首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了建立高致病性猪繁殖与呼吸综合征病毒(HP-PRRSV)的Marc-145微载体细胞悬浮培养工艺以提高HPPRRSV抗原效价,以BC-7L生物反应器微载体悬浮培养Marc-145细胞,对HP-PRRSV接毒时间、接毒剂量、维持液血清浓度、溶氧量参数、病毒增殖温度等工艺参数进行了摸索和优化。通过细胞悬浮培养逐级放大工艺,在BC-100L生物反应器中培养Marc-145细胞,以优化后HP-PRRSV悬浮培养工艺进行3个批次的病毒悬浮培养。结果在Marc-145细胞微载体悬浮培养的第4天按照感染复数(multiplicity of infection,MOI)为0.1的剂量接毒,接毒后以2%新生牛血清的维持液进行维持培养,溶氧参数设置为40%,最佳培养温度为37℃,最佳收获病毒时间为70~74 h。BC-100L生物反应器中培养的3批病毒增殖曲线与BC-7L培养的病毒增殖曲线相近,在接毒后72 h左右达到病毒效价高峰,病毒含量均不低于108.0TCID50/m L。表明HP-PRRSV悬浮培养工艺稳定,可以实现逐级放大、规模化生产。  相似文献   

2.
从细胞接种密度、病毒接毒量、培养基三个方面进行研究和优化,并进行放大培养,建立了猪瘟病毒的微载体悬浮培养工艺:细胞接种密度为每个微载体15个细胞,病毒接毒量0.05 MOI,采用DMEM/F12培养基进行培养和细胞消化瓶批式消化分散细胞,培养的细胞可以完成生物反应器10 L到50 L的放大,培养的病毒含量达到7.6 l...  相似文献   

3.
为准确把握Cephodex微载体及其悬浮培养技术在水貂犬瘟热病毒增殖中的特点优势,本试验对微载体培养与单层静置培养2种方法中的细胞密度与病毒滴度进行了检测,同时对5,10,15 g/L 3种不同微载体质量浓度下的细胞生长与病毒增殖效果作了比较分析。结果显示,微载体培养法与单层静置培养法比较,DF-1细胞密度可提高3倍以上,CDV3滴度能提高100.5TCID50/0.1 mL;而且,10 g/L微载体质量浓度时的细胞密度较5 g/L时提高约2倍,CDV3滴度可提高100.3TCID50/0.1 mL;进一步增加微载体质量浓度至15 g/L,细胞密度仅增加12%,而CDV3滴度几乎不变。结果表明,微载体培养法用于CDV3高效增殖明显优于单层静置培养法,用于CDV3增殖的最适Cephodex质量浓度为10 g/L。  相似文献   

4.
为了实现非洲绿猴肾细胞(Vero细胞)在生物反应器中的大规模生产,并使其可在以Vero细胞为细胞基质的病毒疫苗生产中应用,试验采用控制变量法对Vero细胞微载体悬浮培养相关参数进行逐一摸索研究。结果表明:在3~5 g微载体、1 L培养体系中,使用DMEM培养基、血清浓度为8%~10%、初始接种密度为30~50个/球,采用灌流式培养方式可使细胞达到最佳状态。说明成功建立了Vero细胞生物反应器的微载体悬浮培养工艺。  相似文献   

5.
研究表明,PCV2仅在PK15等少数哺乳动物细胞上增殖,但由于PCV2毒力弱,且不产生细胞病变,获得高滴度病毒难度较大~([1])。因此,PCV2的培养滴度高低已成为制约现有疫苗质量的关键瓶颈之一。为建立在生物反应器内微载体逐级放大培养PK-15细胞和增殖PCV2技术,本研究以德国Sartorius14 L生物反应器微载体悬浮培养PK-15细胞,对PK-15细胞初始接种密度、搅拌转速、微载体浓度、PCV2接毒时间、接毒剂量、收毒时间等工艺参数进行了摸索和优化~([2-3])。结果表明:3 g/L的微载体和60 r/min的搅拌转速下,采用0.5×10~6cells/mL的初始接种密度操作工艺可获得最佳PK-15细胞生长效能。细胞生长后6 h接毒,采用感染复数(MOI)为0.5的接毒比例,细胞接毒后在微载体上生长96 h可获得最高的PCV2增殖滴度10~(8.5)TCID_(50)/mL,利用该工艺,经过消化转移将PK-15细胞从14 L反应器放大至42 L反应器,微载体上细胞贴附均匀、生长旺盛,42 L反应器中培养72 h细胞密度可达39.0×10~5 cells/mL,病毒滴度10~(8.3)TCID_(50)/mL,应用生物反应器培养PCV2滴度较常规转瓶培养工艺提高了近10倍。进一步表明PCV2悬浮培养放大与接毒工艺稳定,为下一步实现工业级规模化生产奠定基础。  相似文献   

