首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pyriproxyfen was effective against susceptible Bemisia tabaci eggs at a LC50 of 0.003 mg litre−1 and against nymphs at 0.02 mg litre−1. In comparison, eggs of a laboratory selected, pyriproxyfen-resistant B tabaci strain, originating in an Israeli greenhouse, exhibited 6500-fold resistance and nymphs exhibited 1100-fold resistance. Eggs and nymphs of a strain from an Israeli sunflower field exhibited 450 and 210-fold resistance in comparison to the susceptible standard. Fenoxycarb was generally less effective than pyriproxyfen against B tabaci eggs and nymphs but was unaffected by pyriproxyfen resistance. Piperonyl butoxide (PB) was antagonistic to pyriproxyfen, and this increased with increasing pyriproxyfen resistance. PB had no effect on the toxicity of fenoxycarb. Collectively, these data imply that the modes of action of pyriproxyfen and fenoxycarb are distinct, despite the structural similarities of these molecules. Possible reasons for the antagonism of PB against pyriproxyfen are discussed. © 1999 Society of Chemical Industry  相似文献   

2.

BACKGROUND

Bemisia tabaci is a globally significant agricultural pest including in Australia, where it exhibits resistance to numerous insecticides. With a recent label change, buprofezin (group 16), is now used for whitefly management in Australia. This study investigated resistance to pyriproxyfen (group 7C), spirotetramat (group 23) and buprofezin using bioassays and available molecular markers.

RESULTS

Bioassay and selection testing of B. tabaci populations detected resistance to pyriproxyfen with resistance ratios ranging from 4.1 to 56. Resistance to spirotetramat was detected using bioassay, selection testing and sequencing techniques. In populations collected from cotton, the A2083V mutation was detected in three populations of 85 tested, at frequencies ≤4.1%, whereas in limited surveillance of populations from an intensive horticultural region the frequency was ≥75.8%. The baseline susceptibility of B. tabaci to buprofezin was determined from populations tested from 2019 to 2020, in which LC50 values ranged from 0.61 to 10.75 mg L−1. From the bioassay data, a discriminating dose of 200 mg L−1 was developed. Recent surveillance of 16 populations detected no evidence of resistance with 100% mortality recorded at doses ≤32 mg L−1. A cross-resistance study found no conclusive evidence of resistance to buprofezin in populations with high resistance to pyriproxyfen or spirotetramat.

CONCLUSIONS

In Australian cotton, B. tabaci pest management is challenged by ongoing resistance to pyriproxyfen, while resistance to spirotetramat is an emerging issue. The addition of buprofezin provides a new mode-of-action for whitefly pest management, which will strengthen the existing insecticide resistance management strategy. © 2023 Commonwealth of Australia. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

3.
Populations of the sweetpotato whitefly,Bemisia tabaci (Gennadius), were sampled late in the cotton-growing seasons of 1990, 1991 and 1992, in commercial ‘Acala’ cotton fields in southwestern Israel. In mid summer, when populations ofB. tabaci started to build up, cotton fields were commercially treated with a single application of an IGR (insect growth regulator). The experimental plots were then treated in September with conventional adulticides or with the novel insecticides buprofezin and pyriproxyfen (IGR), and diafenthiuron (a thiourea derivative). The effects of the insecticides onB. tabaci larval and adult populations, and the amount of damage to the cotton lint, were recorded. Untreated populations of larvae and pupae ofB. tabaci in the three end-of-season studies, had the tendency to build up toward the defoliation treatment. However, the level of theB. tabaci populations observed in the experimental fields and the short period of exposure of the open cotton bolls to the whiteflies, did not result in lint damage, probably because the whitefly numbers had been reduced considerably after the defoliation treatment. At the end of the 1991 and 1992 cotton seasons, a high level of parasitism, ranging between 50% and 80%, was recorded. The shift in chemical applications toward the novel IGRs during the season, along with the reduction in insecticide use in general, probably contributed to the propagation of parasitoids, thereby improving whitefly control.  相似文献   

