首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Results for years 4–8 of a long-term grazing experiment on swards of a diploid perennial ryegrass (Lolium perenne), var. Contender (D swards), a tetraploid ryegrass, var. Condesa (T swards) and Condesa with S184 white clover (Trifolium repens) (TC swards), direct sown in May 1987, are presented. The swards were continuously stocked with sheep from 1988 to 1990, as previously reported, and for a further 5 years, 1991–95, at a target sward surface height (SSH) of 4–6 cm. Control of sward height was successfully achieved by variable stocking, except in 1993 when paddocks were set stocked and the resulting mean SSH was 9·3 cm. Grass swards received on average 160 kg N ha?1 year?1; grass/clover swards were mainly not fertilized with N with the exception that they were given 30 kg N ha?1 as a remedial mid-summer application during a period of low herbage mass on offer in 1994 and 1995. Mean white clover content of the swards fell from 18·2% of herbage dry-matter (DM) in 1992 to 8·5% in 1993, whereas stolon lengths fell from 120 to 58 m m?2. A return to lower sward heights in 1994–95 resulted in an increase in white clover content to 12·8% by the final sampling in August 1995. Perennial ryegrass content of the grass swards remained high throughout (mean 96·7% in 1995). Perennial ryegrass tiller densities recorded in August 1991, 1993 and 1994 showed consistently significant (P < 0·001) sward differences (3-year mean 16 600, 13 700 and 10 100 perennial ryegrass tillers m?2 for the D, T and TC swards). In 1994, the year after lax grazing, a low perennial ryegrass tiller density (9100 m?2) and low white clover content (mean 4·3%) in the TC swards resulted in a much lower herbage bulk density than in the grass swards (April–July means 72, 94 and 44 kg OM ha?1 cm?1 for the D, T and TC swards). There was a consistent 40 g d?1 increase in lamb liveweight gain on the TC swards over the T swards, except in 1994. In that year there was a reduction in lamb liveweight gain of 33 g d?1 on the TC swards and a significant increase in ewe liveweight loss (117 g d?1) associated with low herbage bulk density despite optimal sward height. Lamb output (kg liveweight ha?1) on TC swards reflected white clover content, falling from a similar output to that produced from grass given 160 kg N ha?1, at 18% white clover DM content, down to 60% of grass + N swards with around 5% clover. A 6% greater output from the T than the D swards was achieved mainly through higher stocking rate. The experiment demonstrated a rapid, loss in white clover under lax grazing, and showed that the relationship between performance and sward height is also dependent on herbage density. High lamb output from a grass/clover sward was only achieved when the clover content was maintained at 15–20% of the herbage DM.  相似文献   

2.
The combined benefits of a high crude protein concentration, and possible protein protection and growth‐promoting properties, make forage legumes potentially attractive as a natural means of increasing liveweight gain and time to slaughter of lambs in lamb finishing systems. An experiment was conducted to compare the production performance and meat quality of grazing lambs finished on red clover (Trifolium pratense), lucerne (Medicago sativa) or perennial ryegrass (Lolium perenne) swards. Replicate (n = 2) swards of red clover, lucerne and perennial ryegrass were rotationally grazed by ten ram lambs and ten ewe lambs from weaning until selection for slaughter at UK fat class 3L. Lambs grazing the red clover sward had a significantly higher liveweight gain and required significantly fewer days to slaughter than lambs grazing the lucerne sward (305 g d?1 vs. 243 g d?1; 38 d vs. 50 d), which in turn had a higher liveweight gain and required fewer days to slaughter than lambs grazing the perennial ryegrass sward (184 g d?1; 66 d). Lambs grazing the red clover and lucerne swards had significantly higher herbage intakes than those grazing the perennial ryegrass sward (2·06, 1·72 and 1·16 kg DM d?1 respectively), but in vivo digestibility of herbage was similar. Lambs grazing the red clover and lucerne swards also had significantly higher serum urea concentrations than those grazing ryegrass (12·5, 11·1 and 6·2 mmol L?1 respectively). Killing‐out percentage was significantly higher for lambs grazing the red clover sward than for lambs grazing the perennial ryegrass sward (48% vs. 46%). There were no significant effects of finishing system on meat flavour, but meat from lambs finished on the lucerne sward was oxidatively less stable than that from lambs finished on the perennial ryegrass sward. Grazing the forage legume swards significantly increased the proportion of linoleic and linolenic acid in muscle tissue, and therefore the proportion of unsaturated to saturated fatty acids (0·19, 0·16 and 0·12 for the red clover, lucerne and perennial ryegrass swards respectively). However, the n?6/n?3 ratio was significantly lower for the muscle of lambs grazing the perennial ryegrass sward compared with those grazing the forage legume swards (1·13, 1·08 and 0·98 for the red clover, lucerne and perennial ryegrass swards respectively). The results indicate that by grazing lambs on forage legume swards it is possible to increase individual lamb performance without compromising meat quality.  相似文献   

