首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在综合分析现有水平荷载作用下桩基分析方法的基础上,建立了考虑桩侧土体受力状态的斜坡刚性桩力学模型;根据极限平衡原理,建立横向荷载作用下斜坡刚性桩弯矩和应力平衡方程;引入考虑斜坡影响的p-y曲线方法,提出了综合考虑桩侧土体极限承载力与水平抗力系数沿深度呈线性增加的侧向极限承载力与土体抗力承载力系数计算方法,同时,将该方法应用于计算实例,通过与已有有限元和理论计算方法对比分析,计算结果验证了本文方法的合理性与可行性;并利用该方法,分析了斜坡坡角、桩土接触面系数以及地基水平抗力系数对斜坡刚性桩承载特性的影响因素。分析表明:斜坡的坡角、桩土接触面系数对侧向荷载作用下斜坡刚性桩的荷载位移曲线影响明显,而桩侧土的抗力系数对侧向荷载作用下斜坡刚性桩的荷载位移曲线影响不明显。  相似文献   

2.
曹明 《保鲜与加工》2017,(3):115-121
根据Muki&Sternberg的虚拟桩方法,将水平荷载作用下单桩的问题分解为弹性半空间扩展土和一根虚拟桩的叠加,其中虚拟桩的弹性模量等于桩的弹性模量与土的弹性模量之差。基于水平位移协调条件推导出求解桩土间相互作用所需要的第二类Fredholm积分方程,通过广义胡可定律推导出该积分方程间断点的显式解,从而提高了Fredholm积分方程的数值计算精度并简化了计算程序的编写,根据Mindlin解推导出位移影响函数,简化了位移函数的推导过程。参数分析表明,桩土弹性模量比对单位水平力作用下桩身最大弯矩的位置有明显的影响,随着桩刚度的增加,桩身最大弯矩的位置随之加深。  相似文献   

3.
工程中基桩大多处于复杂的成层地基中,鲜有位于单一土层中,从宏观角度出发,引入初始地基比例系数,提出了基于m法的双曲线型p-y曲线。某现场7根试桩地基土非线性显著,实测和理论计算的地面处桩身水平位移水平荷载关系曲线均呈良好的二次抛物线关系,且理论与实测曲线吻合良好,验证了本文p-y曲线模型。地基土非线性对桩身最大弯矩、桩侧地基土压力影响显著,不容忽略。工程实际中采用m法计算基桩最大弯矩值偏小,建议乘以1.05~1.25的系数,以计入地基土非线性影响。  相似文献   

4.
Technical Economy Analysis on Selection of Structure About Soldier Pile   总被引:1,自引:0,他引:1  
Based on silt geological condition, aimed at cantilever pile and pile-anchor, using method of beam on elastic foundation ,through multiple combinations of pile spacing, diameter, embedded-depth at different levels of excavation depth, the impaction is discussed on the greatest displacement, maximum bending moment, the largest shear forces of supporting structure, and in different excavation, bolt locations impact on maximum horizontal displacement, the greatest moment of medial and lateral bending moment, the biggest shear force of pile and the axial force of bolt. By deformation control standards of supporting structure, the law and technically feasible program is found. Then combined with construction method of pile and current quota, technical economy is performed to find the economic plan and give suggestion to the project.  相似文献   

5.
Based on the interaction of single pile, cap and soil, the load transfer matrixes of single pile and soil were proposed to establish an equivalent shear displacement method of single capped pile in layered soil. With the compatibility of displacement at the interface between the pile and the soil, equilibrium equations of pile and soil could be derived. With the increase of the total load on the pile cap, the lateral friction at the interface of the pile and the soil becomes so large that the occurrence of the sliding takes place. While there is little sliding at the interface between the soil under cap and the soil outside of the cap because of the less lateral friction, which gives rives to less settlement of the soil outside of the cap. Eventually, the results of the finite element method, existing theoretical method and the model tests were compared with those from the analytical method and were found to be in good agreement. The increase of the ratio of length to diameter does not infinitely enlarge the overall stiffness of the single capped pile, because the pile cap would afford part of the loading all the time.  相似文献   

