首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Second-intention repair is faster in ponies than in horses and faster in body wounds than in limb wounds. To a large extent, the differences between horses and ponies can be explained by differences in the local inflammatory response, which are a result of the functional capacity of leukocytes. In ponies, leukocytes produce more inflammatory mediators,resulting in better local defense, faster cellular debridement, and a faster transition to the repair phases, with more wound contraction. In horses,leukocytes produce fewer mediators, initiating a weak inflammatory response, which becomes chronic. This inhibits wound contraction and gives rise to the formation of exuberant granulation tissue. The anatomic environment that influences the inflammatory response and wound contraction most probably determines the differences between body and limb wounds. In body wounds, better perfusion results in faster initiation of the inflammatory phase. The weaker local resistance results in a greater degree of contraction. In limb wounds, particularly of horses, the initial inflammatory response is weak and wound contraction is restricted. Both factors give rise to chronic inflammation, which further inhibits wound contraction and promotes exuberant granulation tissue. The high incidence of exuberant granulation tissue in limb wounds of horses can thus be explained by the chronicity of the inflammatory response as well as by the common use of bandages during treatment. Chronic inflammation is often not recognized as a cause of exuberant granulation tissue. It must be prevented and treated to promote the healing process. Bandages and casts stimulate the formation of exuberant granulation tissue; however, they are advantageous in many respects and play an important role in support of the overall healing process.  相似文献   

2.
Management of exuberant granulation tissue   总被引:1,自引:0,他引:1  
Exuberant granulation tissue is common in large, lower limb wounds of horses, particularly horses of large body size. Methods of control include chemical cautery, cryogenic surgery, and surgical resection. Surgical resection is preferred because it is easy to perform, provides tissue for histologic evaluation, and preserves the epithelial margin. Effective treatments to prevent the formation of granulation tissue include leaving granulating wounds open to the air or, possibly, bandaging with topical steroids. Bandaging or casting may promote exuberant granulation tissue in wounds in which it has already formed, but bandaging and casting are still important in the early management of lower limb or hock wounds in horses. The use of skin grafts or delayed secondary wound closure is frequently necessary to prevent the recurrence of exuberant granulation tissue.  相似文献   

3.
OBJECTIVE: To investigate the effects on wound healing of transforming growth factor-beta 1 as a topical treatment to full-thickness, excisional wounds of the distal limb of horses. DESIGN: A randomised block study using four horses, each with wounds assigned to four treatment groups. ANIMALS: Four adult Standardbred geldings. PROCEDURE: Four, 4 cm2, full-thickness wounds were created on the dorsomedial and dorsolateral aspect of the metacarpus or metatarsus of each limb of four horses, giving a total of 64 wounds. For each limb, wounds were randomly assigned to four treatment groups: no treatment (control), carrier (Methyl Cellulose gel), 50 ng/wound rhTGF-beta 1 in carrier, and 500 ng/wound rhTGF-beta 1 in carrier. Wounds were treated on day 0 and day 8. Effects of treatment were evaluated on the basis of the presence of exuberant granulation tissue requiring excision, number of times excision was required, total wound area, area of epithelialisation, area of granulation, and histological evaluation of biopsy samples of wounds on day 8 and excised wounds on day 21. RESULTS: Topical application of TGF-beta 1 at the two concentrations studied had no significant effect on the total area of wounds (P = 0.7), the area of granulation tissue (P = 0.78), the area of epithelialisation (P = 0.92), histological assessment or subjective clinical assessment of wounds. CONCLUSION: TGF-beta 1 had no beneficial effects on wound healing. Additional trials are needed to test if it has value for wound treatment in horses.  相似文献   