3.
The study was designed to test the hypothesis that grazing management in early season could alter sward structure to facilitate greater animal performance during critical periods. The effects of grazing a mixed perennial ryegrass/white clover sward at different sward surface heights, by cattle or sheep, in early season on sward composition and structure, and on the performance of weaned lambs when they subsequently grazed these swards in late season were determined. In two consecutive years, from mid‐May until mid‐July, replicate plots (three plots per treatment) were grazed by either suckler cows and calves or ewes and lambs at 4 or 8 cm sward surface heights (Phase 1). From mid‐August (Year 1) or early August (Year 2), weaned lambs continuously grazed, for a period of 36 d (Year 1) or 43 d (Year 2) (Phase 2), the same swards maintained at 4 cm (treatment 4–4), 8 cm (treatment 8–8) or swards which had been allowed to increase from 4 to 8 cm (treatment 4–8). Grazing by both cattle and sheep at a sward surface height of 4 cm compared with 8 cm in Phase 1 resulted in a higher (P < 0·001) number of vegetative grass tillers per m2 in Phase 2, although the effect was more pronounced after grazing by sheep. Sheep grazing at 8 cm in Phase 1 produced a higher number of reproductive tillers per m2 and a greater mass of reproductive stem (P < 0·001) than the other treatment combinations. The mass of white clover lamina was higher under cattle grazing (P < 0·05), especially on the 8‐cm treatment, and white clover accounted for a greater proportion of the herbage mass. These effects had mainly disappeared by the end of Phase 2. On the 4–4 and 8–8 sward height treatments the liveweight gain of the weaned lambs was higher (P < 0·05) on the swards previously grazed by cattle than those grazed by sheep. The proportion of white clover in the diet and the herbage intake also tended to be higher when the weaned lambs followed cattle. However, there was no difference in liveweight gain, proportion of white clover in the diet or herbage intake between swards previously grazed by cattle or sheep on the 4–8 sward height treatment. It is concluded that grazing grass/white clover swards by cattle compared with sheep for the first half of the grazing season resulted in less reproductive grass stem and a slightly higher white clover content in the sward, but these effects are transient and disappear from the sward by the end of the grazing season. They can also be eliminated by a short period of rest from grazing in mid‐season. Nevertheless these changes in sward structure can increase the performance of weaned lambs when they graze these swards in late season.  相似文献   

4.
Abstract Effects of breed and sward surface height on ewe liveweight and body condition changes and on lamb liveweight gains during grazing in the spring and autumn were studied. The output per hectare in each season was also calculated. A total of 112 Gallega ewes (35·6 kg live weight) and 204 Latxa ewes (47·5 kg live weight) with their lambs were used during the spring (March–June) to study the effect of five target sward heights (3·0, 4·5, 5·5, 6·5 and 8·0 cm) and the interaction with breed. In autumn (October–December) 155 Gallega and 126 Latxa ewes were used to study the effect of three target sward heights (4·0, 5·5 and 7·0 cm) and the interaction with breed. Each study was replicated twice. A quadratic relationship was found between sward height and ewe liveweight and body condition changes and lamb liveweight gain during the spring grazing season, with the maximum individual performance being achieved at around a sward height of 6·0 cm. There were significant breed × sward height treatment interactions for ewe liveweight and body condition changes, and lamb liveweight gains. Higher liveweight gains were achieved by Latxa ewes and lambs in swards taller than 6·5 cm but they also sustained higher liveweight losses in swards shorter than 4·5 cm. Nevertheless, a higher output (liveweight gains of ewes + lambs) per hectare for a given weaning date or age was achieved by the Gallega ewes. In autumn, the relationship between liveweight change and sward height was linear, with a breed–sward height interaction similar to that observed in the spring. Sward surface heights of 4·0–4·5 cm and 4·5–5·0 cm were required to maintain live weight and body condition in spring and autumn respectively. Lamb and ewe liveweight gains per hectare decreased considerably in swards taller than 6·5 cm.  相似文献   

