper soil horizons even in the long term. In transect 1, the microbial‐C concentrations were higher in the B and C horizons and in transect 2 in the A horizons under SRF than under arable use. The activities of β‐glucosidases and acid phosphatases in the soil were predominantly lower under SRF than under arable use in the topsoil and subsoil. We conclude, that long‐term SRF on arable sites can contribute to increased C sequestration and changes in the vertical distribution of soil microbial biomass and soil enzyme activities in the topsoil and also in the subsoil.  相似文献   

20.
Intercropping has been shown to increase total yield and nutrient uptake compared to monocropping. However, depending on crop combinations, one crop may dominate and decrease the growth of the other. Interactions in the soil, especially in the rhizosphere, may be important in the interactions between intercropped plant genotypes. To assess the role of the rhizosphere interactions, we intercropped a P-inefficient wheat genotype (Janz) with either the P-efficient wheat genotype (Goldmark) or chickpea in a soil with low P availability amended with 100 mg P kg−1 as FePO4 (FeP) or phytate. The plants were grown for 10 weeks in pots where the roots of the genotypes could intermingle (no barrier, NB), were separated by a 30 μm mesh (mesh barrier, MB), preventing direct root contact but allowing exchange of diffusible compounds and microorganisms, or were completely separated by a solid barrier (SB). When supplied with FeP, Janz intercropped with chickpea had higher shoot and grain dry weight (dw) and greater plant P uptake in NB and MB than in SB. Contact with roots of Janz increased shoot, grain and root dw, root length, shoot P concentration and shoot P uptake of chickpea compared to SB. Root contact between the two wheat genotypes, Janz and Goldmark, had no effect on growth and P uptake of Janz. Shoot and total P uptake by Goldmark were significantly increased in NB compared to MB or SB. In both crop combinations, root contact significantly increased total plant dw and P uptake per pot. Plant growth and P uptake were lower with phytate and not significantly affected by barrier treatment. Differences in microbial P, available P and phosphatase activity in the rhizosphere among genotypes and barrier treatments were generally small. Root contact changed microbial community structure (assessed by fatty acid methyl ester (FAME) analysis) and all crops had similar rhizosphere microbial community structure when their roots intermingled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号