4.
5.
Preformed collagen gel was topically applied to cutaneous wounds of the equine dorsal fetlock (thoracic limb) and metatarsal regions to evaluate the effect on exuberant granulation tissue production and wound healing. In 6 horses and 3 ponies (less than 140 cm high at the withers and less than 365 kg), 36 standardized cutaneous limb wounds were surgically induced (4 wounds/animal); 18 wounds were treated topically with collagen gel, and 18 wounds were not treated (controls). Collagen gel was initially applied to the wound at 0, 2, or 7 days after wound formation (groups 1, 2, and 3, respectively). Four measurements were regularly made: amount of wound contraction and the size of the granulation bed, epithelial covering, and total wound. Sequential skin and wound biopsies were evaluated histologically to assess wound healing. Using a computer, data were analyzed for differences in the 4 measurements between treated and control wounds, between fetlock wounds and metatarsal wounds, and among groups 1, 2, and 3. Analyses were performed on days 15 and 45 of wound healing and on the final day of healing. A significant difference (P greater than 0.05) in the production of exuberant granulation tissue, rate of epithelialization, or degree of wound contraction was not detected between the collagen-treated and control wounds. Total healing time and final scar size were similar. Wound healing patterns were significantly different (P less than 0.05) in the fetlock wounds and metatarsal wounds. All wounds enlarged up to day 15 with fetlock wounds enlarging significantly more than did the metatarsal wounds.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Equine amnion and live yeast cell derivative were evaluated as a biological dressing and as a topical wound medicament respectively, in the treatment of granulating wounds of the distal portion of the limbs of horses. Wounds measuring 2.5 x 2.5 cm were created on the dorsomedial aspect of the metacarpal and metatarsal region of all 4 limbs of 9 horses. Each wound was assigned randomly to 1 of 3 treatment groups: group C, treated with a nonadherent bandage as a control; group A, treated with amnion beneath a nonadherent bandage; and group L, treated with live yeast cell derivative beneath a nonadherent bandage. Rates of contraction and epithelialization were not significantly different among groups. Percentage of epithelialization for group A was significantly greater throughout the study than for the other groups. Number of days to complete healing was significantly less in group A and significantly greater in group L than in group C. Incidence and severity of exuberant granulation tissue were significantly less in group A than in the other 2 groups. Group L had more frequent and severe cases of exuberant granulation tissue than the other 2 groups.  相似文献   

7.
OBJECTIVE : To describe immunolocalization of TGF-beta receptors (RI and RII) in normal equine skin and in thoracic or limb wounds, healing normally or with exuberant granulation tissue (EGT). STUDY DESIGN : Group A: six wounds on one metacarpus and one midthoracic area. Group B: six wounds on both metacarpi, one of which was bandaged to stimulate EGT. Immunohistochemistry was used to detect RI and RII expression in wound margins. ANIMALS : Eight horses, randomly assigned to one of two study groups. METHODS : Neutralizing polyclonal anti-rabbit RI and RII antibodies were used to detect spatial expression of RI and RII in biopsies obtained before wounding, at 12 and 24 hours, and 5, 10 and 14 days after wounding. RESULTS : RI and RII were co-localized in both unwounded and wounded skin. There were no differences in cell types staining positively between tissues obtained from the limb and the thorax, or from normally healing limb wounds and limb wounds with EGT, at any time. Because of increased cellularity within EGT, staining intensity of limb wounds with 'proud flesh' was greater than limb wounds healing normally, and thoracic wounds, during the proliferative phase of repair. CONCLUSIONS : Strong expression of RI and RII, particularly in limb wounds with EGT, suggested that signalling for stimulation of matrix proteins is in place to contribute to scarring. CLINICAL RELEVANCE : This information may help determine the appropriate time for using receptor antagonists to prevent scarring of limb wounds of horses.  相似文献   

8.
OBJECTIVE: To determine whether povidone iodine ointment or 2 forms of silver sulfadiazine applied topically to wounds of the distal aspect of the limbs in horses affect the rate of second intention healing and to evaluate the additional influence of bandaging with these antimicrobials on granulation tissue formation. ANIMALS: 6 healthy adult horses. PROCEDURE: Six standardized 2.5-cm2 skin wounds/horse were distributed between the dorsomedial surfaces of the metacarpi and metatarsi. One of the following 6 treatments was applied to each wound: 1% silver sulfadiazine cream with bandage, 1% silver sulfadiazine slow-release matrix with bandage, 1% silver sulfadiazine slow-release matrix without bandage, povidone-iodine ointment with bandage, untreated control with bandage, and untreated control without bandage. Wound area, granulation tissue area, and perimeter were measured by use of planimetry software applied to digital images. Exuberant granulation tissue was excised when present. Days until healing, rate of healing parameter, rate of contraction, and epithelialization were compared among wound treatment groups. RESULTS: Healing parameters and mean days to healing did not differ significantly among any of the wound treatment groups. Percentage wound contraction and rate of epithelialization were similar among wound treatments. All bandaged wounds produced exuberant granulation tissue, which was surgically excised; none of the unbandaged wounds produced exuberant granulation tissue. CONCLUSIONS AND CLINICAL RELEVANCE: When exuberant granulation tissue is removed, rates of epithelialization and wound contraction were not different among wound treatment groups, whether bandaged or unbandaged. Topical application of 1% silver sulfadiazine slow-release matrix on unbandaged wounds induced the same result as medications applied beneath bandages, but without exuberant granulation tissue formation.  相似文献   