6.
为实现伪狂犬病病毒(PRV)的大规模生产,本研究应用Cephodex微载体悬浮培养BHK-21细胞,通过对培养工艺的研究,初步实现了病毒抗原的高效生产。整个过程采用流加方式和动物细胞微载体培养技术,在细胞反应器中进行BHK-21高密度培养和PRV的高滴度增殖。结果表明,微载体工艺比转瓶培养法获得的病毒液滴度高约100.525TCID50/0.1 m L。因此,应用Cephodex微载体悬浮培养BHK-21细胞在伪狂犬病疫苗规模化生产中具有重要的应用价值。  相似文献   

7.
旨在应用新型Cephodex D微载体悬浮培养ST细胞增殖猪瘟病毒。通过优化工艺条件初步实现了病毒抗原的大规模高效生产,培养过程采用流加方式保证ST细胞的营养供应。用含6%(v/v)无牛病毒性腹泻病毒(bovine viral diarrhea virus,BVDV)及其抗体的双阴牛血清MEM生长液培养ST细胞。当达到3.8×109个细胞时,接种入生物反应器中,Cephodex D微载体用量为4 g/L。当反应器内ST细胞生长至48 h,接种猪瘟病毒(classical swine fever virus,CSFV)液。继续培养4 d后进行首次病毒收获,之后每3 d收获1次,直至第5次收毒结束。整个培养过程持续18d,细胞培养至72 h,密度可达2.8×106cells/m L,生产的CSFV滴度均在100万兔体反应量(RID)/m L以上。较现有的国家标准相比,应用生物反应器和新型Cephodex D微载体悬浮培养技术,不仅病毒滴度提高了1倍,而且整个生产周期缩短了5 d,大大提高了生产效率。因此,本研究采用的新型微载体悬浮培养工艺在CSFV大规模生产中具有重要的应用价值。  相似文献   

8.
为克服犬瘟热疫苗现有生产工艺的缺陷,试验采用10 g/L Cytodex-1型微载体,按每个微载体15~20个细胞的细胞接种量接种至微载体培养Vero细胞,细胞培养液为10%NBS的DMEM培养液。结果显示,当细胞密度达到8×106CFU/mL时接种犬瘟热病毒,最佳培养时间30 h,接毒剂量按照MOI为0.1接种犬瘟热病毒液;当细胞病变达到50%时,病毒感染细胞时间为30 h,收获毒液。按照上述摸索生产工艺参数,收获的犬瘟热病毒液的病毒液滴度每病毒含量≥108.5TCID50/0.1 mL。将收获的病毒液冻存及下游相关的灭活处理,作为制备犬瘟热疫苗的抗原。研究表明,试验大幅度提升犬瘟热病毒培养量,效价批间差异性均一,实现了产业化反应器悬浮培养代替细胞工厂的技术路线。  相似文献   

9.
为了在Marc-145细胞上获得更高滴度的猪繁殖与呼吸综合征病毒(PRRSV)TJM株,对细胞培养条件、细胞接种量、微载体的用量以及病毒培养时间等条件进行了优化。结果表明,利用生物反应器悬浮培养Marc-145细胞在血清为金源康且含量为10%、培养基为DMEM、细胞接种密度为20~30细胞/球、微载体为5 g等条件下生长状态最好;病毒最佳培养时间为27~36 h,病毒增殖效果好且能够达到最高的病毒滴度。本试验为微载体培养条件下大规模生产PRRSV-TJM株疫苗奠定了一定理论基础。  相似文献   

10.
悬浮培养工艺与转瓶培养工艺的比较分析   总被引:2,自引:1,他引:1  
采用反应器全悬浮培养BHK21细胞生产口蹄疫病毒与微载体悬浮培养Vero细胞生产狂犬病毒分别与相应的转瓶培养工艺生产案例对比分析,比较悬浮培养工艺与转瓶培养工艺的生产效益。分析显示,与转瓶培养工艺相比,反应器悬浮培养工艺获得的细胞密度、病毒效价、产品的产量和质量明显提高,生产时的能耗和劳动力需求明显降低。结果表明悬浮培养工艺的生产效益明显高于转瓶培养工艺,适宜于国内生物制品工业化生产的升级换代。  相似文献   

11.
为了大规模生产猪传染性胃肠炎病毒抗原,试验采用生物反应器及微载体进行ST细胞的培养,待微载体上的ST细胞长满至单层后接种猪传染性胃肠炎病毒(TGEV).共使用生物反应器培养3批TGEV抗原,每批培养过程中分别调节初始细胞密度至2.14×106个/mL、1.83×106个/mL和2.02×106个/mL,微载体浓度为3g/L、6 g/L和9 g/L.结果表明应用生物反应器及微载体培养得到抗原的病毒含量均达到108.0 TCID50/mL,明显高于转瓶培养的病毒含量.  相似文献   

