首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 671 毫秒
1.
建立测定马铃薯,马铃薯植株及土壤中噁唑菌酮残留量的高效液相色谱串联质谱法(HPLC-MS/MS),研究了噁唑菌酮在马铃薯和土壤中的消解动态。结果表明噁唑菌酮在马铃薯、马铃薯植株和土壤中的平均回收率分别为91.3%~95.3%,83.7%~101.7%和83.3%~95.0%,相对标准偏差(RSD)分别为5.2%~12.4%,4.0%~6.3%和2.6%~10.5%。噁唑菌酮在马铃薯植株中的消解半衰期为6.4~11.9d;在土壤中的消解半衰期为7.1~8.7d,属于易降解农药。该方法简单可靠,符合农药残留分析要求,可用于马铃薯和土壤中噁唑菌酮的残留检测。  相似文献   

2.
四氟醚唑在草莓和土壤中的残留动态研究   总被引:6,自引:1,他引:5  
研究了杀菌剂四氟醚唑的残留分析方法及其在草莓和土壤中的消解动态和最终残留量。草莓经丙酮提取抽滤后,加入饱和醋酸铅和氯化钠水溶液利用共沉淀法除去杂质,再经液液分配及活性炭柱净化、浓缩、定容后,用带ECD检测器的气相色谱进行测定。四氟醚唑的最低检出量为0.03 ng,在草莓和土壤中的最低检出浓度均为0.02 mg/kg,在草莓和土壤中的平均回收率为95.9% ~97.5%,变异系数1.5% ~2.8%,符合残留分析要求。用该方法测定了四氟醚唑在草莓和土壤中的消解动态以及最终残留量,结果表明:四氟醚唑在草莓上的降解速度较快,半衰期为4.2 d;在土壤中降解速度稍慢,半衰期为15.4 d,施药后7 d四氟醚唑的消解达到80%以上。  相似文献   

3.
为评价粉唑醇在小麦田中的安全性,建立气相色谱-质谱(GC-MS)联用方法测定了小麦田中粉唑醇的残留量,对粉唑醇在土壤、植株中的消解动态以及土壤、植株、麦粒和麦壳中粉唑醇的最终残留进行了研究。样品经乙腈提取、PSA净化后,GC-MS检测,添加回收试验结果表明:粉唑醇在土壤、植株、麦粒及麦壳中的平均回收率在77.6%~95.5%之间,相对标准偏差(RSD)为4.4%~12.2%,粉唑醇的最小检出量为1.0×10~(-11)g,最低检测浓度均为0.05 mg/kg;消解动态试验结果表明,粉唑醇在土壤、植株中的消解动态符合一级动力学方程,其半衰期分别为1.8~7.4d和3.2~5.1d;最终残留试验结果表明,距最后1次施药30 d后,粉唑醇在麦粒中的最大残留量为0.28 mg/kg,低于我国制定的小麦中粉唑醇的最大残留限量0.5 mg/kg。建议在小麦田施用250 g/L粉唑醇悬浮剂,施药剂量为360 g.a.i/ha,喷雾施药2~3次,推荐的安全间隔期为45 d。  相似文献   

4.
为了评价氟环唑在小麦生产上使用的残留安全性,建立了气相色谱-电子捕获检测器检测氟环唑在小麦植株、小麦籽粒及土壤中残留的分析方法,并对氟环唑在小麦植株、小麦籽粒和土壤中的最终残留量及小麦植株和土壤中的消解动态进行了研究。结果表明:在添加水平为0.01、0.1和2 mg/kg(小麦籽粒和土壤)和0.01、0.1和10 mg/kg(小麦植株)下,氟环唑的回收率为82%~93%,相对标准偏差为3.0%~9.7%。氟环唑在小麦植株、小麦籽粒和土壤中的定量限均为0.01 mg/kg。氟环唑在小麦植株和土壤中的消解半衰期分别为3.5~8.4和10~30 d。当以有效成分112.5 g/hm2的剂量施药2次、采收间隔期为21 d时,小麦籽粒中氟环唑的残留量为<0.05 mg/kg,低于中国制定的小麦中氟环唑的最大残留限量值(0.05 mg/kg)。建议氟环唑在小麦上使用时最大剂量为有效成分112.5 g/hm2,施药2次,安全间隔期为21 d。  相似文献   