9.
Four methods of treating granulating wounds on the dorsal aspect of the metacar-pophalangeal and metatarsophalangeal joints of ponies were evaluated. The following treatments were used: Group 1—excision of the granulation tissue with no further treatment; Group 2—cryosurgery; Group 3—excision of the granulation tissue and pressure bandage; and Group 4—excision of the granulation tissue and immobilization of the limb with a plaster cast. The wounds in Group 1 healed fastest, without producing exuberant granulation tissue and with only moderate scar fibrosis. The wounds in Group 2 healed without producing exuberant granulation tissue but with marked scarring. Wounds in Groups 3 and 4 took longer (p < 0.001) to heal compared to wounds in Groups 1 and 2. Wounds in Groups 3 and 4 produced exuberant granulation tissue, but the resultant scars were the least fibrotic.  相似文献   

10.
OBJECTIVE--To map the expression of transforming growth factor (TGF)-beta(1), TGF-beta(3), and basic fibroblast growth factor (bFGF) in full-thickness skin wounds of the horse. To determine whether their expression differs between limbs and thorax, to understand the pathogenesis of exuberant granulation tissue. STUDY DESIGN--Six wounds were created on one lateral metacarpal area and one midthoracic area of each horse. Sequential wound biopsies allowed comparison of the temporal expression of growth factors between limb and thoracic wounds. ANIMALS--Four 2- to 4-year-old horses. METHODS--Wounds were assessed grossly and histologically at 12 and 24 hours, and 2, 5, 10, and 14 days postoperatively. ELISAs were used to measure the growth factor concentrations of homogenates of wound biopsies taken at the same timepoints. RESULTS--TGF-beta(1) peaked at 24 hours in both locations and returned to baseline in thoracic wounds by 14 days but remained elevated in limb wounds for the duration of the study. Expression kinetics of TGF-beta(3) differed from those of TGF-beta(1). TGF-beta(3) concentrations gradually increased over time, showing a trend toward an earlier and higher peak in thoracic compared with limb wounds. bFGF expression kinetics resembled those of TGF-beta(1), but no statistically significant differences existed between limb and thoracic wounds. CONCLUSIONS--Growth factor expression is up-regulated during normal equine wound repair. TGF-beta(1) and TGF-beta(3) show a reciprocal temporal regulation. Statistically significant differences exist between limb and thoracic wounds with respect to TGF-beta(1) expression. CLINICAL RELEVANCE--The persistence of TGF-beta(1) expression in leg wounds may be related to the development of exuberant granulation tissue in this location, because TGF-beta(1) is profibrotic.  相似文献   

11.
Objective   To evaluate the effect of a non-occlusive dressing incorporated in a 3-layer bandage on second intention healing of wounds of the distal portion of the limb.
Study Design   Untreated wounds in 33 adult horses used in four studies using the same wound-healing model conducted over 5 years.
Methods   Standardised, full-thickness wounds were made in the skin overlying the dorsomedial aspect of the mid-metacarpus; 17 horses were bandaged with a non-occlusive dressing covered by gauze-coated cotton wool that was compressed with adhesive tape; 16 horses were left unbandaged. Wounds were photographed weekly for 9 weeks and the images were analysed electronically.
Results   There were significant effects associated with bandage (P < 0.0001), week (P < 0.001), and bandage by week interaction (P < 0.0001). There was no difference in wound area at the first time-point after wound creation (P = 0.38). After week 1, there was a difference between bandaged and unbandaged wounds in wound area at each measurement until the end of the study. Bandaged wounds showed greater and more prolonged retraction. Unbandaged wounds retracted for 2 weeks before beginning to contract, whereas bandaged wounds continued to retract for 3 weeks. In bandaged wounds excess granulation tissue required regular trimming, but not in unbandaged wounds. There was no difference between groups in the total days to healing or the overall rate of healing.
Conclusions   These results should be treated with caution until validated with contemporaneous, controlled studies. Covering a wound with a non-occlusive dressing in a 3-layer bandage led to greater wound retraction, modulated the rate of wound contraction and promoted excessive granulation tissue. If excessive granulation tissue is excised regularly, bandaging has no effect on total time to healing.  相似文献   