12.
王昊  李睿 《兽医导刊》2020,(5):91-92
目的利用微载体规模化培养ST细胞制备猪细小病毒L株灭活疫苗,并检测其免疫原性。方法猪细小病毒L株接种微载体悬浮培养的猪睾丸传代细胞系(ST细胞)后,收获细胞培养液和细胞,经二乙烯亚胺(BEI)溶液灭活后浓缩,加矿物质油佐剂乳化,制备灭活疫苗,经肌肉注射疫苗,免疫后28天采血,测定血清中和抗体效价。结果。微载体规模化培养ST细胞制备猪细小病毒获得病毒毒价较高,经灭活浓缩后制备疫苗免疫豚鼠,获得了较高效价的中和抗体效价。结论利用微载体规模化培养ST细胞成功制备了具有较高免疫原性的猪细小病毒灭活疫苗,为后期灭活疫苗的开发奠定了基础。  相似文献   

13.
为建立新城疫病毒在BHK-21细胞的无血清全悬浮培养工艺以获得高滴度和高纯度的新城疫悬浮培养抗原,通过悬浮培养驯化和筛选获得了形态良好、稳定传代的BHK-21-sc悬浮细胞株;该细胞以初始密度0.5×10~6 cells/mL接种,培养72 h可增殖到6×10~6cells/mL,细胞活率达95%。以5 L生物反应器悬浮培养BHK-21-sc细胞,对鸡新城疫病毒La Sota株的接毒剂量、TPCK胰酶添加浓度、病毒培养温度、收获时间等工艺参数进行了摸索和优化;并在5L-16L-50L生物反应器中进行逐级放大,以优化后的鸡新城疫悬浮培养工艺进行3个批次病毒悬浮培养。最终确定鸡新城疫病毒La Sota株接种BHK-21-sc悬浮细胞株的悬浮培养工艺:BHK-21-sc细胞悬浮培养的第3天按照感染复数(multiplicity of infection,MOI)为0.005接种病毒,并添加终浓度为5μg/mL的TPCK胰酶,于33℃培养72 h后收获病毒液。应用该悬浮培养工艺在5、16、50 L反应器上悬浮培养BHK-21-sc悬浮细胞株生产鸡新城疫病毒HA滴度不低于9log2,病毒含量不低于10~(6.0)TCID_(50)/0.1mL。表明BHK-21-sc细胞无血清全悬浮生产鸡新城疫病毒工艺稳定,可以实现逐级放大和规模化生产。  相似文献   

14.
应用新型CephodexD微载体悬浮培养ST细胞增殖猪瘟病毒(CSFV),并与常规单层静置培养法进行比较。新型微载体悬浮培养的ST细胞密度72h可达18.9×10~5 cells/mL,是单层静置培养工艺的2倍以上;病毒滴度最高可达7.5×10~5 RID/mL,较单层静置培养法提高了50%;在一个生产流程中,能比传统培养工艺多收获2次合格病毒液。而且,采用新型微载体悬浮培养工艺生产的CSFV,能够刺激猪体产生特异性的中和抗体,对猪的保护率达100%,具有很好的免疫原性。因此,新型微载体悬浮培养工艺较单层静置培养法更有技术优势,在CSFV大规模生产领域具有重要的应用价值。  相似文献   

15.
为了建立水貂源犬瘟热病毒(CDV)的大规模悬浮培养技术,实现细胞高密度生长和病毒高效增殖,本研究应用Cephodex微载体悬浮培养鸡胚成纤维细胞系DF-1细胞,增殖弱毒株CDV3。整个过程采用摇瓶培养法,通过对病毒培养温度、病毒收获时间等关键技术条件进行优化,确立最佳培养条件。结果表明,DF-1细胞37℃培养至72 h,接种CDV3,35℃继续培养72 h收获病毒,病毒滴度每0.1 mL可达105.0 TCID50。CDV微载体悬浮培养技术的初步建立,为高效水貂犬瘟热疫苗的研发生产奠定了重要的基础。  相似文献   