6.
考虑桩基的剪切变形影响,利用单广义位移深梁理论,建立了桩基m法的计算方法,导出了水平位移、转角、弯矩和剪力的初参数表达式和无量纲参数函数的统一表达式,根据桩底边界条件建立了初参数解的计算公式;给出了无量纲参数函数随换算深度和弯剪刚度比的变化图形。研究表明,换算深度小于3.0时,弯剪刚度比对无量纲参数函数影响较小,换算深度大于4.0时,弯剪刚度比对无量纲参数函数影响的趋势非常明显,桩基剪切变形的影响程度与桩的边界条件有关。算例结果表明,桩身的剪切变形有增大桩顶水平位移、提高弯矩零点位置、改变弯矩分布特征、扩大桩侧土压力大小等影响。  相似文献   

7.
In order to investigate the dynamic behavior of geogrid reinforced pile supported embankments (GRPS) under moving load, a three dimensional coupled mechanical and hydraulic model was built by FLAC 3D. The results from two cases including unreinforced and no pile embankments, and geogrid reinforced pile supported embankments were presented. The behaviors of vertical displacement, pile soil stress ratio, excess pore water pressure, and vertical acceleration under two cases were compared and discussed. Additionally, studies on the effect of speed and weight of the moving load were performed. It is indicated that the value of vertical displacement, pile soil stress ratio, excess pore water pressure, and vertical acceleration of GRPS decrease evidently compared with those of unreinforced and no pile embankment, which is caused by the soil arching effect and the reinforcement effect. It is also shown that the greater the axle load value is, the less the beneficial effect of GRPS on the vertical displacement. With the increase of the moving speed of the load, the vertical displacement increases.  相似文献   

8.
Based on the small deformation assumption, the equations of the laterally loaded piles influenced by the axial load were established. The effect of axial load on the lateral response of piles was studied with parameter analysis. The analysis shows that internal force and deformation of laterally loaded pile under axial loading is actually closely linked with the values of axial and lateral loads. In general, the high level axial load should be focused on. It is more significant that the effect of axial load on the internal force and lateral deflection of the upper part of flexible piles, while there is little effect on deep of long-thin pile foundation. The effect of axial load on the lateral response of pile is the largest as coefficient form of subgrade reaction increases linearly, while the effect is minimal as coefficient form of subgrade reaction is a constant. Except in case of buckling, the changes of axial load along the pile direction have little influence on the magnitudes of deflection and moment. The assumption that the axial load is constant with depth can meet the requirements of engineering.  相似文献   

9.
Finite element software was used to simulate the internal force and deformation of high-rise pile cap-soil-structure under the wave and earthquake action. Meanwhile, wave force was calculated by using Morison equation, and the mechanical behavior of structure was simulated by inputing horizontal El-Centro wave. Then, the initial state and the state of the largest positive and negative acceleration were selected to study the structure according to the time history curve, and the displacement, bending moment, shear and axial force changes of pile foundation under wave and earthquake action were discussed, which was compared and analyzed with the structural response under the action of earthquakes solely. The result shows that the moment of front row of piles is biggest, and the force of pile bolck is the most dangerous; the axial force of the corner piles is the largest, and one of the center piles is the smallest under the action of wave and earthquake. When the wave forces and seismic forces are in the same direction, the displacement, moment, and shear force of pile bolck will be increased, on the contrary, the displacement, moment, and shear force of pile bolck will be decreased.  相似文献   

10.
A mathematical model was established by using the transfer matrix based on Winkler elastic subgrade and spring supports in Newmark method. In simplification for subgrade reaction with discrete spring supports, the unequal displacements of two ends for pile section were included in the model. Lateral displacement and cross-section angle of the pile were determined by lateral static load test and the values of parameters of multiple subgrade reaction models were calculated by computer programming. By identifying the stability of long pile in different subgrade reaction models, the change patterns of three factors were analyzed, including effective length of long pile, restrictions on pile top and extensive length on the ground.  相似文献   