4.
Three experiments were carried out during three consecutive years to evaluate 19 insecticides and 12 tank mixtures of different groups of insecticides against the whiteflyBemisia tabaci and its predators and parasitoids under field conditions in cotton. In the first experiment, the whitefly population was lower in treatments with thiacloprid and higher in those with black warrant (a.i. alcohol) and cypermethrin; the number of predators was higher with Agri-50 and spinosad and lowest with cypermethrin, whereas percent parasitism was higher with thiacloprid and lower with methamidophos. In the second experiment, the whitefly population was lower in treatments with buprofezin, pyriproxyfen and diafenthiuron and higher in those with endosulfan, imidacloprid and thiamethoxam; the number of predators was higher with pyriproxyfen and lower with thiamethoxam, whereas percent parasitism was higher with pyriproxyfen and lower with thiamethoxam. In the third experiment, the whitefly population was lower in a treatment mixture with buprofezin + fenpropathrin and higher in that with thiamethoxam + chlorpyrifos; the number of predators was higher with buprofezin + fenpropathrin and lower with deltamethrin + triazophos and deltamethrin + chlorpyrifos, whereas percent parasitism was higher with the mixture of pyriproxyfen + chlorpyrifos and lower in imidacloprid + chlorpyrifos, betacyfluthrin + triazophos, and deltamethrin + triazophos. Effective use of these insecticides to manage whitefly infestations and to save predators and parasitoids is discussed. http:www.phytoparasitica.org posting August 7, 2008.  相似文献   

5.
BACKGROUND: Bemisia tabaci (Gennadius) biotype B is one of the most important pests on cotton around the world. Laboratory, greenhouse and field experiments were conducted to determine the efficacy of thiamethoxam and imidacloprid seed treatments against B. tabaci on cotton. RESULTS: Under laboratory conditions, the two treatments caused whitefly adult mortality, reduced oviposition and increased mortality of nymphs at 10, 20, 30 and 40 days after germination (DAG). The longer the adults fed on plants from treated seeds, the higher the mortality. The two treatments did not have any effect on eggs. The efficacy of the treated seeds against B. tabaci gradually decreased from 10 to 40 DAG, being the lowest at 40 DAG. In laboratory experiments, the efficacies between the two treatments were similar. In greenhouse experiments, the two treatments were equally effective with lower numbers of whiteflies than untreated controls. With both treatments the concentrations of the active ingredient were gradually reduced with aging of the plants and from the bottom to the top leaves of the plants. Numbers of live whiteflies were well correlated with the dosage of active ingredients. Under field conditions, the seeds treated with both insecticides exhibited similar efficacy against B. tabaci for up to ~2 months. CONCLUSION: Cotton seeds treated with imidacloprid and thiamethoxam were effective against B. tabaci for up to 45 days under laboratory and greenhouse conditions, and up to ~2 months under field conditions. Use of imidacloprid‐ and thiamethoxam‐treated seeds can be an important alternative for management of whiteflies on cotton. Copyright © 2010 Society of Chemical Industry  相似文献   

6.
We studied the presence of a potential transmission barrier that blocks Tomato yellow leaf curl virus in the nonvector greenhouse whitefly, Trialeurodes vaporariorum. Because T. vaporariorum can ingest and retain the virus after acquisition feeding on an infected plant, comparable to the vector whitefly Bemisia tabaci, circumstance evidence suggested that a transmission barrier presents at location(s) where the virus moves from the digestive tract lumen to the hemolymph. To provide direct evidence for the site of a transmission barrier in the nonvector insect, we compared the accumulation levels and localization of the virus between the two species of whiteflies. Quantitative real-time and conventional PCR analysis showed that accumulation of the virus during acquisition feeding and retention after a short acquisition period were indistinguishable between the two species, but the circulation of the virus within the whiteflies differed significantly between the species. In an immunofluorescence analysis using an antibody specific to the coat protein of the virus, the virus was restricted to the luminal surface of the midgut epithelial cells and did not enter their cytoplasm or that of the salivary glands in T. vaporariorum. In contrast, the virus was localized within the cytoplasm of the midgut epithelial cells and in the paired salivary glands of B. tabaci adults. This direct evidence shows that a selective transmission barrier at the luminal membrane surface of midgut epithelial cells in the nonvector whitefly blocks entrance of the virus into the midgut epithelial cells, resulting in incompetence as a vector of the virus.  相似文献   

