首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silviculturally-managed pine plantations within southern Ohio are chronically disturbed patches of introduced vegetation distinct from the surrounding matrix of hardwood forest. To determine the successional pathways by which such pine stands might blend back into the hardwood forest matrix under different types of silvicultural management, we determined the current status of hardwood regeneration under 24 pine stands. Stands of Pinus virginiana (Virginia pine) had the highest density of hardwood seedlings and saplings (20,560 stems ha-1) whereas P. strobus (white pine) stands averaged only 7090 hardwood stems ha-1; P. resinosa (red pine) stands were intermediate. The most abundant hardwood seedling and sapling species under pine canopies were Acer rubrum and Cornus florida. DCA ordination of the seedling + sapling assemblages clustered most of the P. resinosa and P. strobus stands in the center of the ordination along with a group of species which are common in second-growth forests of the area. P. virginiana stands, in contrast, were scattered throughout the ordination space. Most of the woody species common in second-growth forests of the region were also common in the pine understory. Multiple regression indicated that large plantations with deeper litter, higher soil pH and lower total hardwood density had the greatest abundance of mesic-site species in the understory. This relationship did not hold for P. resinosa stands, however, due to more frequent and intense silvicultural intervention. The seed bank was not an important source of woody seedlings to the understory assemblage under intact pine plantations. The vegetation of 1–4 yr old clear-cut sites was dominated by wind and bird dispersed species which were generally absent from the understory of intact plantations. We conclude these chronically disturbed planted patches will revert to matrix vegetation faster if the disturbance is allowed to end in a gradual manner through stand senescence than if it is abruptly ended by clear-cutting.  相似文献   

2.
Control of C,N,P distribution in soils of riparian forests   总被引:9,自引:0,他引:9  
It is now well accepted that riparian forests have an important role in regulating upstream/downstream flow of matter and energy in river ecosystems. Since geomorphic processes determine the structure of channels and floodplains, we have investigated whether different geomorphic features of riparian forests had any effects on the ability of their soils to retain nutrients and organic carbon. Willow riparian forests were chosen within the annual floodplain of the Garonne River, southwest France, to represent two different geomorphic types. Erosional types of riparian forests (E-type) were characterized by sand deposition on their soils because of high current velocity which hampered fine particle deposition. Depositional types of riparian forests (D-type) were characterized by slower overflow velocity; consequently silt and clay were dominant in their soils. Soil samples were taken at the end of the vegetation growth period, coinciding with low water levels prior to annual floods. Erosion and sedimentation processes affected the distribution of total C,N, and P contents in riparian forest soils, since they were significantly correlated with soil grain size. D-type riparian forest soils act as a sink for upstream/downstream nutrients and carbon flows during floods through accumulation of total C,N and P from year to year. In contrast, E-type riparian forests act as potential nutrient sources during high water periods, since they may release from their soils large amounts of easily available C, N and P into the river. These results demonstrate that nutrients and carbon retention ability of riparian forests soils should be analyzed through their geomorphic features rather than by their vegetation composition. Even if they belong to the same vegetation succession, riparian forests should not be considered as a homogeneous buffering system for upstream/downstream flows of nutrients and organic carbon.  相似文献   

3.
Intense harvesting and slash fires during the late 1800s and early 1900s led to homogenization throughout the Great Lakes region via the conversion from tamarack, pine, and spruce forests to aspen forests, which are supported by the forest products industry. Subsequently, mesophication occurred in the eastern United States due to fire suppression, transforming oak woodlands to mixed mesophytic forests. We explored both homogenization and mesophication at a regional scale by quantifying changes in community composition and density between historical General Land Office survey points and current USDA Forest Analysis and Inventory plots for Minnesota??s Laurentian Mixed and Eastern Broadleaf Forest provinces. We used the Morisita plotless density estimator and applied corrections for surveyor bias to estimate density for historical forests and we used known densities of FIA plots to predict current densities with random forests, an ensemble regression tree method, and terrain and soil predictor variables. Of the 43 ecological units used in the analysis, only one current community was similar to its historical counterpart. Within the Laurentian Mixed Forest province, forest density of primarily mature aspen stands is reduced slightly today compared to the tamarack-dominated forests of the past. Conversely, in the Eastern Broadleaf Forest province, forest densities have increased compared to historical pine and oak woodlands, due to increases of densely growing, fire-sensitive species. Ordinations of functional traits and structure showed substantial changes between current and historical communities as well as reduced differentiation among current communities compared to their historical counterparts. Homogenization in the Laurentian Mixed Forest is occurring by transition from early-successional to late-successional species, with associated changes in forest ecosystems, and homogenization and mesophication in the Eastern Broadleaf Forest are occurring by transition from disturbance-stabilized genera of open forest ecosystems to non-disturbance-dependent genera of dense forests. Despite different starting points of historical forest ecosystems in the Laurentian Mixed Forest and Eastern Broadleaf Forest, we found homogenization and mesophication to be interrelated in the convergence of composition and densities along a common trajectory to dense forests composed of late-successional species in Minnesota.  相似文献   