12.
OBJECTIVE: To determine significant molecular and cellular factors responsible for differences in second-intention healing in thoracic and metacarpal wounds of horses. ANIMALS: 6 adult mixed-breed horses. PROCEDURE: A full-thickness skin wound on the metacarpus and another such wound on the pectoral region were created, photographed, and measured, and tissue was harvested from these sites weekly for 4 weeks. Gene expression of type-I collagen, transforming growth factor (TGF)-beta1, matrix metalloproteinase (MMP)-1, and tissue inhibitor of metalloproteinase (TIMP)-1 were determined by quantitative in situ hybridization. Myofibroblasts were detected by immunohistochemical labeling with alpha-smooth muscle actin (alpha-SMA). Collagen accumulation was detected by use of picrosirius red staining. Tissue morphology was examined by use of H&E staining. RESULTS: Unlike thoracic wounds, forelimb wounds enlarged during the first 2 weeks. Myofibroblasts, detected by week 1, remained abundant with superior organization in thoracic wounds. Type-I collagen mRNA accumulated progressively in both wounds. More type-I collagen and TGF-beta1 mRNA were seen in forelimb wounds. Volume of MMP-1 mRNA decreased from day 0 in both wounds. By week 3, TIMP-1 mRNA concentration was greater in thoracic wounds. CONCLUSIONS AND CLINICAL RELEVANCE: Greater collagen synthesis in metacarpal than thoracic wounds was documented by increased concentrations of myofibroblasts, type-I collagen mRNA,TGF-beta1 mRNA, and decreased collagen degradation (ie, MMP-1). Imbalanced collagen synthesis and degradation likely correlate with development of exuberant granulation tissue, delaying healing in wounds of the distal portions of the limbs. Factors that inhibit collagen synthesis or stimulate collagenase may provide treatment options for horses with exuberant granulation tissue.  相似文献   

13.
OBJECTIVE: To determine whether transforming growth factor (TGF)-beta1 and -beta3 expression differs between equine limb wounds healing normally and those healing with experimentally induced exuberant granulation tissue (EGT). STUDY DESIGN: Six wounds were created on the lateral aspect of both metacarpi of each horse; one forelimb was untreated, and the other was bandaged to stimulate the development of EGT. Sequential wound biopsies allowed comparison of growth factor expression between the two types of wound. ANIMALS: Four horses (2 to 4 years of age; 350 to 420 kg). METHODS: Wounds were assessed grossly, histologically, and by enzyme-linked immunosorbent assay (ELISA) for TGF-beta1 and -beta3 expression at 12 and 24 hours and 2, 5, 10, and 14 days postoperatively. RESULTS: Bandaged wounds developed EGT. In all wounds, TGF-beta1 peaked early and remained elevated at 14 days. Peak TGF-beta1 concentration was higher in wounds with EGT, but not significantly so. Expression of TGF-beta3 differed from TGF-beta1, with peak TGF-beta3 concentrations being delayed. Concentrations of TGF-beta3 were higher in wounds healing normally, but this difference was not significant. CONCLUSIONS: During both normal and exuberant wound repair, the expression of TGF-beta1 occurred earlier than TGF-beta3 expression. Wounds healing with EGT tended to have higher concentrations of fibrogenic TGF-beta1 and lower concentrations of antifibrotic TGF-beta3 than wounds healing normally, although these differences were not statistically significant. CLINICAL RELEVANCE: This study suggests that the production of EGT in bandaged wounds may be related to increased expression of fibrogenic TGF-beta1 and decreased expression of antifibrotic TGF-beta3. Further investigation of the roles of TGF-beta1 and -beta3 may be important in understanding the molecular control of EGT in horses.  相似文献   

14.
OBJECTIVE: To determine if there is a difference in in vitro growth of fibroblasts isolated from the trunk and distal aspect of the limb of horses and ponies. To determine the effects of a corticosteroid and monokine on in vitro growth of fibroblasts isolated from the trunk and distal aspect of the limb of horses and ponies. STUDY DESIGN: Growth of fibroblasts from tissues harvested from the trunk and limb were compared from horse and pony samples grown in control media and control media with triamcinolone or monokine added. ANIMALS OR SAMPLE POPULATION: Dermal and subcutaneous tissue from 22 horses and 17 ponies of various ages and breeds. METHODS: Fibroblast growth was assessed by tritiated thymidine uptake using standard cell culture techniques. The effect of a monokine or triamcinolone plus control media were compared with control media for fibroblast growth. RESULTS: Fibroblast growth from tissues isolated from the horse limb was significantly less than growth from the horse trunk and the limb and trunk of ponies. Monokine was more effective than triamcinolone in suppressing fibroblast growth from tissues isolated from the trunk and limb in both horses and ponies. CONCLUSIONS: There are growth differences in fibroblasts isolated from the limb of horses compared with those isolated from the trunk and from the limb and trunk of ponies. CLINICAL RELEVANCE: The difference in fibroblast growth from tissues isolated from the trunk and limb of horses and ponies may provide evidence for the difference reported in the healing characteristics of limb wounds in horses and ponies. Influencing fibroblast growth may provide a key to controlling the development of exuberant granulation tissue in horses and ponies.  相似文献   