7.
Diafenthiuron (CGA 106 ’630), a thiourea, was sprayed prior to a 48-h infestation by adult females of the sweetpotato whiteflyBemisia tabaci Gennadius, on cotton seedlings under greenhouse conditions; it subsequently suppressed strongly progeny formation of the whitefly, resulting in approximately 50% progeny formation relative to control at 5 mg a.i./l. When the different development stages were separately sprayed directly, the larval stage was the most susceptible, resulting in 50% and 90% mortality of 2nd instars at concentrations of 6.5 and 49.2 mg a.i./l, whereas the LC50 values of adults and pupae were 23 and 45 mg a.i./l, respectively. A mild (30–35%) reduction of egg hatch was obtained at a range of 5–125 mg a.i./l. Thus the potency of diafenthiuron against various stages was in the order larvae > adults > pupae > eggs. Diafenthiuron exhibited a low vapor phase toxicity and had no translaminar effect when tested on first instars ofB. tabaci. The high potency of diafenthiuron against whiteflies described herein, against aphids and mites, as stated in the literature, and against some lepidopterous pests, render this compound an important insect control agent for pests of cotton and other crops.  相似文献   

8.
Protected tomato is the most important horticultural crop in the Algarve (south of Portugal). However, the growing area has decreased by almost 48% since 1995, mainly as a result of the pests Bemisia tabaci and Trialeurodes vaporariorum and the epidemics of Tomato yellow leaf curl virus (TYLCV), a Begomovirus transmitted by B. tabaci. Both whiteflies are vectors of economically important viruses. Recently, Tomato chlorosis virus (ToCV), a member of the genus Crinivirus, transmitted by both B. tabaci and T. vaporariorum, was reported infecting tomato crops in Algarve. A study was carried out to evaluate the dynamics of whitefly populations on tomato crops in Algarve. Population counts of B. tabaci were high in the first months of autumn, then decreased until January, when numbers of T. vaporariorum became higher. Counts of B. tabaci then increased again.  相似文献   

9.
The tobacco whitefly, Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) which occurs in various parts of the world, has developed a high degree of resistance against several chemical classes of insecticide, including organophosphates, carbamates, pyrethroids, insect growth regulators and chlorinated hydrocarbons. The present studies were done in order to monitor the susceptibility of whitefly populations in southern Spain to insecticides commonly used there. Systemic bioassays using Spanish field populations of B tabaci collected in 1994, 1996 and 1998 indicated an increase, albeit a slow one, in resistance to imidacloprid over this period. Comparative studies of other neonicotinoids using the same bioassay revealed a high degree of cross‐resistance to acetamiprid and thiamethoxam. Leaf‐dip bioassays with adult females from these populations revealed a high level of resistance to cyfluthrin, endosulfan, monocrotophos, methamidophos, and pymetrozine, each at 200 mg litre−1. Buprofezin and pyriproxyfen were tested against second‐instar nymphs and eggs, respectively. Buprofezin also showed a lower efficacy against ESP‐98, a strain of B tabaci received from Almeria in 1998, but pyriproxyfen resistance was not obvious when tested against eggs of strain ESP‐98. Field trials in 1998 revealed good efficacy of imidacloprid in one farm in the Almeria region and two greenhouses in Murcia and Sevilla, but a loss of activity by imidacloprid in another farm in the Almeria region. Cross‐resistance between imidacloprid and thiamethoxam was also confirmed under field conditions. © 2000 Society of Chemical Industry  相似文献   

10.
Begomoviruses are transmitted by a single species of vector insect, the whitefly Bemisia tabaci, in a circulative manner. However, the mechanisms of this strict vector specificity have not been clarified. By immunoelectron microscopy, we showed that a begomovirus, Tomato yellow leaf curl virus (TYLCV), can enter midgut epithelial cells of the vector whitefly B. tabaci but not those of a nonvector whitefly, Trialeurodes vaporariorum, belonging to the same family. In midgut epithelial cells of viruliferous B. tabaci, the virus was localized in vesicle-like structures, suggesting endocytosis as an entry mechanism. These structures were also observed in midgut cells of nonviruliferous B. tabaci that had fed on healthy plants and in those of the nonvector T. vaporariorum that had fed on virus-infected plants. Vesicles containing TYLCV particles were observed most frequently in cells in the anterior part of the descending midgut, suggesting that this is the major entry site. These results clearly demonstrated that the virus-containing vector and nonvector whiteflies differ in the cellular localization of the virus and strongly suggest that a critical step in determining the vector insect specificity of begomoviruses is the entry of the viruses into midgut epithelial cells.  相似文献   