5.
采用气相色谱-电子捕获检测器(GC-ECD)测定了己唑醇在田水、土壤、水稻植株和糙米、稻壳样品中的消解动态及最终残留。田水样品用二氯甲烷萃取,土壤、水稻植株、糙米和稻壳样品用甲醇提取,提取液经柱层析净化、GC-ECD检测。当己唑醇在田水中的添加浓度为0.005~1.0mg/kg时,其回收率为94.38%~97.28%之间,相对标准偏差(RSD)为1.93%~2.87%,在土壤、植株、糙米和稻壳中的添加浓度为0.02~2.0mg/kg时,其平均回收率在86.20%~96.30%之间,RSD为2.25%~6.39%;己唑醇的最小检出量为2.0×10~(-11)g,在田水中的最低检测浓度为0.005mg/kg,土壤、水稻植株、糙米和稻壳中的最低检测浓度为0.02mg/kg。消解动态试验结果显示,己唑醇在水稻植株、土壤以及田水中的消解动态规律均符合一级动力学方程,其半衰期分别为4.12~7.33d,11.77~23.18d和2.89~7.17d;最终残留试验结果表明,药后45d糙米中的己唑醇最终残留量为0.085 7mg/kg,低于我国规定的最大残留限量值0.1mg/kg,建议在稻田上使用50%己唑醇可湿性粉剂时,施药剂量为75~112.5g.a.i/ha,施药2~3次,安全间隔期为45 d。  相似文献   

6.
为了评价氟环唑在小麦生产上使用的残留安全性,建立了气相色谱-电子捕获检测器检测氟环唑在小麦植株、小麦籽粒及土壤中残留的分析方法,并对氟环唑在小麦植株、小麦籽粒和土壤中的最终残留量及小麦植株和土壤中的消解动态进行了研究。结果表明:在添加水平为0.01、0.1和2 mg/kg(小麦籽粒和土壤)和0.01、0.1和10 mg/kg(小麦植株)下,氟环唑的回收率为82%~93%,相对标准偏差为3.0%~9.7%。氟环唑在小麦植株、小麦籽粒和土壤中的定量限均为0.01 mg/kg。氟环唑在小麦植株和土壤中的消解半衰期分别为3.5~8.4和10~30 d。当以有效成分112.5 g/hm~2的剂量施药2次、采收间隔期为21 d时,小麦籽粒中氟环唑的残留量为0.05 mg/kg,低于中国制定的小麦中氟环唑的最大残留限量值(0.05 mg/kg)。建议氟环唑在小麦上使用时最大剂量为有效成分112.5 g/hm~2,施药2次,安全间隔期为21 d。  相似文献   

7.
研究了20%高渗乙蒜素乳油在水稻植株、稻米、稻壳、稻田水和土壤中的残留分析方法及消解动态。样品采用二氯甲烷提取,液液分配净化,气相色谱(GC-ECD)测定。结果表明:乙蒜素在稻田水样中的平均添加回收率为85.3% ~89.1%,相对标准偏差(RSD)为4.3% ~6.3%;在植株中的平均添加回收率为87.0% ~90.3%,相对标准偏差为2.6% ~4.9%;在土壤中的平均添加回收率为90.3% ~95.4%,相对标准偏差为3.0% ~7.4%。乙蒜素的最小检出量为2.0 ×10-11 g,水样、土样、植株(以及稻米和稻壳) 中乙蒜素的最低检测浓度分别为0.002、0.01、0.02 mg/kg。湖南、天津、浙江、湖北 4地 的残留消解动态试验结果表明: 20%高渗乙蒜素乳油在稻田水样和水稻植株中的半衰期分别是 0.3 ~1.1 d和1.4~2.1 d。至水稻收获时,在稻田土壤、稻米和稻壳中均未检出乙蒜素残留,建议我国对乙蒜素在水稻中的最大允许残留限量(MRL)值可暂定为0.05 mg/kg。  相似文献   