5.
Two 1·0 ha plots of a late-heading diploid perennial ryegrass (var. Contender) and a late-heading tetraploid ryegrass (var. Condesa), and two 1·4 ha plots of the tetraploid with Aberystwyth S184 small-leaved white clover, were direct sown in May 1987. Over the three years 1988–90 they were continuously stocked by Mule ewes with Suffolk-cross twin lambs, from early April to the end of August, at a target sward surface height (SSH) of 4–6 cm on one set of plots (constant swards) and, on the other set, al 4–6 cm rising after June to a target 6–8 cm (rising swards). The heights were achieved by variable stocking. Fertilizer N was applied only to the grass plots at the rate of 150- 180kgN ha-1 annually.
SSH was mainly within the target 4–6 cm, after higher initial heights at turnout in 1988and 1990. Mean heights of the constant swards (April- August) averaged 5·53, 4·43 and 5·04cm in the three years. The rising swards (July-August) increased in height over the constant swards by an average of 0·88, 0·48 and 0·55 cm, in successive years.
Clover content of the herbage mass dry matter in the grass/clover swards increased over each grazing season to average 13·0, 26·5 and 21·2% in the three years, with a high mean stolon density of 130 in m-2 in August 1990. Ryegrass tiller densities in year 3 were 23% higher in the diploid than in the tetraploid swards, which had 43% more than the 10000 tillers m-2 of the tetraploid ryegrass/clover swards.
It is concluded that the combination of a densely stoloniferous small-leaved clover with the open growth habit of a tetraploid ryegrass can achieve swards of high clover content under continuous sheep stocking.  相似文献   

6.
The high nutritive value and persistence under a wide range of climatic and soil fertility conditions make Caucasian clover a potentially useful forage legume but there is little information about the performance of livestock grazing Caucasian clover/grass swards. This study compared liveweight gains of lambs grazing Caucasian clover/perennial ryegrass and white clover/perennial ryegrass swards on high fertility (Olsen P 20 mg L?1, SO4‐S 12 mg kg?1) and low fertility (Olsen P 11 mg L?1, SO4‐S 7 mg kg?1) soils from 1998 to 2001 in the South Island of New Zealand. Mean annual liveweight gains were 1178 kg ha?1 for Caucasian clover/perennial ryegrass and 1069 kg ha?1 for white clover/perennial ryegrass swards at high fertility compared with 1094 kg ha?1 and 1015 kg ha?1, respectively, at low fertility. There was a higher mean proportion of clover in Caucasian clover/perennial ryegrass (0·19) than white clover/perennial ryegrass (0·11) swards, but there were no differences in total herbage production between the two clover/perennial ryegrass swards. The mean concentration of crude protein in the herbage of Caucasian clover (302 g kg DM?1) was higher than that in white clover (287 g kg DM?1) and grass herbage (227 g kg DM?1). Estimated mean metabolizable energy concentrations in the herbage were 12·5 MJ kg DM?1 for the two clovers and 11·6 MJ kg DM?1 for grass herbage. The difference in liveweight gain between swards on soils of high and low fertility was associated with an increase in total herbage production of similar composition and nutritive value, giving a greater number of grazing days for the swards on soils of high than low fertility.  相似文献   

7.
In three successive years, sward height was maintained at 3, 5, 7 or 9 cm on grass swards receiving a total of 300 kg N ha?1 in six equal monthly dressings from April, and on grass/clover swards receiving 50 kg N ha?1 as a single dressing in early spring. From turnout in April until weaning in July, 64 ewes and their lambs (mean litter size 1·5) were continuously grazed at the four sward surface heights on the two sward types. White clover content of grass/clover swards remained low throughout the experiment ranging from 0·2 to 7·4% of the herbage mass. During the first two years, lamb gains averaged over sward types were 204, 260, 285 and 308 g d?1 up to weaning, while in the third year gains were 238, 296, 296 and 260 g d?1 on 3, 5, 7 and 9 cm swards respectively. Ewes lost live weight on 3 cm swards but apart from this sward height had little effect on performance. During the autumn, weaned lambs gained — 27, 87, 147 and 167 g d?1 on 3, 5, 7 and 9 cm swards respectively. Sward type had only a small effect on the performance of lambs up to weaning but in the autumn, mean gains of weaned lambs were lower on grass/N swards (73 g d?1) than on grass/clover swards (115 g d?1). Relative to 3 cm swards, carrying capacities of 5, 7 and 9 cm swards were 0·76, 0·57 and 0·52 respectively from turnout to weaning and 0·66, 0·52 and 0·44 respectively during autumn. Grass/clover swards carried 0·67 of the ewes carried by grass/N swards from turnout to weaning and 0·51 of the live weight carried by grass/N swards during autumn. The reaction of the two sward types to sward height did not appear to differ but in the third year there was evidence of a reduction in white clover content when swards were grazed at 9 cm. The data suggest that lamb growth rates will increase as sward height increases up to 9 cm and the evidence for this was stronger with weaned lambs in autumn than with suckling lambs in spring.  相似文献   