11.
A whitefly (Bemisia argentifolii) resistance crisis climaxed in 1995 in Arizona cotton and prompted the development of an integrated resistance management strategy adapted from a program implemented in Israel in 1987. The strategy incorporated two new major elements: once-per-year use of the insect growth regulators (IGRs) pyriproxyfen and buprofezin, and measures to delay use of pyrethroids for as long into the growing season as possible. A three-stage chemical use recommendation was formulated comprising IGRs (Stage I), other non-pyrethroid insecticides (Stage II), and synergized pyrethroid insecticides (Stage III). Results from use of the strategy in the 1996 season were very promising. Insecticide use for control of whiteflies was reduced substantially. State-wide monitoring of whitefly susceptibility revealed significant reductions in resistance to synergized pyrethroids as well as increased susceptibility to amitraz. Susceptibility of Lygus bugs to key insecticides changed correspondingly with increases and decreases in whitefly resistance from 1994 through 1996. ©1997 SCI  相似文献   

12.
为评价释放前经历饥饿对浅黄恩蚜小蜂Encarsia sophia(GiraultDodd)寄生取食粉虱能力的影响,以3龄Q隐种烟粉虱Bemisia tabaci Q和温室白粉虱Trialeurodes vaporariorum若虫为寄主,在2种粉虱单独或同时存在的情况下,比较释放前经适度饥饿、初羽化未饥饿和初羽化喂饲蜂蜜水3种处理的浅黄恩蚜小蜂对2种粉虱寄主的寄生和取食选择情况。结果表明,在2种粉虱单独存在时,经适度饥饿6 h的浅黄恩蚜小蜂寄生的烟粉虱和温室白粉虱显著多于其它处理,而且能取食更多的温室白粉虱,经适度饥饿的寄生蜂在24 h内通过寄生和取食杀死烟粉虱和温室白粉虱的总量分别为12.5头和12.9头。在2种粉虱同时存在时,适度饥饿寄生蜂取食2种粉虱的总量明显高于其它处理,但不同处理间无显著差异,适度饥饿寄生蜂通过寄生和取食杀死2种粉虱的数量最多为11.5头,显著高于未饥饿处理的6.5头。表明释放前经历适度饥饿可以明显提高浅黄恩蚜小蜂寄生和取食粉虱若虫的能力。  相似文献   

13.
BACKGROUND: Bemisia tabaci Gennadius Q‐biotype has readily developed resistance to numerous insecticide classes. Studies in the Mediterranean area are needed to clarify the resistance status and cross‐resistance patterns in this invasive whitefly biotype. The levels of resistance in nymphs of seven strains of B. tabaci Q‐biotype from south‐eastern Spain to representative insecticides were determined. RESULTS: Six populations had low to moderate levels of resistance to azadirachtin (0.2‐ to 7‐fold), buprofezin (11‐ to 59‐fold), imidacloprid (1‐ to 15‐fold), methomyl (3‐ to 55‐fold), pyridaben (0.9‐ to 9‐fold), pyriproxyfen (0.7‐ to 15‐fold) and spiromesifen (1‐ to 7‐fold), when compared with a contemporary Spanish Q‐biotype reference population (LC50 = 2.7, 8.7, 15.2, 19.9, 0.34, 20.9 and 1.1 mg L?1 respectively). A single population collected from a greenhouse subject to intensive insecticide use exhibited generally higher resistance levels to the same array of compounds (31‐, 1164‐, 3‐, 52‐, 9‐, 19‐ and 3‐fold respectively). Pyridaben and spiromesifen were extremely effective against nymphs of all strains, with LC50 values significantly below recommended application rates. CONCLUSION: In contrast to previous reports, high rates of efficacy exist for numerous insecticide classes against B. tabaci Q‐biotype populations in these intensive agricultural regions of south‐eastern Spain. This probably reflects the recent and significant reductions in exposure that have resulted from a wider uptake of IPM technologies and strategies. However, the continued presence of resistance genes also suggests that a reversion to levels of high insecticide exposure could result in a rapid selection for resistance. Copyright © 2009 Society of Chemical Industry  相似文献   