8.
利用高效液相色谱-串联质谱法检测马铃薯及土壤中吲唑磺菌胺的残留及消解动态。样品经乙腈提取、净化后高效液相色谱串联质谱法检测,外标法定量。结果表明,在0.01~1.0mg/kg添加水平范围内,吲唑磺菌胺在马铃薯植株、薯块和土壤中平均添加回收率分别为82.9%~86.4%、84.3%~91.1%、84.3%~86.7%,相对标准偏差分别为2.3%~6.4%、1.9%~5.2%、2.8%~7.0%;吲唑磺菌胺在马铃薯植株和土壤中的半衰期分别为5.7~8.5d和8.6~12.7d,距最后1次施药7、10、14d采样时在马铃薯中的残留量为0.01~0.023mg/kg,土壤中的残留量为0.01~0.551mg/kg。  相似文献   

9.
苯醚·丙环唑30%乳油在稻田中的残留动态研究   总被引:2,自引:0,他引:2  
通过田间试验,研究了苯醚·丙环唑30%乳油在稻田中的残留动态过程,借助残留分析方法和气相色谱技术,得到添加回收率为80.1%~120.0%。苯醚甲环唑在稻田水、土壤及水稻植株中的半衰期分别为0.86、2.27、4.08d;丙环唑的半衰期分别为0.78、2.10、3.47d,说明这两种农药在稻田环境中易降解。最终残留试验结果表明苯醚·丙环唑30%乳油在推荐剂量条件下施药,农药的残留量不会对环境和人体的健康造成影响。  相似文献   

10.
研究了稻田施用氯氟吡氧乙酸后,其在水稻植株、糙米、稻壳、稻田土壤和田水中的残留动态。样品采用氢氧化钠-甲醇溶液振荡提取,二氯甲烷液液分配,甲酯化后经气相色谱-电子捕获检测器(GC-ECD)测定。结果表明:氯氟吡氧乙酸在水稻植株、稻田土壤、田水、糙米和稻壳中的平均 回收率在85.5% ~103.2%之间,相对标准偏差在1.9% ~9.9%之间;其最小检出量为2.0×10-12g, 在植株、糙米、稻壳、土壤和田水中的最低检测浓度分别为 0.005,0.02,0.005,0.002 mg/kg 和0.001 mg/L。2007和2008年在安徽潜山、广东广州两地的田间残留试验结果表明:氯氟吡氧乙酸在水稻植株中的降解半衰期为4.9 ~6.0 d,土壤中为5.5 ~8.6 d,田水中为11.0~13.8 d;收获的糙米中氯氟吡氧乙酸的最终残留量在未检出~0.13 mg/kg之间,均低于其在糙米上的最大残留限量(MRL)值0.2 mg/kg(中国)。建议5%氯氟吡氧乙酸可湿性粉剂用于防治水稻田杂草时,施药剂量按有效成分计不得超过168.8 g/hm2,于返青期施药1次。  相似文献   

11.
建立了一种高效液相色谱分析方法,用于测定异丙酯草醚(ZJ0702)在油菜籽和土壤中的残留量。添加浓度为0.1 ~5.0 mg/kg时,平均回收率为83.9% ~94.7%,相对标准偏差<7.9 %,样本中异丙酯草醚的最低检测浓度为0.1 mg/kg。方法简单易行、干扰少、分离效果好、准确度和灵敏度高。将该方法应用于异丙酯草醚在油菜上的残留试验中,测得异丙酯草醚在杭州和昆明两地土壤中的残留消解半衰期分别为24 d和46 d,收获时油菜籽中异丙酯草醚的残留量皆小于 0.1 mg/kg。  相似文献   

12.
林业除草剂咪唑烟酸在土壤、水及杂草植株中的残留检测   总被引:6,自引:0,他引:6  
采用HPLC建立了一种林业常用除草剂咪唑烟酸在土壤、水及杂草植株中的残留检测方法。土壤及杂草植株样品用甲醇+0.1mol/L的NH4HCO3水溶液(体积比70∶30)提取,水溶液样品直接用二氯甲烷萃取。 添加法测定结果表明:当添加水平为0.1~5 mg/kg时,平均回收率为86.9%~103.5% 。在土壤及杂草植株中的最小检知浓度分别为0.05、0.1 mg/kg;水中最小检知浓度为0.01 mg/L。  相似文献   

