首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, the results of the enzymatic oxidation of TMP-fibers (thermomechanical pulp) and a well-structured lignin model compound, the dehydropolymer (DHP), were investigated by different 14C and 13C methods, caused by a Laccase–Mediator-System (LMS). These methods are the nuclear magnetic resonance spectroscopy (13C-NMR) with DHP (unmarked) and the determination of the 14CO2 release of 14C-marked DHP and TMP-fibers. The 13C-NMR measurements were chosen to analyze the structural changes of the LMS-treated DHP model compounds and TMP-fibers qualitatively and quantitatively. The data of 14CO2 release give an explanation of the demethylation of DHP and TMP-fibers. The effect of the LMS is shown by comparing the results in respect of DHP and TMP-fibers, which were only treated with laccase and of an inactivated LMS as the control. Comparing the results of the 13C-NMR method, in particular the use of the Mediator during the enzymatical treatment, showed significant changes in the structure of the DHP. Also, the TMP-fibers were materially influenced by the LMS. The analysis of the 14CO2 release data of the 14C-marked DHP and TMP-fibers revealed that the rate of 14CO2 increases in the 14C-2 atom as well as in the O14CH3 group within the first hour of Laccase–Mediator incubation. Therefore, the 14CO2 release from the DHP was higher than from the TMP-fibers.  相似文献   

2.
3.
4.
To examine why green liquor (GL) pretreatment of lignocellulosic materials effectively facilitates enzymatic saccharification under conditions milder than those of a common alkaline cooking process, dimeric β-O-4 type lignin model compounds with and without free phenolic hydroxyl group were reacted in several alkaline solutions including a model solution of GL, which mainly contains Na2CO3 and Na2S. The β-O-4 bond of the phenolic model compound was cleaved with a sufficient rate in the model solution of GL. The β-O-4 bond cleavage of the non-phenolic model compound was more frequent in the model solution of GL than in other alkaline solutions. These results suggest that β-O-4 bonds present in lignocellulosic materials are effectively cleaved in a GL pretreatment. It was also suggested that HS? and CO3 2? synergistically contribute to the β-O-4 bond cleavage of the non-phenolic model compound under GL pretreatment conditions.  相似文献   

5.
The dependence of the acidolysis reaction of a C6-C3 dimeric nonphenolic β-O-4 type lignin model compound, 2-(2-methoxyphenoxy)-1-(3,4-dimethoxyphenyl) propane-1,3-diol (veratrylglycerol-β-guaiacyl ether, VG), on the type of acid applied was examined using three different acids [0.2 mol/l HCl, 0.2 mol/l HBr, and 0.1 mol/l (0.2 N) H2SO4 in 82% aqueous 1,4-dioxane at 85°C]. In the HCl system, the major reaction modes of the corresponding benzyl cation-type intermediate (BC), which is produced by protonation of the α-hydroxyl group of VG and successive release of the water molecule, are the abstraction of the β-proton and hydride transfer from the β-to the α-position. The liberation of formaldehyde from the γ-hydroxymethyl group of BC is the predominant reaction mode in the H2SO4 system. Apparently, an unknown reaction mode or modes is operative in the early stage of the HBr system that causes rapid disappearance of VG accompanied by the quantitative formation of 2-methoxyphenol without affording the common counterpart of a Hibbert’s ketone, 1-hydroxy-3-(3,4-dimethoxyphenyl) propan-2-one. The reaction mode in the HBr system changes with the progress of the reaction and is the same as that in the HCl system after the early stage.  相似文献   

6.
Geniposide was prepared on a large-scale using a selective two-phase liquid–liquid extraction. The aqueous residue from the fruit of Gardenia jasminoides Ellis was treated with sodium carbonate and extracted with n-butanol several times. The n-butanol extracts were treated with activated granular charcoal to remove pigments and were then concentrated to produce a residue with a high solid content. The residue was crystallized to obtain geniposide with 98% purity. For large-scale synthesis, the residue (solid content 45%, geniposide 5.5%) was extracted to generate 70 g of geniposide with 98% purity and 84.8% recovery using 1500 g residue.  相似文献   

7.
Thus far, measurements and estimations of actual evapotranspiration(ET) in extremely arid areas are still insufficient. Based on successive observations from June–September 2014, we simulated ET of a Populus euphratica Oliv. forest during the growing season in an extremely arid region of northwest China using the Shuttleworth–Wallace(S–W) model. Simulated ET values were compared to those of the eddy-covariance(EC) method on a 1 h interval. With a root mean square error(RMSE),relative error(RE) and mean absolute error(MAE) of0.192, 3.100 and 0.165 mm h-1, respectively, model performance was not satisfactory. In particular, on days with strong winds(Sep. 11–13), deviations between simulated and observed ET values increased to 0.275, 0.878 and0.251 mm h-1, RMSE, RE and MAE respectively. These values were significantly greater than those in other study periods and were most likely owing to sharp increases in wind speed. As a result, there were substantial advective effects, which is not consistent with the assumption of the S–W model that there are no advective effects or mesoscale circulation patterns induced by surface discontinuities.  相似文献   