4.
A probabilistic spatial model was created based on empirical data to examine the influence of different fire regimes on stand structure of lodgepole pine (Pinus contorta var. latifolia) forests across a >500,000-ha landscape in Yellowstone National Park, Wyoming, USA. We asked how variation in the frequency of large fire events affects (1) the mean and annual variability of age and tree density (defined by postfire sapling density and subsequent stand density) of lodgepole pine stands and (2) the spatial pattern of stand age and density across the landscape. The model incorporates spatial and temporal variation in fire and serotiny in predicting postfire sapling densities of lodgepole pine. Empirical self-thinning and in-filling curves alter initital postfire sapling densities over decades to centuries. In response to a six-fold increase in the probability of large fires (0.003 to 0.018 year−1), mean stand age declined from 291 to 121 years. Mean stand density did not increase appreciably at high elevations (1,029 to 1,249 stems ha−1) where serotiny was low and postfire sapling density was relatively low (1,252 to 2,203 stems ha−1). At low elevations, where prefire serotiny and postfire lodgepole pine density are high, mean stand densities increased from 2,807 to 7,664 stems ha−1. Spatially, the patterns of stand age became more simplified across the landscape, yet patterns of stand density became more complex. In response to more frequent stand replacing fires, very high annual variability in postfire sapling density is expected, with higher means and greater variation in stand density across lodgepole pine landscapes, especially in the few decades following large fires.  相似文献   

5.
湖南的松菌   总被引:2,自引:3,他引:2  
湖南的松菌是深受当地群众欢迎的一种野生食用菌。可是长期以来,湖南的松菌都被误指为松乳菇[Lactarius deliciosus(L.:Fr.)Gray]。我们调查研究后认为,湖南的松菌应是红汁乳菇(Lactarius hatsutake Tanaka),而非松乳菇。湖南的松菌主要发生在马尾松林下,与马尾松形成共生关系。红汁乳菇的菌根平滑,二叉状,紫红色。  相似文献   

6.
We used aerial photography from 1960, 1974 and 1994 to quantify meso-scale spatial and temporal invasion patterns of an exotic, leguminous shrub, Acacia nilotica, in a northern Australia grassland. The invasion was episodic, the population remained relatively stable from 1960 to 1974, then exhibited a large increase from 1974 to 1994. This episodic increase did not appear to be regulated by climate or changes in landscape attributes, but rather, paralleled a shift to cattle (a more effective dispersal vector) as the dominant domestic livestock species, implicating more effective dispersal as the proximate cause. We also measured much greater A. nilotica densities adjacent to water courses than in upland areas, suggesting either better quality habitat or greater numbers of seeds deposited there by cattle. We infer that habitat quality rather than seed availability regulates shrub density as density remained constant from 1974 to 1994 in areas that were occupied in the 1960 to 1974 period. There was a significant effect of landscape position on population dynamics of the invasion. A. nilotica increased in both extent and density in riparian areas but remained static in upland areas during 1960–1974. There were significant increases in extent and density in both riparian and upland areas in 1974–1994. Thus, it is likely that landscapes with fewer or smaller riparian areas would be less susceptable to the invasion of A. nilotica. However, the ability of domestic stock to transport seeds across distances that exceed the distance between riparian areas renders this argument less relevant.The transition from open grassland to shrubland may be irreversible in a practical sense, so control programs should emphasize containment of the invasion to existing levels as well as restoration of invaded areas. This will require strategies, tactics and operations to 1) control cattle movement, 2) exclude cattle from seed producing A. nilotica populations, 3) detect new populations early in the life cycle and implement broadscale, low-cost control techniques and 4) prioritize eradication efforts on populations that act as a seed source to uninfested areas.  相似文献   