11.
The CFG pile is used to consolidate the foundation in one passenger dedicated line. The field experiments including low strain dynamic testing, bearing capability of single pile and the composite foundation are done, and the bearing capability of composite foundation is calculated, too. The results show that the first and second class piles account for 93.9% and 6.1% respectively, and the bearing capability eigenvalues of single pile and composite foundation are larger than the designed values. The 3D FEM model is established to simulate the stresses of CFG pile top and inter-pile soil changing with load level, and the stress ratio between CFG pile and inter-pile soil is analyzed, too. The following results are got from the calculation results of FEM: 1) the stresses of CFG pile top and inter-pile soil increase with load level, but the increasing rate of the former is larger than the latter; 2) the stress ratio between CFG pile and inter-pile soil increases quickly when the load level is low, and it tends to convergent gradually with load increasing.  相似文献   

12.
在工程实践中,直墙拱应用较多。由于拱脚位移的存在,合理假设拱脚约束为转角约束、竖向约束和水平弹性约束,应用力法推导出了在弯矩、剪力和轴力共同作用下直墙拱沿弧长的弯矩公式。研究了竖向均布荷载、竖向三角形荷载和竖向集中力荷载作用下,直墙拱沿弧长的弯矩分布及反弯点形成的规律;发现在3种荷载作用下,使得拱脚弯矩为零时的圆心角依次减小。取弹簧支座刚度为等效的下端固支、上端允许水平位移的直墙的抗推刚度,得出了随着直墙高度增加,圆弧拱拱顶弯矩增大而拱脚弯矩减小的变化规律。在直墙拱的设计中,建议选取合适的直墙高度和使得圆弧拱拱脚弯矩为零的圆心角大小,从而有利于提高结构抗弯承载力及拱脚抗剪承载力。  相似文献   

13.
A failure investigation is conducted on the upset bending equipment of a heavy crankshaft with continuous grain flow which is broken in the first use after the crankshaft flange is modified to deform in the die cavity. The forging process of the heavy crankshaft is simulated using the DEFORM 3D software, through which the forming load and die filling are calculated. Using the I Dears software, the structural strength calculation for the upset bending equipment is performed. The stress field and displacement in the equipment are obtained. The failure analysis of the die base is accomplished. The analysis results show that the practical crack location and orientation in the die base are consistent with those in the structural strength calculation.  相似文献   

14.
Based on the strain energy considering the effect of dead loads, the general form static equilibrium differential equations were formulated by means of the potential energy principle. The approximate solutions of live load or later load displacement including the effect of dead loads for the clamped rectangular plate and the simply supported rectangular plate were generated by the Galerkin method. These formulas are simple and clear, and their physical concepts are explicit. The correctness of these formulas was verified by the finite element method. The dead loads and other factors that influence the effect of dead loads are shown by these formulas. The effect of dead loads on the two different boundary condition rectangular plate were analyzed by these approximate solutions. The effect of dead loads improves the bending stiffness of plate and minimizes the displacement of live loads or later loads. The key physical factors governing the effects of dead loads on plates are the dead load, the ration of span to thickness and boundary condition etc. This effect of dead loads is not negligible, especial in thinner plates or plates with smaller stiffness, more attention should be paid to the effect of dead load in the calculation and analysis for plates.  相似文献   

15.
In order to reduce the differential settlement of gravel pile foundation under large scale oil tank, axisymmetric numerical simulation method and finite element method was employed to study the pile length, the exchange rate of length, the length of the cushion course to the influence of differential settlement and the relationship of negative lateral displacement and the settlement. It is found that: differential settlement has a minimum range of pile length. For the oil tank foundation center, by keeping the pile diameter, increasing pile spacing can increase the rate of exchange and obtain smaller differential settlement in relatively smaller displacement rate conditions. And by keeping replacement rate unchanged, the larger the pile diameter(namely the looser pile spacing) is, the smaller the differences settlement of the gravel pile foundation is. Moreover, pile length adjustment and the exchange rate have obvious effects on different subsidence and not obvious effects on the length of the cushion course. The appearance of oil tank foundation negative lateral displacement is one of the most important features of differential settlement adjustment.  相似文献   