8.
The effects on seedling survival and growth of a new scarification method, inverting, were evaluated over 10‐yrs after planting lodgepole pine and Norway spruce on a 2‐yr‐oId clear‐cut in northern Sweden. Inverting, which provides planting spots containing humus turves covered in loose mineral soil without making mounds or ridges, was compared with ploughing, mounding, disc trenching, and no scarification. Subplots with high or low planting positions were used to assess small‐scale topographical effects. For both species, the treatment ranking according to stem volume production after 10‐yrs was inverting > ploughing ≥ mounding = disc trenching > no scarification. Inverting improved seedling height growth by approximately 35% compared with mounding or disc trenching and by more than 100% compared with no scarification. High survival rates were also found following inverting, but only the no‐scarification treatment resulted in a statistically significant reduction in survival rates (ca. 25%) for both species. Further development of the inverting technique might give environmental advantages compared with conventional mechanical site preparation.  相似文献   

9.
10.
When a dimeric non-phenolic β-O-4-type lignin model compound, 2-(2-methoxyphenoxy)-1-(3,4-dimethoxyphenyl)propane-1,3-diol (veratrylglycerol-β-guaiacyl ether (VG)), was treated under alkaline oxygen or hydrogen peroxide bleaching conditions (O2 or H2O2 system, respectively), 3,4-dimethoxybenzaldehyde (veratraldehyde) and 3,4-dimethoxybenzoic acid (veratric acid) formed with yields dependent on the system. The yield of veratraldehyde based on the mole amount of disappearing VG (VG disappearance) was about 30% in the O2 system at a high pH level. However, the total yield of veratraldehyde and veratric acid was 70–80% based on VG disappearance in the H2O2 system at high pH levels, where H2O2 was added stepwise. A prolonged reaction with the further stepwise addition of H2O2 at the high pHs would further increase the formations of veratraldehyde and veratric acid with maintaining the yields based on VG disappearance. The yields (70–80%) are higher than those reported in the previous study, which employed VG, oxygen, and 1,10-phenanthroline and copper (II) sulfate as the catalysts. The high yields in the H2O2 system with high pH levels can be explained by the reactivity of oxyl anion radical, which is the most responsible active oxygen species at these high pHs and preferably attacks the aliphatic side-chain of VG rather than the aromatic nucleus.  相似文献   

11.
Recently, canopy transpiration(Ec) has been often estimated by xylem sap-flow measurements. However, there is a significant time lag between sap flow measured at the base of the stem and canopy transpiration due to the capacitive exchange between the transpiration stream and stem water storage. Significant errors will be introduced in canopy conductance(gc) and canopy transpiration estimation if the time lag is neglected. In this study, a cross-correlation analysis was used to quantify the time lag, and the sap flowbased transpiration was measured to parameterize Jarvistype models of gcand thus to simulate Ecof Populus cathayana using the Penman–Monteith equation. The results indicate that solar radiation(Rs) and vapor pressure deficit(VPD) are not fully coincident with sap flow and have an obvious lag effect; the sap flow lags behind Rsand precedes VPD, and there is a 1-h time shift between Ecand sap flow in the 30-min interval data set. A parameterized Jarvis-type gc model is suitable to predict P. cathayana transpiration and explains more than 80% of the variation observed in gc, and the relative error was less than 25%, which shows a preferable simulation effect. The root mean square error(RMSEs)between the predicted and measured Ecwere 1.91 9 10-3(with the time lag) and 3.12 9 10-3cm h-1(without the time lag). More importantly, Ecsimulation precision that incorporates time lag is improved by 6% compared to the results without the time lag, with the mean relative error(MRE) of only 8.32% and the mean absolute error(MAE) of1.48 9 10-3cm h-1.  相似文献   