16.
《畜牧与兽医》2015,(8):89-92
为了探索猪流行性腹泻病毒(PEDV)在微载体培养Vero细胞上的增殖效果,采用2 L生物反应器进行微载体培养Vero细胞和PEDV繁殖,并摸索细胞生长和病毒繁殖的最佳条件,检测病毒滴度,与方瓶培养的病毒滴度进行比较。结果显示:当微载体为5 g,种子细胞数约3.05×107个,采用灌注式培养,Vero细胞经72 h长满单层,细胞数约为3.02×109个,此时用滴度为104.45TCID50/m L的PEDV 1 m L感染Vero细胞,培养96 h,微载体上80%细胞脱落时收毒,培养的PEDV具有较高的病毒滴度。相同病毒在微载体系统与方瓶上进行同步传代,经检测病毒滴度均有提高,但在微载体系统上培养的PEDV最高滴度可达到106.05TCID50/m L,明显高于方瓶培养。本试验为研究PEDV能更好适应Vero细胞,提高PEDV产量提供技术支持。  相似文献   

17.
为优化猪瘟病毒(CSFV)的BT细胞悬浮培养工艺以提高CSFV抗原含量,采用2 L生物反应器对BT细胞的最佳接种密度、CSFV的最佳接种剂量进行了摸索和优化,采用优化的工艺参数,进行了BT细胞5倍消化放大工艺验证,同时对比了BT细胞悬浮培养工艺与转瓶培养工艺增殖CSFV的差异。结果表明,在3 g/L微载体浓度下,采用1.5×10~5个/mg的细胞初始接种密度,培养72 h可获得最佳细胞密度;采用MOI(感染复数)为0.5的接种剂量可收获≥106.8FAID_(50)/mL的CSFV抗原;BT细胞从2 L到10 L生物反应器的5倍消化放大工艺验证试验,3批细胞培养96 h均能达到4.0×10~6个/mL以上;悬浮培养工艺增殖的CSFV抗原含量约是转瓶培养工艺的15倍。以上试验为猪瘟疫苗的生物反应器规模化生产奠定了基础。  相似文献   

18.
本试验旨在探讨微载体生物反应器使用不同PK15细胞密度培养猪圆环病毒2型的效果,对比不同细胞密度培养出的抗原效价,从而选择最佳细胞密度培养猪圆环病毒2型,提升猪圆环病毒2型抗原效价。在生物反应器细胞上罐时分别按每个微载体20、30、40、50个细胞的细胞密度接种至4台相同的生物反应器罐中进行培养,每罐均按相同的条件培养,在分别培养4 h、24 h、48 h、96 h时取样观察细胞的生长状态并统计细胞密度,当大部分载体细胞脱落70%时收获抗原,并留样检测其抗原效价。结果显示:每个微载体40个细胞的细胞密度上罐培养的效果最好,表现在4 h时细胞贴附微载体较均匀,24 h时90%微载体长满单层细胞,48 h时细胞生长致密,细胞密度增长8倍,72 h时细胞增长7倍,最终收获抗原效价最高达到107.5TCID50/m L。结果表明:每个微载体40个细胞的接种密度上罐,培养效果最好,效价最高。因此,在微载体生物反应器上培养猪圆环病毒2型时,选择合适的细胞密度接种是保证培养高效价病毒的一个重要前提。  相似文献   

19.
研究旨在证明犬细小病毒(CPV)悬浮培养的可能性,提高CPV P6株抗原的病毒含量,降低转瓶生产不同批次间疫苗质量差异,生产质量稳定的疫苗产品。试验利用大孔的纤维编织物BioNOCⅡ型微载体所提供的巨大表面积,实现Vero细胞高密度培养,建立了Tide-cell生物反应器大规模培养CPV P6株抗原制备工艺。结果显示:生物反应器Tide-cell载体罐内接入1.0×1010个F81种子细胞,在优化的参数条件下培养,用RPMI 1640培养液经过96 h培养,细胞总数为1.0×1011个;在葡萄糖消耗量约为5 g/(L·h)时,按照病毒感染复数(MOI)=0.02将生产种毒CPV P6株接入Tide-cell微载体细胞培养瓶内,补加含8%血清的RPMI 1640病毒维持液至50 L,调整pH值为7.2~7.3,培养48 h收获,病毒含量至少为107.43 TCID50/mL。  相似文献   

20.
草鱼出血病细胞培养灭活疫苗生产工艺的比较   总被引:1,自引:0,他引:1  
比较了方瓶静置培养、10×200ml转管培养和细胞生物反应器微载体培养3种方法增殖细胞和病毒的效率,以细胞生物反应器微载体培养法的效率最高,与静置培养法相比较,单位培养液细胞增殖量提高20~25倍,病毒增殖量TCID50测定增加1.65对数值,LD50测定增加1.45对数值。经济效益比较,疫苗制备的培养液成本,以细胞生物反应器微载体培养法最低。已研究出以细胞生物反应器微载体培养法增殖细胞和病毒为基本生产工艺的工厂化生产草鱼出血病细胞疫苗工艺流程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号