16.
为了确定强震作用下斜拉桥合理的横向抗震约束体系,以可克达拉大桥为工程背景,采用非线性时程分析法,分析了4种横向约束体系即横向滑动体系、全限位体系、位移相关型减震体系和速度相关型减震体系对强震区大跨度桥梁地震响应的影响,重点对钢阻尼器的屈服荷载和黏滞阻尼器的位置及相关参数进行优化分析,并与其他体系的地震响应进行了对比。结果表明:在强震作用下,对于大跨度桥梁横向滑动体系和全限位体系均不是理想的抗震体系;而在墩梁、塔梁之间设置减隔震装置可以有效减少横桥向的墩梁、塔梁的相对位移及地震剪力和弯矩;然而,从桥梁正常使用的角度来看,塔梁之间布设横向钢阻尼器装置优于黏滞阻尼器装置。  相似文献   

17.
基坑复合土钉墙转角处有明显的空间效应,受力变形较小,对支护结构有利,但不清楚转角定量的有利影响范围,目前设计中仍按照与基坑中部一样保守设计,为在此范围内降低土钉用量,避免保守设计,对水泥土搅拌桩复合土钉支护结构建立了全尺寸整体三维有限元模型,这种模型包含基坑的转角,能考虑基坑的空间效应,通过建立接触面单元,能考虑土体和搅拌桩、土体和土钉的相互作用,量化分析了基坑转角对支护结构受力和变形的有利影响范围,计算结果表明,基坑转角对开挖面水平位移、地表沉降、坑底隆起、土钉轴力的有利影响范围分别约为1.3、1、1、1.2倍的开挖深度。经与实际工程现场实测值对比,验证了该模型分析结果的可靠性,同时分析结果优于平面二维和局部三维有限元模型,结论为复合土钉支护结构的优化设计和安全施工提供了理论依据和研究方法。  相似文献   

18.
DEM Analysis of Soil Arching of Pile Supported Embankment   总被引:2,自引:0,他引:2  
Pile supported embankment has been widely used in road, airport and dam engineering due to effective construction and economic advantages which can effectively control the settlement and differential settlement. The soil aching effect is a key factor in the load transfer mechanism of pile supported embankment. Based on the current laboratory model test, a series of numerical simulations were conducted with the particle flow code PFC2D to study the contact force, principal stress, vertical and lateral displacements in embankment. The embankment fill and subsoil were simulated by the Disk,andthe pile and model box were simulated by the WallThe multi-layer compaction method was used to establish the Discrete Element Method models. The micromechanical properties of the embankment fill and subsoil were obtained from numerical biaxial compression test and simple compression test, respectively. The simulation results indicated that the soil arching in pile supported embankment was composed by multiple hemispherical arches with different centers, and the height of arching was about 5(s-a)/6. Within the soil aching height, the deflection of principal stresswas obvious, and the vertical and lateral displacements were significant.  相似文献   

19.
《保鲜与加工》1997,(6):58-62
In this paper,in terms of the measured data(including the deflection and slope at the ground surface of the pile,the maximum bending moment and its position),the biparameter method is used to analyze the pile-soil parameters.Two examples show that the method in present paper is reasonable and reliable,and it provides the reference value for the engineering design.  相似文献   

20.
The 3D Goodman element is used to simulate segments' cracks in one section of shield tunnel in Guangzhou. Mechanical and deformation characteristics of segment structure responded to varied depth of cracks is analyzed in this paper. Meanwhile, research on coefficient of lateral earth pressure, soil coefficient and ground water level on mechanical and deformation characteristics is carried out. The research result shows that along with the increase of cracks' depth, the tensile stress, pressure stress reach the maximum value while the increment is not too much. However, when the depth equals to the thickness of segment, the reinforcements' tensile stress has increase sharply, even exceeded the allowable value. Moreover, the maximum number of tensile stress, horizontal and vertical convergent value of shield tunnel segment with cracks increase with the reduction of the coefficient of lateral earth pressure and soil coefficient, and increase with the increase of ground water level as well. Specific repair measure has been taken to segments' cracks in this section of shield tunnel based on the conclusions. In general, this section of shield tunnel is stable and safe now, and there is no longer new cracks appeared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号