12.
Mao'ershan region is representative in the natural secondary forested region of the eastern mountainous region, northeast China. The landscape nearest neighbor index and landscape connectivity index were calculated with ARC/INFO software for Mao'ershan region. The spatial distribution of the landscape of the region was analyzed. The results showed that the landscape connectivity index of non-woodland was significantly higher than that of woodland. The landscape connectivity index of natural forest was nearly equal to zero, which means its fragmentation degree is high. The nearest neighbor index of plantation was lower than that of natural forest and non-forestland. Among the man-made forests, the distance index of the coniferous mixed plantation is the lowest, and its pattern is nearly glomeration. The landscape pattern of natural forest presented nearly random distribution. Among non-forest land, the distance index of cut blank was the lowest, and its pattern was also nearly glomeration. Foundation item: This paper was supported by the Key Project of State Department of Science Technology (2002BA515B040). Biography: LI SHu-juan (1977), female. Lecture in Ocean University of China, Qingdao 266003, P. R. China. Responsible editor: Zhu Hong  相似文献   

13.
Forest structure changes continuously by natural and anthropogenic effects. Because the level of goods and services provided by forest ecosystems are related to this structure, some attributes have to be controlled while they are being managed. In this paper we describe the long-term temporal changes in land area and landscape metrics related to different land uses of a managed forest in Turkey. The study was carried out for the Daday Forest Planning Unit located in the west Black Sea region of northern Turkey. The total area is 16,813 ha and besides wood production, it is managed for erosion control, public health, aesthetics, and recreation. Stand type maps that were constructed in 1970, 1989, 1999, and 2010 were used in this analysis. Transition matrixes that illustrate area changes among cover types and temporal changes on some landscape metrics were obtained using Geographic Information Systems. Stands were separated into small patches, and thus the number of patches increased nearly two-fold between 1970 and 2010. The total forest edge increased and through the associated fragmentation, the amount of core forest area decreased at the landscape scale. Landscape metrics were applied to digitized versions of historical maps to assess how forest area changed. Human use of the land has changed, forest management practices have evolved, and these along with natural forest growth have contributed to interesting changes in landscape character.  相似文献   

14.
We combine historical maps and satellite derived data to reconstruct the development of a Swedish boreal landscape over the past 300 years. The aim is to understand legacies from past use patterns in present-day forest composition and consequences for conservation objectives from a landscape perspective. We analyze landscape development in cross-tabulation matrixes, building change trajectories. These trajectories are tested in linear models to explain the distribution of present-day landscape composition of coniferous, mixed, and deciduous forests >110 years. Of 49 tested change trajectories, 11 showed a significant association. Associations for mixed and coniferous forests were similar and linked to characteristics such as forest continuity, which characterized the studied landscape. Deciduous older forests did not show any association to forest continuity but were more likely to occur on areas that specifically shifted from forests with grazing in the 1720s to open impediment (likely indicating low tree coverage) in the 1850s. There were large shifts and spatial redistribution in ownerships over time. Use patterns and legacies varied between small- and large-scale ownership categories as well as within small-scale categories. The legacies found in the study indicate a complex origin of heterogeneous landscape elements such as older deciduous forests. Additionally, the origin of the legacies indicates a potential need to diversify conservation management based on the influence of past use patterns. Despite large inconsistencies in historical and contemporary data we argue that this type of analysis could be used to further understand the distribution of landscape elements important for conservation objectives.  相似文献   

15.
To halt biodiversity loss in the humid tropics of developing countries, it is crucial to understand the roles and effects of human-modified landscapes with fragmented forest remnants in maintaining biodiversity while fulfilling the demands of local communities and reducing poverty. To implement appropriate landscape planning for conserving biodiversity and ecosystem functioning, appropriate information is required about parameters of habitat suitability among various anthropogenic habitats with a range of distances to forests and vegetation characteristics, but such information is limited. We examined differences in avian communities between a remnant forest and four types of man-made forest (two mature plantations and two agroforests) in a forest–agricultural landscape of West Java, and we analyzed the effects of both local and landscape factors on various types of species richness in this landscape. The results from non-metric multidimensional scaling revealed avifauna in the two types of agroforest was clustered separately from that in the remnant forest, mainly because drastic declines in the abundance of forest specialists (including IUCN red-listed species) and their replacement with open-habitat generalists. The mixed-tree agroforests were colonized by 30 % of forest specialists and forest-edge species found in the remnant forest, and maintained the highest richness of species endemic to Indonesia among man-made forests, implying that some forest specialists and endemics might have adapted to ancient landscape heterogeneity. High proportion of insectivorous birds was found in the remnant forest (more than 50 %) and drastically decline in man-made forests, although the species richness of insectivores did not decline significantly in broad-leaved plantations. We concluded that protection of remnant forests should be prioritized to conserve forest bird diversity. However, as different environmental factors affected the richness values of different ecological groups, appropriate landscape design and habitat management could improve functional diversity in forest–agricultural landscapes in the tropics.  相似文献   