13.
气相色谱法测定醚菌酯在黄瓜和土壤中的残留量   总被引:2,自引:1,他引:1  
建立了杀菌剂醚菌酯在黄瓜和土壤中的残留分析方法,并研究了其在黄瓜和土壤中的消解动态和最终残留。 样品经丙酮超声提取、二氯甲烷液-液分配和弗罗里硅土净化后,通过GC-NPD 检测。该方法最小检出量为9×10-12 g,在黄瓜和土壤中的最低检测浓度分别为0.005和0.010 mg/kg, 添加回收率为89.4%~104.3%, 变异系数为4.6%~7.0%。残留动态试验结果表明,施药浓度为推荐剂量的两倍时(有效成分300 g/ hm2),醚菌酯在黄瓜和土壤中的半衰期分别为6.4和10.3 d。在有效成分为150和300 g/hm2的剂量条件下,施药3~4次,施药后第 5 d黄瓜中醚菌酯残留量低于欧盟规定的MRL值(0.05 mg/kg)。  相似文献   

14.
建立了噻吩磺隆在土壤、玉米和玉米植株中的超声提取、固相萃取净化和高效液相色谱-质谱联用 残留检测方法,测定了在田间施药条件下噻吩磺隆在土壤中的消解动态及其在土壤、玉米和玉米植株中的最终残留。土壤、玉米和玉米植株样品经乙腈-磷酸盐缓冲溶液(pH 7.8)浸泡、涡旋并超声提取后,经固相萃取柱净化,用反相高效液相色谱-质谱检测。结果表明,噻吩磺隆在该方 法下的最小检出量为0.2 ng,在10倍浓缩倍数条件下的最低检出浓度为2 μg/kg,定量限为6 μg/kg,平均添加 回收率为77.9% ~100.4%,变异系数在1.6% ~6.5%之间。田间试验结果表明:噻吩磺隆在土壤中的半衰期分别为0.92~1.23 d;按推荐剂量施药,距施药时间40 d后和玉米收获时,在土壤、玉米和玉米植株中均未检出噻吩磺隆。  相似文献   

15.
马拉硫磷在柑桔和土壤中的残留消解动态   总被引:2,自引:1,他引:2  
采用气相色谱(GC-NPD)测定了马拉硫磷在柑桔及土壤中的消解动态和最终残留。样品用丙酮提取,经液液萃取净化,气相色谱氮磷检测器检测,外标法定量。结果表明:马拉硫磷在桔皮、桔肉、柑桔全果(果皮、果肉)和土壤中的添加回收率在0.05~1 mg/kg水平时分别为 90.1%~97.1%、85.0% ~89.0%、85.3% ~90.5% 和 85.8% ~90.0%;相对标准偏差分别为2.06% ~ 6.79%、4.00% ~7.57%、2.47% ~4.74 和 4.94% ~7.06%。马拉硫磷的最小检出量为 1.79×10-11 g, 在土壤和柑桔全果中的最低检出浓度分别为 0.013 和0.009 mg/kg。马拉硫磷在柑桔全果和土壤中的半衰期分别为 7.86~12.16 d 和 1.0~2.0 d;施药浓度为推荐剂量,最多3次,最后一次施药距采收间隔期为 20 d时,在收获的柑桔桔皮中马拉硫磷的残留量为 0.026~0.117 mg/kg,桔肉中的残留量低于最低检测浓度。  相似文献   

16.
建立了简单、灵敏的土壤及苹果中草甘膦残留量的气相色谱检测方法。土壤样品用2 mol/L 的氨水提取,经三氟乙酸酐(TFAA)和三氟乙醇(TFE)衍生化后,由配有氮磷检测器的气 相色谱(GC-NPD)进行检测。土壤中草甘膦的最小检出量为9×10-12 g,最低检出浓度为0.02 mg/kg, 平均回收率及变异系数分别为84.4% ~94.0% 和7.46% ~10.40%。苹果样品则采用去离子水提取,经二氯甲烷液液分配和BIO-RAD AG 50W-X8阳离子交换柱净化后,再用TEAA和TFE衍生化,最后用GC-NPD检测,其中草甘膦的最小检出量(LOD)和最低检出浓度(LOQ)与土壤样品中的相同,平均回收率及变异系数分别为80.7% ~98.6%和9.3% ~11.8%。草甘膦的衍生化产物通过气相色谱-质谱联用仪(GC-MS)进行了确证。在北京昌平地区进行的消解动态和最终残留试验结果表明,以推荐高剂量(有效浓度)的1.5倍(2 025 g/hm2)施药,草甘膦在土壤中的半衰期为 9.2 d。两年的最终残留试验结果表明,无论是高浓度区(2 025 g/hm2)还是低浓度区(1 350 g/hm2),苹果收获时(距施药75 d),土壤和苹果样品中均未检出草甘膦。  相似文献   