7.
We assessed the possible influences of dominant tree density (Butia yatay palm trees) and fire on the expansion of a riparian tree population (Myrcianthes cisplatensis) over El Palmar National Park, a protected savanna in Argentina. Our approach is based on Skellam’s model of population expansion, which predicts that populations with density-independent reproduction and random dispersal will exhibit Gaussian-shaped expansion fronts. Using Poisson regression, we fitted Gaussian curves to Myrcianthes density data collected at varying distances from a riparian forest, within four environmental conditions resulting from combinations of palm density (dense and sparse) and fire history (burned and unburned). Based on the estimated parameters, we derived statistics appropriate to compare attained expansion velocity, mean squared effective dispersal distance, and density-independent population growth among environmental conditions. We also analyzed the effects of palm density, fire history, and distance from the riparian forest on local maximum size of Myrcianthes individuals. Gaussian curves fitted the data reasonably well and slightly better than two alternative front models. Palm density and fire history interacted to control Myrcianthes spread, making unburned dense palm savannas the preferential avenue for Myrcianthes population expansion across the landscape. Limitation of Myrcianthes expansion by fire appeared to result from low survival of small individuals to fire, whereas facilitation of Myrcianthes expansion by palm trees may have resulted from increased population growth. Our results stress the interactive role of fire regime and local biotic influences in determining propagule pressure and tree establishment at the forefront, and the overall vulnerability of savannas to colonization by forest species.  相似文献   

8.
张涛  黄若之 《中国园艺文摘》2011,27(11):93-94,74
黑皮油松植物景观是东北地区极具特色的植物景观。黑皮油松姿态俊美强劲,尤其是冬态能充分体现出东北的植物景观特色。松树的栽植在秦朝就已有史料记载,时至今日更是广泛应用于园林景观中。在我国北方地区松树作为长绿树种更是应用广泛。中国人爱松,不仅是爱其苍劲挺拔的姿态,更是对其高尚气节的崇拜和倾慕,松的精神更是人们陶冶情操和品德修养的精神动力。松的景观营造在构成形式法则上,应遵循节奏与韵律、对比与和谐、变化与统一。  相似文献   

9.
Pärtel  Meelis  Mändla  Riina  Zobel  Martin 《Landscape Ecology》1999,14(2):187-196
The landscape history of the largest calcareous seminatural alvar site (ca. 700 ha) in Estonia, is described with the help of a historical map from 1705 and aerial photographs from 1951, and recent vegetation mapping from 1994–1996. The seminatural, species rich alvar grasslands originate and are maintained by grazing of domestic animals. Three hundred years ago the area was mainly open grassland with sparse shrubs and some fields. Forty years ago the vegetation pattern was similar, with some smaller forests and forest clear-cut areas present. Now, since grazing has ceased for ca. 40 years, only 30% of the area remains as open grassland and 70% as forest. Identification of clusters of field layer vegetation using the program TABORD resulted in 8 clusters, which agreed with the empirically determined community types. The field layer within the young pine forest (up to 20 year old pines) is similar to the open alvar grassland. In older forests, the field layer has already changed. There were no phytosociological differences found between ancient grasslands and grasslands on former arable fields or forest clear-cut areas. Decrease in species richness, compared to open grassland, was most drastic in forests of age 20–40 years where the canopy was most closed. Forests have spread more extensively in areas with deeper soil. The continuation of traditional management (grazing and tree cutting) in alvar grasslands is urgently needed in order to keep seminatural alvar grasslands open. The possibility to restore open grasslands remains as long as there is a pool of grassland species available, especially in younger forests.  相似文献   

10.
Broad scale ecological edge-effects are most likely common in urbanized landscapes prone to wildfire, but most edge-effect studies have focused on fine scale processes such as shade tolerance and seed dispersal. Evidence has suggested a shift from pine dominated to oak dominated forests at the interface of developed land and natural areas in the Pinelands of New Jersey with the presence of a large edge-effect due to fire suppression. The goal of this study was to assess the location, magnitude and mechanism of the shift from pine to oak cover focusing on distance to human-altered land as the driver of fire suppression and forest composition changes. Overall, fire frequency and upland pine cover decreased sharply closer to human-altered land and affected up to 420 m of adjacent upland forest. Other factors, such as prescribed fire and wetlands configurations may play a role in the interior forest dynamics, but trends toward lower upland pine forest cover and higher upland oak cover near human altered were dominant. The areal summations of distance from altered land and the use of percent change thresholds for determining the scale and magnitude of large scale ecological edge-effects could be useful to managers attempting to maintain or restore forest types in areas of high wildland–urban interface.  相似文献   