16.
Understanding how multiple disturbances affect species population structure is crucial for designing a better conservation strategy of threatened species. In this paper, we assessed the disturbance patterns and evaluated their effects on the population structure of Afzelia africana, in two different bioclimatic zones of the Republic of Benin. The main disturbances in the studied area included branch pruning and debarking. Individuals of medium size (20–40 cm) were mostly pruned and debarked. The percentages of pruning and debarking were similar at population level across the two studied bioclimatic zones (t = ?0.04, p = 0.96; t = 0.73, p = 0.48). Examining this at individual level, pruning was similar but debarking was higher in the Sudanian zone (12.14 ± 0.93%) than in the Sudano-Guinean zone (7.44 ± 0.88) (W = 40859, p < 0.001). Population structure was bell-shaped in the Sudanian zone regardless of the disturbance level. In contrast, in the Sudano-Guinean zone, mildly disturbed populations showed an inverse J-shaped structure, whereas those highly disturbed were bell-shaped. This underlined the climatic (dryness) and disturbance effects on the establishment and recruitment of small trees into the next life stage in tropical savanna ecosystems. Good regeneration pattern and the largest individuals were found within the protected areas, demonstrating the prominent role of protected areas for the species conservation. Therefore, we suggested that conservation efforts should be extended to populations outside the protected areas. Forestry department should establish firebreaks networks to protect small individuals and facilitate their recruitment, as well as the regulation and enforcement should be improved on the sustainable use of the species.  相似文献   

17.
Thus far, measurements and estimations of actual evapotranspiration(ET) in extremely arid areas are still insufficient. Based on successive observations from June–September 2014, we simulated ET of a Populus euphratica Oliv. forest during the growing season in an extremely arid region of northwest China using the Shuttleworth–Wallace(S–W) model. Simulated ET values were compared to those of the eddy-covariance(EC) method on a 1 h interval. With a root mean square error(RMSE),relative error(RE) and mean absolute error(MAE) of0.192, 3.100 and 0.165 mm h-1, respectively, model performance was not satisfactory. In particular, on days with strong winds(Sep. 11–13), deviations between simulated and observed ET values increased to 0.275, 0.878 and0.251 mm h-1, RMSE, RE and MAE respectively. These values were significantly greater than those in other study periods and were most likely owing to sharp increases in wind speed. As a result, there were substantial advective effects, which is not consistent with the assumption of the S–W model that there are no advective effects or mesoscale circulation patterns induced by surface discontinuities.  相似文献   

18.
Telomeres are the structures that locate at the terminals of linear eukaryotic chromosomes. They can play essential roles in many cellular processes. The terminal location of Arabidopsis-type TTTAGGG tandem repeats were thought to be highly conserved. The terminal location of Ginkgo biloba L. consisting of TTTAGGG tandem repeats, were confirmed by Bal31 exonuclease degradation and Southern blotting. By comparing telomeric restriction fragment (TRF) lengths at different developmental stages from embryos to seedlings, a fluctuant tendency towards variation was found in these samples. The TRF length of embryos was also compared with that of embryonal calli and an upward trend was discovered in callus culture. The results suggest that there should be a telomerase mechanism or/and ALT mechanism for the maintenance of telomere length.  相似文献   

19.
20.
Recently, canopy transpiration (Ec) has been often estimated by xylem sap-flow measurements. However, there is a significant time lag between sap flow measured at the base of the stem and canopy transpiration due to the capacitive exchange between the transpiration stream and stem water storage. Significant errors will be introduced in canopy conductance (gc) and canopy transpiration estimation if the time lag is neglected. In this study, a cross-correlation analysis was used to quantify the time lag, and the sap flow-based transpiration was measured to parameterize Jarvis-type models of gc and thus to simulate Ec of Populus cathayana using the Penman–Monteith equation. The results indicate that solar radiation (Rs) and vapor pressure deficit (VPD) are not fully coincident with sap flow and have an obvious lag effect; the sap flow lags behind Rs and precedes VPD, and there is a 1-h time shift between Ec and sap flow in the 30-min interval data set. A parameterized Jarvis-type gc model is suitable to predict P. cathayana transpiration and explains more than 80% of the variation observed in gc, and the relative error was less than 25%, which shows a preferable simulation effect. The root mean square error (RMSEs) between the predicted and measured Ec were 1.91 × 10?3 (with the time lag) and 3.12 × 10?3 cm h?1 (without the time lag). More importantly, Ec simulation precision that incorporates time lag is improved by 6% compared to the results without the time lag, with the mean relative error (MRE) of only 8.32% and the mean absolute error (MAE) of 1.48 × 10?3 cm h?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号