17.
采用高效液相色谱(HPLC)法研究了0.2%苄嘧磺隆·丙草胺颗粒剂在稻田环境中的消解动态和最终残留。稻田水、谷壳、稻秆和水稻植株样品用二氯甲烷提取,土壤样品用V(二氯甲烷):V(甲醇)=9:1的混合液提取,糙米样品用V(二氯甲烷):V(甲醇)=7:3的混合液提取后再用二氯甲烷萃取;HPLC法测定。结果表明:当添加水平在0.05~1 mg/kg(或mg/L)时,苄嘧磺隆和丙草胺的平均回收率均在75%~103%之间,相对标准偏差(RSD)为1.6%~13%;苄嘧磺隆和丙草胺的检出限(LOD)均为0.02 mg/L,最小检出量均为4.0×10-10 g,在稻田水中的最低检测浓度(LOQ)均为0.001 mg/L,在稻田土壤中的LOQ均为0.005 mg/kg,在水稻植株、谷壳和糙米中的LOQ均为0.01 mg/kg。在水稻移栽后5~7 d,采用直接撒施法在高剂量(270 kg/hm2,其中苄嘧磺隆有效成分为67.5 g/hm2,丙草胺有效成分为472.5 g/hm2)下施药1次的消解动态试验结果表明:在稻田水、土壤和水稻植株中,苄嘧磺隆的消解半衰期分别为5.06~5.83 d、9.76~11.55 d和4.52~4.82 d,丙草胺的消解半衰期分别为5.94~6.45 d、7.70~9.90 d和4.11~4.89 d。分别按低剂量(180 kg/hm2,其中苄嘧磺隆有效成分为45 g/hm2,丙草胺有效成分为315 g/hm2)和高剂量(270 kg/hm2)施药1次,在正常收获期收获的糙米中均未检出苄嘧磺隆和丙草胺残留。  相似文献   

18.
单嘧磺隆在土壤中的残留分析和消解动态研究   总被引:12,自引:1,他引:11  
研究了新磺酰脲除草剂单嘧磺隆在土壤中的残留分析方法及其土壤消解动态和最终残留。土壤经甲醇和稀氨水混合液提取 ,液液分配及 C18净化 ,浓缩后用带紫外检测器的高效液相色谱仪进行测定。单嘧磺隆的最低检出量为 4 ng,在土壤中的最低检出浓度为0 .0 2 mg/ kg。本方法的添加回收率为 95.10 %~ 10 3.77% ,变异系数为 1.4 7%~ 11.80 % ,符合农药残留分析的要求。运用上述方法 ,测定了单嘧磺隆在北京和山东土壤中的消解动态以及最终残留。结果表明 :单嘧磺隆在土壤中消解的速度较慢 ,在北京土壤中的半衰期为 9.2 4 d,山东土壤中的半衰期为 13.59d。按推荐剂量施药 ,小麦收获时 ,在北京和山东两地土壤中均未检出单嘧磺隆。  相似文献   

19.
降解菌2N3对被氯嘧磺隆污染土壤的生物修复   总被引:4,自引:0,他引:4  
在实验室条件下,研究了高效降解菌2N3(克雷伯氏菌属,Klebsiella sp.)对被氯嘧磺隆污染土壤的修复作用及其影响因素。当土壤中氯嘧磺隆的添加浓度为20 mg/kg,每 1克土壤中2N3的接菌量为1×106个菌体时,第30 d时土壤中氯嘧磺隆的降解率为84.6%,对照仅为13.4%;相同2N3接菌浓度下,当土壤中氯嘧磺隆浓度为100 mg/kg时,其降解率为31.1%。以小麦、玉米、黄瓜为供试作物,在土壤中施加 20 mg/kg的氯嘧磺隆, 当每 1克土壤中2N3的接菌量为1×106个 菌体时,小麦、玉米、黄瓜的出苗率分别为85%,82%和79%,且处理组株高高于对照,表明降解菌2N3具有明显减轻氯嘧磺隆药害的作用。研究表明,人工接种降解菌2N3可提高土壤中氯嘧磺隆的降解率,有效降低其在土壤中的残留。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号