11.
遵义红军山和红花岗风景林坐落于遵义市区中心,山上有集中连片的马尾松林570.33hm^2,主要树种为马尾松,与遵义县龙坑镇松材线虫病疫点直线距离不足15km。该片松林所处的政治地位、生态地位、社会地位都具有特别重要的位置,对于如何保护好山上的一草一木,使该片马尾松林免遭松材线虫病的毁灭性危害,笔者提出预防设想与对策。  相似文献   

12.
In landscapes dominated by late-successional plant communities, early-successional species may lead a tenuous existence, persisting only as fugitives or relying on refuges in marginal habitats to provide a persistent seed source. The objective of this study was to relate fine-scale distributions of early-successional tree species in hemlock-hardwood forests of northern Wisconsin, USA to potential landscape persistence strategies. A special emphasis was placed on eastern white pine (Pinus strobus), a restoration priority in the region. Witness tree data from nineteenth century US Public Land Survey records (encompassing 40,610?km2 and 106,790 trees) were used with modern environmental data to relate species distributions to habitat characteristics. Early-successional tree species had strong positive associations with marginal habitats such as inclusions of sandy soil and margins of lakes, wetlands, and rivers. Marginal habitats occupied ~44 % of the landscape, which may help account for the abundance of early-successional species in our study area relative to other hemlock-hardwood forests. Populations of early-successional species in marginal habitats could also have provided important seed sources for the upland mesic landscape matrix, as >70 % of the landscape was within 200?m of these habitats. The degree to which early-successional species were limited to marginal habitats largely followed predictions based on species life-history characteristics, except that white pine was more common than expected in upland mesic habitats. These findings illustrate the potential importance of landscape heterogeneity for persistence of early-successional species in late-successional forest landscapes and provide baseline information on habitat associations and landscape dynamics that will be useful in restoration efforts.  相似文献   

13.
In British Columbia, large-scale salvage harvesting has been underway to recover timber value from forest stands infested by mountain pine beetle during the current outbreak. Understanding the response of beetles to clearcut edges particularly at the landscape scale is crucial to understanding the impacts of increased habitat fragmentation due to salvage harvesting on the spread of the beetle infestations. A novel proximity analysis approach based on null models of complete spatial randomness with three different spatial extents was developed to examine the spatial patterns of infestations in relation to cutblocks. Inhomogeneous Poisson point process models were fitted to predict how intensities of infestations varied with distances to the nearest cutblocks. Marked Poisson point process models were also fitted to evaluate the effects of the variables associated with the nearest cutblocks and adjacent infested pine stands on the edge response of beetles. The results clearly illustrated a significant positive edge response of beetles at the landscape scale. The intensities of infestations decreased non-linearly with distances to the nearest cutblocks. The results also suggested that the quality and distribution of key habitat resources could not fully explain the fundamental mechanisms underlying the edge response. The behavioural change of beetle dispersal at edges may also be an important factor contributing to a positive edge response. The results from this study may be useful in improving the efficacy of mountain pine beetle management efforts.  相似文献   

14.
Temporal changes in a hydrological system and riparian ecosystem were examined with reference to land-use conversion in order to clarify the linkages between these two systems. First, the hydrological system of the Toikanbetsu River basin was divided into three components that measure water retention, inundation and conveyance. Variation in the hydrological system was expressed as a basis of delineating the three components and estimating their functions. The rainfall-runoff system was also examined using a model which can predict responses of surface-, subsurface- and base flows on rainfall intensity. Second, areas and fragmentation of the riparian forests, maximum stream temperature in summer and amount of coarse woody debris (CWD) were selected as parameters indicating the condition of the riparian ecosystem. Temporal changes in stream temperature and amount of CWD were estimated using multiple regression analysis and analysis of variance, respectively. The results indicated that the hydrological system has been altered since the 1970s, increasing flood peaks by 1.5–2.5 times and shortening peak appearance by 7 hours. Riparian forests have been disappearing since the 1960s due to extensive development of agricultural lands and river channelization. The summer maximum stream temperature increased from 22 °C in 1947 to 28 °C at present. The amount of CWD should substantially decrease with river channelization and associated forest cutting. Fish favoring cool water, such as masu salmon, could survive in 1947 although they are forced to migrate to cooler forested upstream tributaries now. The ecological systems were closely related to and distinctly altered by land-use. Finally, we propose a new perspective for understanding the two interrelated systems. Riparian ecosystems can be restored by restoring water retention and inundation functions, which also reduce the flood hazard generated by elevated flood peaks.  相似文献   

