首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Static and initiator protein-enhanced bending of DNA at a replication origin   总被引:32,自引:0,他引:32  
DNA bending has been suggested to play a role in the regulation of gene expression, initiation of DNA replication, DNA packaging, and the recognition of specific DNA sequences by proteins. It has recently been demonstrated that DNA bending can be sequence-directed. Bent DNA has also been observed as a consequence of sequence-specific binding of proteins to DNA. In this report DNA of plasmid pT181 is shown to contain a bend at the replication origin. Furthermore, this bend is enhanced by the binding of the pT181 replication initiator protein, RepC, to the origin.  相似文献   

2.
The multiprotein-DNA complexes that participate in bacteriophage lambda site-specific recombination were used to study the combined effect of protein-induced bending and protein-mediated looping of DNA. The protein integrase (Int) is a monomer with two autonomous DNA binding domains of different sequence specificity. Stimulation of Int binding and cleavage at the low affinity core-type DNA sites required interactions with the high affinity arm-type sites and depended on simultaneous binding of the sequence-specific DNA bending protein IHF (integration host factor). The bivalent DNA binding protein is positioned at high affinity sites and directed, by a DNA bending protein, to interactions with distant lower affinity sites. Assembly of this complex is independent of protein-protein interactions.  相似文献   

3.
4.
The protein products of the fos and jun proto-oncogenes form a heterodimeric complex that participates in a stable high affinity interaction with DNA elements containing AP-1 binding sites. The effects of deletions and point mutations in Fos and Jun on protein complex formation and DNA binding have been examined. The data suggest that Fos and Jun dimerize via a parallel interaction of helical domains containing a heptad repeat of leucine residues (the leucine zipper). Dimerization is required for DNA binding and results in the appropriate juxtaposition of basic amino acid regions from Fos and Jun, both of which are required for association with DNA.  相似文献   

5.
Unwinding of duplex DNA from the SV40 origin of replication by T antigen   总被引:49,自引:0,他引:49  
The T antigen specified by SV40 virus is the only viral-encoded protein required for replication of SV40 DNA. T antigen has two activities that appear to be essential for viral DNA replication: specific binding to duplex DNA at the origin of replication and helicase activity that unwinds the two DNA strands. As judged by electron microscopy, DNA unwinding is initiated at the origin of replication and proceeds bidirectionally. Either linear or circular DNA molecules containing the origin of replication are effective substrates; with closed circular DNA, a topoisomerase capable of removing positive superhelical turns is required for an efficient reaction. Presence of an origin sequence on duplex DNA and a single-strand DNA-binding protein appear to be the only requirements for T antigen to catalyze unwinding. This reaction mediated by T antigen defines a likely pathway to precise initiation of DNA replication: (i) the sequence-specific binding activity locates the origin sequence, (ii) the duplex DNA is unwound at this site, and (iii) the DNA polymerase and primase begin DNA replication. A similar pathway has been inferred for the localized initiation of DNA replication by bacteriophage lambda and by Escherichia coli in which a sequence-specific binding protein locates the origin and directs the DnaB helicase to this site. Observations with the SV40 system indicate that localized initiation of duplex DNA replication may be similar for prokaryotes and eukaryotes.  相似文献   

6.
DNA replication in archaea and in eukaryotes share many similarities. We report the structure of an archaeal origin recognition complex protein, ORC1, bound to an origin recognition box, a DNA sequence that is found in multiple copies at replication origins. DNA binding is mediated principally by a C-terminal winged helix domain that inserts deeply into the major and minor grooves, widening them both. However, additional DNA contacts are made with the N-terminal AAA+ domain, which inserts into the minor groove at a characteristic G-rich sequence, inducing a 35 degrees bend in the duplex and providing directionality to the binding site. Both contact regions also induce substantial unwinding of the DNA. The structure provides insight into the initial step in assembly of a replication origin and recruitment of minichromosome maintenance (MCM) helicase to that origin.  相似文献   

7.
Mechanisms of antibody binding to a protein   总被引:16,自引:0,他引:16  
The mechanisms of antibody binding to a protein were studied by an analysis of specific amino acid residues critical to nine antigenic sites on myohemerythrin. Rabbit antisera to the whole protein were assayed for binding to more than 1500 distinct peptide analogs differing from the protein sequence by single amino acid replacements. The results, combined with information from the three-dimensional crystallographic structure, were used to evaluate probable mechanisms of antibody binding at individual sites. The data from all sites examined indicate that initial binding to solvent-exposed amino acid residues may promote local side-chain displacements and thereby allow the participation of other, previously buried, residues.  相似文献   

8.
The faithful duplication of genetic material depends on essential DNA replication initiation factors. Cellular initiators form higher-order assemblies on replication origins, using adenosine triphosphate (ATP) to locally remodel duplex DNA and facilitate proper loading of synthetic replisomal components. To better understand initiator function, we determined the 3.4 angstrom-resolution structure of an archaeal Cdc6/Orc1 heterodimer bound to origin DNA. The structure demonstrates that, in addition to conventional DNA binding elements, initiators use their AAA+ ATPase domains to recognize origin DNA. Together these interactions establish the polarity of initiator assembly on the origin and induce substantial distortions into origin DNA strands. Biochemical and comparative analyses indicate that AAA+/DNA contacts observed in the structure are dynamic and evolutionarily conserved, suggesting that the complex forms a core component of the basal initiation machinery.  相似文献   