15.
OBJECTIVE: To determine the effects of hyperbaric oxygen therapy (HBOT) on full-thickness skin grafts applied to fresh and granulating wounds of horses. ANIMALS: 6 horses. PROCEDURES: On day 0, two 4-cm-diameter circular sections of full-thickness skin were removed from each of 2 randomly selected limbs of each horse, and two 4-cm-diameter circular skin grafts were harvested from the pectoral region. A skin graft was applied to 1 randomly selected wound on each limb, leaving the 2 nongrafted wounds to heal by second intention. On day 7, 2 grafts were harvested from the pectoral region and applied to the granulating wounds, and wounds grafted on day 0 were biopsied. On day 14, 1 wound was created on each of the 2 unwounded limbs, and the wounds that were grafted on day 7 were biopsied. All 4 ungrafted wounds (ie, 2 fresh wounds and 2 wounds with 1-week-old granulation beds) were grafted. The horses then received HBOT for 1 hour daily at 23 PSI for 7 days. On day 21, the grafts applied on day 14 were biopsied. RESULTS: Histologic examination of biopsy specimens revealed that grafts treated with HBOT developed less granulation tissue, edema, and neovascularization, but more inflammation. The superficial portion of the graft was also less viable than the superficial portion of those not treated with HBOT. CONCLUSIONS AND CLINICAL RELEVANCE: The use of HBOT after full-thickness skin grafting of uncompromised fresh and granulating wounds of horses is not indicated.  相似文献   

16.
The objective of this study was to evaluate the efficacy of topical application of a hyaluronan (HA) derivative in wound healing with respect to the rate of epithelialization, fibroplasia, angiogenesis and contraction, magnitude of the local inflammatory response, local expression of transforming growth factor-β 1 and 3 (TGF-β 1 and 3), tumor necrosis factor-α (TNF-α), and collagen type III deposition. In six healthy adult horses, six full-thickness skin wounds were created on the dorsal aspect of both metacarpi using a sterile template. Sites were sampled at 0, 1, 2, 5, 14, 21, and 35 days following wounding. Wounds on one limb were dressed with commercially available esterified HA fleece under a nonadherent dressing. The opposite limb was covered with the nonadherent dressing alone (control). Images of the most proximal wounds were used to determine the area of total healing and the relative contributions of epithelialization and contraction to healing. At each sample time, a control and treatment biopsy were taken for histological evaluation and special stains. All samples were evaluated for degree of inflammation, fibroplasia and angiogenesis; in situ hybridization for type III collagen, TGFβ1 and 3, and immunohistochemistry for TNF-α. Mean percentages of total wound healing, epithelialization, and wound contraction were not significantly different between control and treatment groups. In treated horses, initial wound expansion was significantly decreased during the first 2 weeks. Mononuclear cell numbers, counted in the granulation tissue, increased in both control and treated limbs over the entire course of the study. However at day 35 the macrophage numbers counted in the treated horses were significantly increased compared with the control limbs (P < .05). Although not statistically significant, relative staining for type III collagen in the treated wounds was less than that of control wounds. Results of the present study do not support a benefit of an exogenous HA-derivative in the healing of distal limb wounds in horses. The shortcomings of the study design are discussed.  相似文献   