15.
Wolter  Peter T.  White  Mark A. 《Landscape Ecology》2002,17(2):133-155
Landsat TM satellite data covering an approximate 5-year interval (1990–1995) were used to quantify spatial pattern and transition rates between forest ecological states for a 2.76 million ha region in northeast Minnesota. Changes in forest cover were stratified by Ecological Subsection, management status, and by ownership categories using a 1995 digital ownership layer. Approximately 4.2% of the 1990 mature forested area was converted to early successional types by 1995. Of this 4.2%, private lands accounted for 33%, federal lands 31%, county lands 20% and state lands 16%. Notable conversion percentages by cover type category were spruce-fir (−5.3%), aspen-birch(−4.7%), jack pine (−4.6%) and black spruce(−3.0%). Transition rates were also adjusted to fit ten-year time intervals. Shannon-Weaver Eveness and edge density of cover types increased over the study period as relative contagion and interior forest area decreased. These trends suggest both smaller patches and a more even distribution of cover types. Area of upland conifers, lowland conifers and lowland hardwoods decreased while the area of mature upland hardwoods increased in most patch size classes except the > 500 ha class which showed a substantial decrease in area. The area of early successional types increased in most patch size classes. Non-industrial private forestland had the lowest proportion of interior forest of all ownership categories -decreasing by 13.5% in five years. Smaller average cut-unit size sand uncoordinated forest management is the likely cause since cutting rates between private and public forestland were similar. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Hansen  A.J.  Rotella  J.J.  Kraska  M.P.V.  Brown  D. 《Landscape Ecology》2000,15(6):505-522
Landscapes are often heterogeneous in abiotic factors such as topography, climate, and soil, yet little is known about how these factors may influence the spatial distribution of primary productivity. We report estimates of aboveground net primary productivity (ANPP) in 90 sample stands stratified by cover type and elevation class, and use the results to predict ANPP across a portion of the Greater Yellowstone Ecosystem. Tree ANPP was estimated by sampling tree density by species and diameter classes and estimating average annual diameter increment by tree coring. Biomass for current tree diameter and past tree diameter were calculated by species and diameter class for each stand using the dimension analysis software BIOPAK. Shrub ANPP was estimated by calculating current biomass from basal area using BIOPAK and dividing by the assumed average life span of the shrubs. Clipping at the end of the growing season was used to estimate herb ANPP. Differences in ANPP among cover types and elevation classes were examined with analysis of variance. Multiple regression was used to examine relationships between ANPP, and soil parent material, topography, and cover type. The best regression model was used to predict ANPP across the study area.We found ANPP was highest in cottonwood, Douglas-fir, and aspen stands, intermediate in various seral stages of lodgepole pine, and lowest in grassland and sagebrush cover types. Parent material explained significant variation in ANPP in mature and old-growth lodgepole pine stands, with rhyolite ash/loess being the most productive parent material type. ANPP decreased with increasing elevation in most cover types, possibly because low temperatures limit plant growth at higher elevations in the study area. ANPP was not related to elevation in mature and old-growth lodgepole pine stands, due to relatively rapid growth of subalpine fir at higher elevations.A regression model based on cover type and elevation explained 89% of the variation in ANPP among the sample stands. This model was used to generate a spatially continuous surface of predicted ANPP across the study area. The frequency distribution of predicted ANPP was skewed towards lower levels of ANPP, and only 6.3% of the study area had a predicted ANPP level exceeding 4500 kg/ha/yr. Patches high in predicted ANPP were primarily at lower elevations, outside of Yellowstone National Park, and near the national forest/private lands boundary. These patterns of ANPP may influence fire behavior, vertebrate population dynamics, and other ecological processes. The results reinforce the need for coordinated management across ownership boundaries in the Greater Yellowstone Ecosystem.  相似文献   

17.
Parameters of fire regimes, including fire frequency, spatial extent of burned areas, fire severity, and season of fire occurrence, influence vegetation patterns over multiple scales. In this study, centuries-long patterns of fire events in a montane ponderosa pine – Douglas-fir forest landscape surrounding Cheesman Lake in central Colorado were reconstructed from fire-scarred trees and inferences from forest stand ages. We crossdated 153 fire-scarred trees from an approximately 4000 ha study area that recorded 77 total fire years from 1197 to the present. Spatial extent of burned areas during fire years varied from the scale of single trees or small clusters of trees to fires that burned across the entire landscape. Intervals between fire years varied from 1 to 29 years across the entire landscape to 3 to 58 years in one stand, to over 100 years in other stands. Large portions of the landscape did not record any fire for a 128 year-long period from 1723 to 1851. Fire severity varied from low-intensity surface fires to large-scale, stand-destroying fires, especially during the 1851 fire year but also possibly during other years. Fires occurred throughout tree growing seasons and both before and after growing seasons. These results suggest that the fire regime has varied considerably across the study area during the past several centuries. Since fires influence plant establishment and mortality on the landscape, these results further suggest that vegetation patterns changed at multiple scales during this period. The fire history from Cheesman Lake documents a greater range in fire behavior in ponderosa pine forests than generally has been found in previous studies.  相似文献   