8.
An experiment was conducted to assess the effects of grazing a perennial ryegrass (Lolium perenne) / white clover (Trifolium repens) sward by sheep or goats on sward composition and structure and on subsequent diet selection, herbage intake and liveweight gain by weaned lambs. From mid-May to late July (phase 1), ewes with twin lambs or yearling Scottish Cashmere goats grazed continuously swards maintained at 4- or 8-cm sward surface height. From mid-August to the end of September (phase 2), weaned lambs continuously grazed the same swards maintained at 4 cm (treatment 4–4) or at 8 cm (treatment 8–8) or which had been allowed to increase from 4 cm to 8 cm (treatment 4–8). By the end of phase 1, swards grazed by goats had higher proportions of white clover in the whole sward (0.377 vs. 0.181; s.e.d 0.0382; P < 0.001) than those grazed by sheep, irrespective of sward height treatment. This resulted in phase 2 in a higher proportion of white clover selected ( P <0.001), higher herbage intakes ( P < 0.001) and higher liveweight gains ( P < 0.001) by weaned lambs grazing swards previously grazed by goats compared with those previously grazed by sheep. There were higher proportions of clover present in the swards from treatment 4–8 at the beginning of phase 2 compared with the other sward height treatments and consequently weaned lambs had, on this treatment, a higher proportion of clover in their diet ( P <0.001), higher herbage intakes ( P <0001) and higher liveweight gains ( P <0.001). It is concluded that goats can be integrated into sequential grazing systems with sheep on grass/clover swards and this can result in an increase in the proportion of clover in swards and increased sheep performance.  相似文献   

9.
To investigate the effect of sward height on liveweight change in goats grazing grass/white clover swards, an experiment was conducted from mid-August to mid-November with groups of non-lactating female cashmere goats that continuously grazed perennial ryegrass (Lolium perenne)/white clover (Trifolium repens) swards. Three replicated different sward height treatments — 10–8 cm (high), 7–5 cm (medium) and 5–3 cm (low) — were used to examine the effects on the competitive ability of grass and clover components within the sward canopy and their effect on liveweight. The pasture after grazing by goats had relatively higher ryegrass leaf (+0·26, high; +0·32, medium; and +0·18, low) and lower dead ryegrass proportions (?0·28, high; ?0·23, medium; and ?0·18, low) than at the beginning of the experiment, whereas the white clover fraction in the sward remained constant (+0·04, high; ?0·02, medium; and +0·03, low). Higher proportions of the white clover leaf lamina and petiole were found near the top of the sward canopy and were negatively correlated with the rate of liveweight gain by goats (P < 0·05). Goats gained 50·2 g Live weight (LW) d?1 on the tallest treatment (high) but lost 0·01 and 42·3 g LW d?1 on the medium and low sward height treatments respectively (s.e.d. 13·21, P < 0·001). Liveweight changes that occurred between sampling periods were also correlated (R2= 0·858, P < 0·001) with changes in the mean sward height and proportion of white clover lamina-petiole at the sward surface in relation to the proportion found within the whole sward. These results suggest that goat liveweight gains would be increased if another species was introduced to reduce the white clover proportion in the surface horizon.  相似文献   