14.
Milbemectin has a chemical structure close to the group of avermectins, which are derived fromStreptomyces avermitilis, and is considered primarily an efficient miticide. Effects of milbemectin on the sweetpotato whitefly,Bemisia tabaci Gennadius, were investigated under laboratory and field conditions. In bioassays conducted under controlled chamber conditions, the compound affected 1st instars ofB. tabaci, resulting in a LC90 of 0.06 mg a.i. I-1. Later stage larvae were much less affected. Milbemectin is highly photodegradable in sunlight. In laboratory assays, when treated cotton seedlings were subjected to 3 h of sunlight before being exposed toB. tabaci adults, no mortality of the whiteflies was observed. Milbemectin at a concentration of 2 mg a.i. I-1 applied in combination with 0.2% ‘Ultra Fine’ mineral oil showed a residual activity of 67% adult mortality 10 days after application, whereas milbemectin alone had no appreciable activity. The effect of milbemectin on whitefly populations in a cotton field was compared with that of cypermethrin and of untreated control. Although milbemectin was not applied with mineral oil, it was more effective than cypermethrin in controlling the whitefly populations. This insecticide/miticide seems not to affect appreciably natural enemies ofB. tabaci. Milbemectin may be considered a compound with the potential for controllingB. tabaci populations. Mineral oils enhanced the potency of milbemectin on both whitefly larvae and adults. http://www.phytoparasitica.org posting July 27, 1999. Contribution No. 501/99 from the Inst. of Plant Protection, Agricultural Research Organization.  相似文献   

15.
BACKGROUND: Insecticidal activities of five photoactive dyes against greenhouse whitefly (GWF), Trialeurodes vaporariorum West., in tomatoes were investigated to improve the control efficacy of an entomopathogenic fungal product, Isaria fumosorosea SFP‐198 wettable powder (WP). Azorubine, Eosin B, Erythrosine, Brilliant Green and Phloxine B were used in this work, accompanying pyriproxyfen emulsifiable concentrate (EC) as a commercial standard for comparison. RESULTS: Phloxine B had the highest control efficacy in glasshouse conditions. The most suitable dose of Phloxine B was determined as 0.005 g L?1, given the dosage‐dependent control efficacy and phytotoxicity of the dye, and its influence on the germination of SFP‐198 conidia. In field conditions, SFP‐198 WP + Phloxine B (2 + 0.005 g L?1; tank mix) showed 89.1 and 95.3% control efficacy 7 and 14 days post‐application, which was significantly higher than the efficacy of SFP‐198 WP alone (43.5 and 64.0%), Phloxine B (47.5 and 30.7%) or pyriproxyfen EC (67.7 and 80.2%). CONCLUSION: Phloxine B cooperates with SFP‐198 WP complementarily, possibly in the order of killing action (early: Phloxine B; late: SFP‐198 WP). The dye can be incorporated into SFP‐198 WP to improve its efficacy and applied to other Hypocrelean entomopathogenic fungal products. Copyright © 2010 Society of Chemical Industry  相似文献   

16.
Plant Viruses Transmitted by Whiteflies   总被引:18,自引:0,他引:18  
One-hundred and fourteen virus species are transmitted by whiteflies (family Aleyrodidae). Bemisia tabaci transmits 111 of these species while Trialeurodes vaporariorum and T. abutilonia transmit three species each. B. tabaci and T. vaporariorum are present in the European–Mediterranean region, though the former is restricted in its distribution. Of the whitefly-transmitted virus species, 90% belong to the Begomovirus genus, 6% to the Crinivirus genus and the remaining 4% are in the Closterovirus, Ipomovirus or Carlavirus genera. Other named, whitefly-transmitted viruses that have not yet been ranked as species are also documented. The names, abbreviations and synonyms of the whitefly-transmitted viruses are presented in tabulated form together with details of their whitefly vectors, natural hosts and distribution. Entries are also annotated with references. Whitefly-transmitted viruses affecting plants in the European–Mediterranean region have been highlighted in the text.  相似文献   