18.
Artificial polyacrylamide gel (PAG) and urea-formaldehyde resin foam (UFRF) amendments are used for putative enhancement of soil physical properties, including increasing their water holding capacity (WHC). Effects were investigated of these two amendments alone and combined on growth and development of Orthosiphon aristatus (Cats’ Whiskers) grown in either composted pine bark or washed river sand, including under transient water deficit stress. UFRF and PAG were incorporated into these potting media substrates at recommended rates of 30% (v/v) and 0.1% (w/w), respectively. UFRF incorporation reduced bulk density and increased air-filled porosity of composted pine bark from 0.24 g cm−3 and 43.3% to 0.18 g cm−3 and 50.2%, respectively. UFRF also reduced bulk density of sand from 1.43 g cm−3 to 1.17 g cm−3 and increased its air-filled porosity from 18.5% to 25.3%. PAG slightly decreased bulk density of composted pine bark to 0.23 g cm−3 and also reduced sand bulk density to 1.32 g cm−3. Water content of composted pine bark and sand was increased by PAG addition from 47.6% and 27.7% to 51.0% and 34.2%, respectively. However, UFRF and/or PAG did not increase plant available water (PAW) in either composted pine bark or sand. PAW was 23.8% and 14.4%, 23.6% and 15.8%, 22.8% and 14.8%, and 25.2% and 17.8% for composted pine bark and sand controls, these two substrates amended with UFRF, these substrates amended with PAG, and these substrates with UFRF plus PAG, respectively. Neither shoot length nor number was increased by adding UFRF and/or PAG. Similarly, neither shoot fresh nor dry weight was increased by UFRF and/or PAG amendments. UFRF and, moreso, UFRF plus PAG slightly delayed the onset of wilting by 4–15 h in water deficit stressed O. aristatus compared to control and PAG alone in composted pine bark (experiment 1), but PAG did not. However, in experiment 2, UFRF and/or PAG did not delay wilting in either composted pine bark or sand. Thus, when incorporated at suppliers recommended rates, neither UFRF nor PAG conferred appreciable benefits for O. aristatus plant growth in either composted pine bark or sand potting media.  相似文献   

19.
Rocky Mountain lodgepole pine, (Pinus contorta var. latifolia) regenerates quickly after high severity fire because seeds from serotinous cones are released immediately post-fire. Sierra lodgepole pine (P. contorta var. murrayana) forests burn with variable intensity resulting in different levels of severity and because this variety of lodgepole pine does not have serotinous cones, little is known about what factors influence post-fire regeneration. This study quantifies tree regeneration in a low, moderate, and high severity burn patch in a Sierra lodgepole forest 24 years after fire. Regeneration was measured in ten plots in each severity type. In each plot, we quantified pre- and post-fire forest structure (basal area, density), counted and aged tree seedlings and saplings of all species, and measured distance to the nearest seed bearing tree. There was no difference in the density of seedlings and saplings among severity classes. Distance and direction to the nearest seed bearing lodgepole pine were the best predictors of lodgepole seedling and sapling density in high severity plots. In contrast to Rocky Mountain lodgepole pine, regeneration of Sierra lodgepole pine appears to rely on in-seeding from surviving trees in low or moderate severity burn patches or live trees next to high severity burn patches. Our data demonstrate that Sierra lodgepole pine follows stand development pathways hypothesized for non-serotinous stands of Rocky Mountain lodgepole pine.  相似文献   

20.
The vascular plant species richness of upland urban forest patches in St. Paul and Minneapolis, Minnesota, was found to be positively related to their size. There was no significant relationship between species richness and the distance of these patches to other patches. Mowing and trampling reduced species richness of patches, whereas planting increased richness. Landscape richness can be maintained at a relatively high level by leaving even small unmown forested patches within a more disturbed matrix. However, maximizing landscape diversity would require leaving large forest stands unmown. It is suggested that cultivation be deliberately used as a mechanism for increasing native species richness in urban forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号