10.
The selection by sheep (six Coopworth ewe hoggets, 44·3 ± 4·6 kg live weight) and goats (six Saanen/Anglo‐Nubian yearling males, 38·1 ± 3·8 kg live weight) for perennial ryegrass (Lolium perenne) and white clover (Trifolium repens) and for sward height was measured in two experiments involving paired turves. Pairs of turves with herbage of differing height and of either the same or different plant species were offered. One sward (fixed height species, FHS) was always offered at 130 mm and the other (variable height species, VHS) at 130, 90 or 50 mm. Turves (450 mm × 220 mm) were cut to a soil depth of 100–150 mm from areas of perennial ryegrass and white clover regrown to the desired height after previously being cut to 30 mm. Each turf in a pair was weighed (±1 g) before and after grazing by penned animals maintained on a barley‐based pelleted diet. The number of prehending bites taken from each turf was recorded over a grazing period (128 ± 12 s). Bite mass, bite rate and intake rate were calculated. As the sward height of the VHS turf declined, an increasing proportion of the diet was selected from the 130 mm turf. When averaged over all height contrasts, both animal species selected a higher proportion (0·776 ± 0·026) of their diet from 130‐mm white clover than from 130‐mm perennial ryegrass (0·591 ± 0·018) turves. On average, goats selected a higher proportion (0·721 ± 0·022) of their dry‐matter (DM) intake from the 130‐mm turf than sheep (0·646 ± 0·019), but the effect was not consistent. In contrasts with perennial ryegrass as the VHS (and both perennial ryegrass and white clover as FHS), the proportion of the diet selected from the 130‐mm turf was very similar for both animal species. However, with white clover as the VHS (and both perennial ryegrass and white clover as FHS), goats selected a higher proportion of their intake from the 130‐mm turf to the extent that in the 130‐mm perennial ryegrass/50‐mm white clover contrast sheep showed as strong selection for 50‐mm white clover as goats did for 130‐mm perennial ryegrass. This lesser selection of goats for white clover as its height in a sward declines is likely to contribute to the higher white clover content observed in swards grazed by goats. Bite mass was greater on white clover (246 ± 5 mg DM bite–1) than on perennial ryegrass (173 ± 5 mg DM bite–1) and was greater for goats (255 ± 6 mg DM bite–1) than for sheep (195 ± 5 mg DM bite–1). Bite rate was greater on perennial ryegrass (45·9 ± 1·0 bites min–1) than on white clover (39·9 ± 1·0 bites min–1) and was greater for sheep (45·5 ± 1·1 bites min–1) than for goats (42·5 ± 1·1 bites min–1). Apparent intake rate by both sheep and goats was lower (mean, 5·0 ± 0·29 g DM min–1) on 130 mm perennial ryegrass/white clover than on 130 mm perennial ryegrass/perennial ryegrass (7·0 ± 0·27 g DM min–1), but was higher (9·62 ± 0·29 g DM min–1) on 130‐mm white clover/perennial ryegrass than on 130‐mm white clover/white clover (8·2 ± 0·29 g DM min–1) combinations.  相似文献   

11.
A research programme was undertaken over two consecutive years with the purpose of studying the effect of herb–clover swards on lamb production performance year‐round. The focus of this study was on two consecutive late spring and early summer periods (2011, 2012). In each year, three sward treatments were compared on grazed paddocks with 40 lambs ha?1: (i) grass–clover mixture (perennial ryegrass [Lolium perenne L.] and white clover [Trifolium repens]); (ii) plantain–clover mixture (plantain [Plantago lanceolata], white clover and red clover [Trifolium pratense]); and (iii) chicory–plantain–clover mixture (plantain, chicory [Cichorium intybus L.] and white and red clovers). Lambs were weighed at 2‐week intervals, and carcass weights and GR tissue depth measurements were obtained at slaughter. In both years, lambs on treatments (ii) and (iii) had greater (< 0·05) final live weight, liveweight gain, carcass weight, dressing‐out percentage and GR tissue depth measurements, and lower feed conversion ratio compared to lambs on treatment (i). Lamb production was similar in treatments (ii) and (iii) (> 0·05) in each year. Therefore, during the late spring and early summer period, herb–clover mixture swards were found to be a superior option to perennial ryegrass–white clover for finishing lambs.  相似文献   