9.
UHRF1 plays a role in maintaining DNA methylation in mammalian cells   总被引:1,自引:0,他引:1  
Epigenetic inheritance in mammals relies in part on robust propagation of DNA methylation patterns throughout development. We show that the protein UHRF1 (ubiquitin-like, containing PHD and RING finger domains 1), also known as NP95 in mouse and ICBP90 in human, is required for maintaining DNA methylation. UHRF1 colocalizes with the maintenance DNA methyltransferase protein DNMT1 throughout S phase. UHRF1 appears to tether DNMT1 to chromatin through its direct interaction with DNMT1. Furthermore UHRF1 contains a methyl DNA binding domain, the SRA (SET and RING associated) domain, that shows strong preferential binding to hemimethylated CG sites, the physiological substrate for DNMT1. These data suggest that UHRF1 may help recruit DNMT1 to hemimethylated DNA to facilitate faithful maintenance of DNA methylation.  相似文献   

10.
Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes   总被引:5,自引:0,他引:5  
Zou L  Elledge SJ 《Science (New York, N.Y.)》2003,300(5625):1542-1548
The function of the ATR (ataxia-telangiectasia mutated- and Rad3-related)-ATRIP (ATR-interacting protein) protein kinase complex is crucial for the cellular response to replication stress and DNA damage. Here, we show that replication protein A (RPA), a protein complex that associates with single-stranded DNA (ssDNA), is required for the recruitment of ATR to sites of DNA damage and for ATR-mediated Chk1 activation in human cells. In vitro, RPA stimulates the binding of ATRIP to ssDNA. The binding of ATRIP to RPA-coated ssDNA enables the ATR-ATRIP complex to associate with DNA and stimulates phosphorylation of the Rad17 protein that is bound to DNA. Furthermore, Ddc2, the budding yeast homolog of ATRIP, is specifically recruited to double-strand DNA breaks in an RPA-dependent manner. A checkpoint-deficient mutant of RPA, rfa1-t11, is defective for recruiting Ddc2 to ssDNA both in vivo and in vitro. Our data suggest that RPA-coated ssDNA is the critical structure at sites of DNA damage that recruits the ATR-ATRIP complex and facilitates its recognition of substrates for phosphorylation and the initiation of checkpoint signaling.  相似文献   

11.
DNA bending by Fos and Jun: the flexible hinge model   总被引:46,自引:0,他引:46  
  相似文献   

12.
13.
Interaction of regulatory DNA binding proteins with their target sites is usually preceded by binding to nonspecific DNA. This speeds up the search for the target site by several orders of magnitude. We report the solution structure and dynamics of the complex of a dimeric lac repressor DNA binding domain with nonspecific DNA. The same set of residues can switch roles from a purely electrostatic interaction with the DNA backbone in the nonspecific complex to a highly specific binding mode with the base pairs of the cognate operator sequence. The protein-DNA interface of the nonspecific complex is flexible on biologically relevant time scales that may assist in the rapid and efficient finding of the target site.  相似文献   

14.
Zhang Y  Xiong Y 《Science (New York, N.Y.)》2001,292(5523):1910-1915
The p53 protein is present in low amounts in normally growing cells and is activated in response to physiological insults. MDM2 regulates p53 either through inhibiting p53's transactivating function in the nucleus or by targeting p53 degradation in the cytoplasm. We identified a previously unknown nuclear export signal (NES) in the amino terminus of p53, spanning residues 11 to 27 and containing two serine residues phosphorylated after DNA damage, which was required for p53 nuclear export in colloboration with the carboxyl-terminal NES. Serine-15-phosphorylated p53 induced by ultraviolet irradiation was not exported. Thus, DNA damage-induced phosphorylation may achieve optimal p53 activation by inhibiting both MDM2 binding to, and the nuclear export of, p53.  相似文献   

15.
16.
17.
本文对有关序列特异性DNA结合蛋白的最新研究情况作了叙述。在其结构研究中 ,介绍了同源结构域的拓扑学结构 ,同源结构域上的氨基酸基序 ,共价和非共价二聚结构域。在其作用研究中 ,介绍了非放射标记的凝胶阻滞分析法 ,C/EBP调节启动子活性的机制 ,雌激素受体在前转录起始复合物形成中的作用以及一种新的人SPI激活转录必需的共激活因子———CRSP复合物。在编码基因与其DNA序列上的结合位点研究中 ,介绍了荧光原位杂交技术进行染色体定位 ,C/EBP家族在小鼠的乳腺泌乳期和回复期的表达 ,HNF— 1结合位点对SI基因启动子上葡萄糖阻遏作用的操纵 ,看家基因人S6核糖体蛋白基因的转录调节元件的功能  相似文献   

18.
Multiple global regulators control HIS4 transcription in yeast   总被引:63,自引:0,他引:63  
  相似文献   

19.
The Wilms' tumor locus (WTL) at 11p13 contains a gene that encodes a zinc finger-containing protein that has characteristics of a DNA-binding protein. However, binding of this protein to DNA in a sequence-specific manner has not been demonstrated. A synthetic gene was constructed that contained the zinc finger region, and the protein was expressed in Escherichia coli. The recombinant protein was used to identify a specific DNA binding site from a pool of degenerate oligonucleotides. The binding sites obtained were similar to the sequence recognized by the early growth response-1 (EGR-1) gene product, a zinc finger-containing protein that is induced by mitogenic stimuli. A mutation in the zinc finger region of the protein originally identified in a Wilms' tumor patient abolished its DNA-binding activity. These results suggest that the WTL protein may act at the DNA binding site of a growth factor-inducible gene and that loss of DNA-binding activity contributes to the tumorigenic process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号