17.
BACKGROUND: Spiromesifen is a novel insecticidal/acaricidal compound derived from spirocyclic tetronic acids that acts effectively against whiteflies and mites via inhibition of acetyl‐CoA‐carboxylase, a lipid metabolism enzyme. The effects of spiromesifen on the developmental stages of the whitefly Bemisia tabaci (Gennadius) were studied under laboratory conditions to generate baseline action thresholds for field evaluations of the compound. RESULTS: Adult B. tabaci mortality rate after spiromesifen treatment (5 mg L?1) was 40%. Treatment with 0.5 mg L?1 reduced fecundity per female by more than 80%, and fertility was almost nil. LC50 for eggs was 2.6 mg L?1, and for first instar 0.5 mg L?1. Scanning electron microscopy revealed that eggs laid by treated adult females had an abnormally perforated chorion, and females were unable to complete oviposition. Light and fluorescent microscopy showed significantly smaller eggs following treatment, and smaller, abnormally formed and improperly localized bacteriomes in eggs and nymphs. The number of ovarioles counted in females treated with 5 mg L?1 was significantly reduced. Spiromesifen showed no cross‐resistance with other commonly used insecticides from different chemical groups, and resistance monitoring in Israel showed no development of field resistance to this insecticide after 1 year of use. CONCLUSION: The strong effect on juvenile stages of B. tabaci with a unique mode of action and the absence of cross‐resistance with major commonly used insecticides from different chemical groups suggest the use of spiromesifen in pest and resistance management programmes. Copyright © 2008 Society of Chemical Industry  相似文献   

18.
At the Research Institute of Vegetable Crops in Skierniewice, investigations were carried out on the effectiveness of control of Trialeurodes vaporariorum with the new selective insecticides based on insect growth regulators, and with yellow boards covered with glue. Experiments with yellow boards showed that this method can keep whitefly populations at a tolerable level for about 30 days. Good effects with yellow boards were only obtained with low whitefly populations, up to a few adults per leaf. The best result in whitefly control was given by Applaud 25 WP (buprofezin) at the rate of 0.5–1 kg ha?1 of product. One treatment with Applaud 25 WP kept the whitefly population below tolerable levels for about 40 days, and had an effect similar to that of six treatments with the methomyl-based insecticides.  相似文献   

19.
Bemisia tabaci (Gennadius) adults and immatures were collected from poinsettia plants at two commercial production greenhouses in Guatemala during an invited tour to observe IPM practices within the facilities. Despite extensive scouting, only low numbers of insects were collected from vegetable, weed and wild ornamentals species located close to these facilities. Prior to molecular and biochemical analyses, whitefly immatures were initially identified as B. tabaci using morphological characters of the pupae to distinguish them from the greenhouse whitefly. The biotype status of adults and immatures was then established using esterase isozyme patterns and MTCO1 sequencing. The Q biotype was the only biotype found on commercially grown poinsettia plants. The previously recorded B biotype was observed outside the greenhouse facilities on Lactuca spp., Hibiscus spp. and Euphorbia spp. (wild poinsettia). The New World biotype was observed on wild poinsettia and field-grown beans (Phaseolus spp.). This is the first report of the Q biotype in Guatemala, and serves notice of the need for greater vigilance in the management of whiteflies on poinsettia mother stock used as a source of cuttings for export to the USA.  相似文献   

20.
Plant resistance has become an important component of integrated pest management (IPM) for management of whitefly, Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae), an important pest of cotton in India. The present studies were undertaken to standardize the plant stage and identify resistant cotton genotypes against whitefly. Nine plant stages of F846, a susceptible cotton genotype, were exposed to whitefly for 25 days under no-choice conditions. The population buildup (eggs, nymphs, pupae and adults) was recorded. The 12-, 14- and 16-leaf stages were suitable for plant resistance studies against whitefly, and the 14-leaf stage was taken for further studies. Ten cotton genotypes of Gossypium hirsutum and two of G. arboreum were covered with split cages in which five pairs of B. tabaci (F1) were released. The population buildup was recorded to categorize genotypes as resistant, moderately resistant, moderately susceptible or susceptible. The experiment was repeated with F2 and F3 generation whiteflies. Based on overall average score of three experiments, LD694 was rated as resistant; LK861, Supriya, RS2013, CNH911 and PA183 as moderately resistant; IS-376/4/1/20/72, NHH44, TxMaroon2-78, Bt 6304 and RS2098 as moderately susceptible; and F846 as susceptible. LD694 was found to be resistant in three consecutive generations of whitefly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号