12.
The implications for UK upland sheep systems of reducing nitrogen fertilizer application to perennial ryegrass/white clover swards were studied over 3 years. Sward height (3·5–5·5 cm) was controlled for ewes with lambs until weaning using surplus pasture areas for silage; thereafter, ewes and weaned lambs were grazed on separate areas, and sward height was controlled by adjusting the size of the areas grazed and using surplus pasture areas for silage if necessary. Combinations from three stocking rates [10, 6 and 4 ewes ha−1 on the total area (grazed and ensiled)] and four nitrogen fertilizer levels (150, 100, 50 and 0 kg ha−1) provided six treatments that were replicated three times. Average white clover content was negatively correlated with level of nitrogen fertilizer. The proportion of white clover in the swards increased over the duration of the experiment. Control of sward height and the contribution from white clover resulted in similar levels of lamb liveweight gain on all treatments. All treatments provided adequate winter fodder as silage. It is concluded that the application of nitrogen fertilizer can be reduced or removed from upland sheep pastures without compromising individual animal performance provided that white clover content and sward height are maintained. Resting pastures from grazing by changing ensiled and grazed areas from year to year sustained white clover content over a 3-year period.  相似文献   

13.
Abstract The implications for the agricultural productivity of the UK upland sheep systems of reducing nitrogen fertilizer application and lowering stocking rates on perennial ryegrass/white clover swards were studied over 4 years at a site in Wales. The system involved grazing ewes and lambs from birth to weaning on swards maintained at a constant height with surplus herbage made into silage, thereafter ewes and weaned lambs grazed on separate areas until the onset of winter with adjustments to the size of the areas grazed and utilizing surplus pasture areas for silage. Four stocking rates [SR 18, 15, 12 and 9 ewes ha?1 on the total area (grazed and ensiled)] and two levels of annual nitrogen fertilizer application (N 200 and 50 kg ha?1) were studied in five treatments (N200/SR18, N200/SR15, N50/SR15, N50/SR12 and N50/SR9). Average white clover content was negatively correlated with the level of annual nitrogen fertilizer application. White clover content of the swards was maintained over the duration of the experiment with an increasing proportion of clover in the swards receiving 50 kg N ha?1. Control of sward height and the contribution from white clover resulted in similar levels of lamb liveweight gain from birth to weaning in all treatments but fewer lambs reached the slaughter live weight by September at the higher stocking rates and with the lower level of fertilizer application. Three of the five treatments provided adequate winter fodder as silage (N200/SR15, N50/SR12 and N50/SR9). Because of the failure to make adequate winter fodder and the failure of white clover to fully compensate for reduction in nitrogen fertilizer application, it is concluded that nitrogen fertilizer can only be reduced on upland sheep pastures if accompanied by reduced stocking rates.  相似文献   

14.
An experiment was designed to examine the changes in clover content of three mixed perennial ryegrass/white cover swards of differing initial clover contents subjected to different grazing height management regimes and their effect on lactation performance of 48 Friesian dairy cows and heifers. Two paddocks were established for each treatment and grazed on alternate days. Treatments T17 and Tl3 consisted of swards with initial clover contents of 0·17 and 0·13 of the dry matter (DM) mass, respectively, grazed to maintain compressed sward heights of 6 cm throughout the season. A third treatment, SI5, consisted of a sward with an initial clover content of 0·15 grazed to maintain a compressed sward height of 4·5 cm for the first 78 days of the grazing season (period 1). Throughout period 1, half the animals on each treatment each received 4 kg of a concentrate supplement daily, while the others remained unsupplemented. From days 79 to 90, the cattle on treatment S15 grazed a similar sward, while the compressed sward height of the S15 paddocks was allowed to increase to 6 cm before re introduction of the animals. The three swards were then grazed for a further 47 days (period 2) before the animals were housed and milk yield recorded for a further 63 days (period 3). While sward T17 showed little change in clover content over the first 29 days of grazing, remaining at just below 0·18 of DM mass, swards T13 and S15 showed a marked decline in clover content to 0·05 and 0·07 of DM mass respectively. However, by the end of period 1 the clover content of all three swards had increased markedly (0·25, 0·15 and 0·15 of DM mass respectively). By the end of period 2, clover proportions were slightly higher than initial values (0·19. 0·15 and 0·15 of DM mass for treatments T17, T13 and S15, respectively). Owing to the relatively small differences in clover content of swards TI7 and T13, there were no significant effects of these two treatments on milk yield or composition in any period. Supplementation had no effect on milk composition and had little effect on milk yield, except when sward height was maintained at 4·5 cm. There was no carryover effect of supplementation on milk yield or composition in periods 2 or 3.  相似文献   