17.
Wound repair in horse limbs is often complicated by excessive fibroplasia and scarring. Occlusion of the microvessels populating the granulation tissue appears to be involved in the excessive accumulation of extracellular matrix during the repair of limb wounds. This study aimed to determine whether endothelial cell hypertrophy or hyperplasia, or both, contribute to microvascular occlusion and whether the pericyte is involved in this anomaly. We created 5 wounds, each 2.5 x 2.5 cm, on both forelimbs and on the body of 6 horses. One limb was bandaged to stimulate excessive wound fibroplasia. Weekly biopsy specimens were evaluated by transmission electron microscopy to measure microvessel luminal diameters and the surface area of endothelial cells and to count endothelial cells and pericytes. Microvessels were occluded significantly more often in limb wounds than in body wounds. The surface area of endothelial cells lining occluded microvessels (mean +/- standard error, 28.4013 +/- 1.5154 microm2) was significantly greater (P = 0.05) than that of cells lining patent microvessels (26.2220 +/- 1.5268 microm2). Conversely, neither the number of endothelial cells nor the number of pericytes differed between patent and occluded microvessels or between limb and body wounds. Furthermore, the wound location and the status of the microvessels (patent or occluded) did not alter the ratio of endothelial cells to pericytes. These data suggest that endothelial cell hypertrophy might play a role in the microvascular occlusion present in granulation tissue of limb wounds in horses, but the contribution of the pericyte remains obscure.  相似文献   

18.
This project compared the effects of hydrocolloid (HC) and hydrogel (HG) occlusive dressings and a polyethylene (PE) semi-occlusive dressing on the healing of acute full-thickness skin wounds on the forelimbs of 10 dogs. All treatments resulted in a similar degree of healing at postoperative days 4 and 7. No significant differences existed in the number of wounds that were more than 90% healed at postoperative day 28 between the group treated with the HG dressing and the group treated with the PE dressing. There were significantly fewer wounds more than 90% healed at postoperative day 28 in the group treated with the HC dressing. Wounds under the HG dressing had the largest mean percentage of contraction at postoperative days 21 and 28. Wounds under the HG dressing also had the largest contraction/re-epithelialization ratio (postoperative days 21 and 28) compared with wounds under the PE and HC dressings. Wounds under the PE dressing had a significantly higher mean percentage of re-epithelialization than wounds under both occlusive dressings on postoperative days 14, 21, and 28. Wounds under the two occlusive dressings had exuberant granulation tissue present more often than wounds under the PE dressing. The two occlusive dressings had significantly higher bacterial counts on wounds compared with wounds under the PE dressing; analysis of variance (ANOVA), P = .0008. Wounds under the HC dressing showed the poorest healing in all parameters.  相似文献   

19.
The objective of this multicentre, randomized, controlled field study was to determine the efficacy of ketanserin gel in preventing exuberant granulation tissue formation (hypergranulation) and infection in equine lower limb wounds. Horses and ponies (n = 481) with naturally occurring wounds were randomized to either topical treatment with ketanserin gel (n = 242) or a positive control (Belgium, Germany: ethacridin lactate solution, n = 120; France, United Kingdom: malic, benzoic, and salicylic acid [MBS] cream, n = 119). Treatment continued until the wound healed (success), formed hypergranulation tissue (failure), or became infected (failure). Treatment was terminated after 6 months in all remaining animals. Ketanserin was successful in 88% of cases. Wounds treated with ketanserin were 2 and 5 times more likely to heal successfully than were those treated with MBS or ethacridin lactate, respectively. Ketanserin gel is thus more effective than these standard treatments in preventing hypergranulation tissue and infection of equine lower limb wounds.  相似文献   

20.
OBJECTIVES: To evaluate the efficacy of a hydrocolloid dressing for the treatment of surgical wounds in dogs. METHODS: Six healthy young female dogs of medium size and different breed underwent ovariohysterectomy. Histological evaluation was performed on biopsies taken from the edges of the wounds at day 7. The dressing was applied on one half of the wound according to manufacturer's instructions; the second half served as control. Biopsy specimens were fixed in a 10% formalin buffered solution pH 7.4, paraffin embedded and stained with haematoxylin and eosin. For clinical assessment, the presence and quality of exudate, erythema of the surrounding area, swelling and correct apposition of the wound margins were evaluated. RESULTS: The hydrocolloid dressing was easy to use. The clinical quality of the treated skin wounds was superior to the non-treated ones. Comparison of histological features between treated and untreated wounds showed a more regular organisation of the granulation tissue in the treated wounds, with fibroblasts being aligned parallel to the overlying epidermis. The number of inflammatory cells and the extension of granulation tissue were less prominent and less widespread in treated compared to untreated wounds. CONCLUSION: The dressing performed very well in terms of adhesiveness and flexibility. It was useful in the management of surgical wounds to avoid contamination and ameliorate the epithelialisation rate and granulation tissue morphology of the surgical scar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号