15.
The use of sward height as a criterion for determining the time and extent of stocking-rate changes on continuously grazed swards was investigated over a 2-year period (1985–86) in a sheep production experiment. Swards of three contrasting perennial ryegrass ( Lolium perenne L.) varieties were established with and without Aberystwyth S184 small-leaved white clover ( Trifolium repens L.) at an upland site (310–363 m) in mid-Wales. From spring (late April) until weaning (mid-July) the pastures were continuously stocked with Beulah Speckled Face ewes and Suffolk cross lambs. During this period sward heights of 4 ± 0.5 cm were obtained and maintained by regular adjustment of animal number on individual paddocks. Grass-only swards received 160 and 200 kg N ha−1 and the grass clover swards were given 80 and 75 kg N ha−1 in 1985 and 1986 respectively.
Differences were observed between the treatments in sward height profiles over the season necessitating contrasting adjustments to stocking rates. Mean stocking rate necessary on early flowering Aurora (22 6 ewes ha−1) was respectively 27% and 17% higher than on late-flowering Aberystwyth S23 and Meltra (tetraploid) ryegrasses; mean stocking rate on grass-only swards was 19% higher than on the grass-clover pastures.
It is concluded that sward height is a useful criterion on which to make adjustments to stocking rates to compare the potential performance of contrasting swards, under continuous grazing. The infrequent adjustments required to maintain a constant sward height, especially on the late flowering diploid perennial ryegrass variety on which many upland pastures are based, suggest that the criterion of sward height could be successfully employed on farms as an aid to efficient grazing management.  相似文献   

16.
Abstract Four sward height treatments were imposed by continuous variable stocking using at least ten Suffolk × Greyface lambs per plot from late July to late August: constant 3·5 cm. constant 6·0 cm. 3·5cm increasing to 6·0 cm and 6·0 cm decreasing to 3·5 cm. The treatments were established on two swards given fertilizer N applications over the season of 97 and 160 kg N ha?1 respectively. Animal density was greater on the high fertilizer treatment, at the lower sward height and especially on the decreasing height treatments. Liveweight change of lambs was higher (P <0·001) on the 6-cm than on the 3·5-cm treatments (+159 vs-13g d?1 and was also higher (P <0·001) on the increasing than on the decreasing sward height treatments (+92 vs-26 g d?1). Herbage organic matter intake (OMI), measured on two occasions in the experiment, was greater (P <0·001) on the 6·0 cm than on the 3·5-cm sward heights whereas values for the increasing sward height treatments were much greater than those for the decreasing sward height treatments. There was little difference in the organic matter digestibility of the diet between treatments. Diets were composed largely of lamina, although there was more pseudostem and dead herbage in the diets of Iambs grazing the decreasing than the increasing sward height treatments at the end of the experiment. Bite mass was closely related to OMI but the treatment and period differences were relatively greater than for OMI. Bite mass was more closely related to the depth of the lamina layer (sward height-pseudostem height) than it was to sward height. There was evidence that pseudostem acted as a barrier to defoliation on these short swards and also that the proportion of youngest leaf in the diet was positively related to sward height and to increases in sward height. Sward height and especially the direction of change in sward height, together with associated stock density, were potent influences on lamb growth rate. This was a consequence of differences in herbage intake, which was strongly influenced by bite mass.  相似文献   

17.
Perennial ryegrass/white clover pastures grazed by sheep and receiving either no fertilizer N (No) or 120 kg N ha?1 year?1 (N0) were maintained with surface heights of 2·5, 3·5 and 5·0 cm for over four years. The treatments were replicated. The white clover (WC) population was greatest in the N0treatment, and declined during the study. Between-year variation in WC was negatively related to rainfall and positively related to temperature, WC as a proportion of the total plant population decreased during the summer in the Nl treatment. The perennial ryegrass (PRG) population was greater in the Nl treatment, declined during the study and both within and between years was positively related to temperature. The population density of the unsown grasses was highest in the N-fertilized treatment and in the swards maintained at the lowest heights (these treatments also had the highest stocking rate); it increased during the study, within-years being positively related to temperature and between-years being positively related to rainfall. The WC stolon extension rate was largely unaffected by N fertilizer application and was greatest in the taller swards. Leaf appearance rate was unaffected by N fertilizer application and sward height; it was positively related to temperature and negatively related to rainfall. Branching rate was greater in the N0 treatment with significant sward height effects confined to a negative relationship with local sward height within treatment plots on one occasion; it was negatively related to rainfall. The ground level red:far red light ratio was negatively related to local sward height. The total live weight of sheep carried in the No treatments was 0·7 of that in the N1 treatments. Expected photomorphogenic responses by we were confined to stolon extension. It was concluded that on the poorly drained clay-loam soil used in this study the effects of sheep, in interaction with climatic factors, had an overriding effect on clover branching rate and the ultimate species composition.  相似文献   

18.
Plant breeding has developed perennial ryegrass varieties with increased concentrations of water‐soluble carbohydrates (WSCs) compared with conventional varieties. Water‐soluble carbohydrates are major metabolic and storage components in ryegrass. Therefore, if perennial ryegrass herbage is allowed to grow to greater heights it should contain higher water‐soluble carbohydrates concentrations, for example as under rotational grazing rather than continuous grazing by livestock. This study investigated this hypothesis and measured the performance of lambs grazed rotationally and continuously. Replicated plots of the variety AberDart (bred to express high WSC concentrations) or the variety Fennema were grazed by a core group of ten male Cheviot lambs for 10 weeks. Lambs were weighed and replicate forage samples were taken every 7 d. Concentrations of WSC in AberDart herbage were significantly (P < 0·05), but not substantially, higher than those in Fennema herbage. Rotational grazing did not increase the differential in WSC concentration between the AberDart and Fennema varieties. However, there was a tendency (P = 0·07) for lambs rotationally grazing the AberDart swards to have a higher final live weight than lambs grazing the Fennema swards. Overall, lamb performance was increased when either perennial ryegrass variety was rotationally rather than continuously grazed (P < 0·001).  相似文献   

19.
Comparative herbage characteristics and sheep production (ewes and lambs until weaning and lambs thereafter) from swards of Aurora (very early flowering), Frances (early flowering), Talbot (intermediate flowering) and Melle (late flowering) varieties of perennial ryegrass ( Lolium perenne ) were studied under a continuous variable stocking management based on sward surface height guidelines. The varieties were assessed as grass-only (215 kg N ha−1 fertilizer) and grass/clover (83 kg N ha−1 fertilizer) pastures.
Over 2 years (1985-86) total annual lamb production per hectare from grass-only swards of Aurora was 19% more than that from Frances despite similar herbage productivity. Differences between the varieties in lamb output were more pronounced as grass/clover swards, with Aurora producing 29 and 18% more lamb than Melle and Talbot respectively and with Frances also giving 16% more than Melle. Overall lamb production from grass/clover swards was 10% more than that from the grass-only pastures, mainly due to 69% advantage in individual lamb growth rates after weaning. Herbage organic matter digestibility, during the post-weaning period, was higher on grass/clover than on grass-only swards, and similarly with Aurora versus the other varieties. Under a frequent cut simulated grazing regime the relative herbage productivity of the four varieties differed, with Aurora 13% less productive than Frances.
The results are discussed in relation to the limitations of assessing performance under cutting, and the significance of the interaction in animal productivity between the two sward types.  相似文献   

20.
The benefits of white clover (Trifolium repens L.) in pastures are widely recognized. However, white clover is perceived as being unreliable due to its typically low content and spatial and temporal variability in mixed (grass‐legume) pastures. One solution to increase the clover proportion and quality of herbage available to grazing animals may be to spatially separate clover from grass within the same field. In a field experiment, perennial ryegrass (Lolium perenne L.) and white clover were sown as a mixture and compared with alternating strips of ryegrass and clover (at 1·5 and 3 m widths), or in adjacent monocultures (strips of 18 m width within a 36‐m‐wide field). Pastures were stocked by ewes and lambs for three 10‐month grazing periods. Over the 3 years of the experiment, spatial separation of grass and clover, compared with a grass–clover mixture, increased clover herbage production, although its proportion in the sward declined through time (0·49–0·54 vs 0·34 in the mixture in the first year, 0·28–0·33 vs 0·15 in the second year and 0·03–0·18 vs 0·01 in the third year). Total herbage production in the growing season in the spatially separated treatments decreased from 11384 kg DM ha?1 in the first year to 8150 kg DM ha?1 in the third year. Crude protein concentration of clover and grass components in the 18‐m adjacent monoculture treatment was greater than the mixture treatment for both clover (310 vs 280 g kg?1 DM) and grass (200 vs 180 g kg?1 DM). There was no clear benefit in liveweight gain beyond the first year in response to spatially separating grass and clover into monocultures within the same field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号