首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polish apple cvs: ‘Ligol’, ‘Odra’ and ‘Primula’ served for studies of self-incompatibility. Basing on available sequence data, a new set of primers upstream and downstream of the hypervariable (HV) region of apple S-RNases were designed. Using the RT-PCR method, cDNA was amplified on RNA isolated from styles. PCR products were cloned and sequenced. A new trans-generic S-RNase allele, designated as Skb (GenBank accession no. EU443101), was discovered in cvs ‘Odra’ and ‘Primula’. Nucleotide sequence alignment revealed that Skb-RNase shows 98% identity to SaucS19-RNase from Sorbus aucuparia and 97% identity to CmonS17-RNase from Crataegus monogyna. The occurrence of extensive intergeneric hybridization among extant Pyrinae is considered since the deduced amino acid sequence of Skb-RNase from M. × domestica showed higher similarity to CmonS17 from C. monogyna, SaucS19-RNase from S. aucuparia, St from Malus transitoria, S5-RNase and S3-RNase from Pyrus pyrifolia, and S40-RNase from P. ussuriensis than to S-alleles from Malus × domestica and all of them are grouped in the same cluster of phylogenetic tree. In respect to extremely high similarities between aforementioned S-RNases it could be possible that these alleles existed before the separation of Malus, Pyrus, Sorbus and Crataegus genera. Within Malus, the Skb-RNase from M. × domestica and St-RNase from M. transitoria show 100% identity of the HV region at the deduced amino acid level, suggesting that these S-RNases diverged more recently than the other Malus S-RNases. In ‘Ligol’, the agronomically most important cultivar in Poland, the S2 and S9 were identified.  相似文献   

2.
Self-incompatibility (SI) is a widespread mechanism in flowering plants that promotes outbreeding and thereby increases genetic diversity. Recognition specificity in Brassica is achieved by the interaction of the female determinant S-receptor kinase (SRK) and its ligand, the male determinant S-locus protein 11 (SP11). The interaction between SP11 and SRK triggers the signaling cascade in an S-haplotype-specific manner and results in the rejection of self-pollen, but the signal components involved are still not well characterized. S haplotypes are widespread in self-compatible amphidiploid B. napus, and the interaction of heterozygous S haplotypes causes the loss of SI. This review highlights the recent advances made towards understanding the genetic analysis, distribution, and evolution of S haplotypes, the signal factors, and the potential of SI in B. napus hybrid breeding program.  相似文献   

3.
In a previously made cross Brassica napus cv. Oro (2n = 38) × Capsella bursa-pastoris (2n = 4x = 32), one F1 hybrid with 2n = 38 was totally male sterile. The hybrid contained no complete chromosomes from C. bursa-pastoris, but some specific AFLP (amplified fragment length polymorphism) bands of C. bursa-pastoris were detected. The hybrid was morphologically quite similar to ‘Oro’ except for smaller flowers with rudimentary stamens but normal pistils, and showed good seed-set after pollination by ‘Oro’ and other B. napus cultivars. The fertility segregation ratios (3:1, 1:1) in its progenies indicated that the male sterility was controlled by a single recessive gene. In the pollen mother cells of the male sterile hybrid, chromosome pairing and segregation were normal. Histological sectioning of its anthers showed that the tapetum was multiple layers and was hypertrophic from the stage of sporogenic cells, and that the tetrads were compressed by the vacuolated and disaggregated tapetum and no mature pollen grains were formed in anther sacs, thus resulting in male sterility. The possible mechanisms for the production of the male sterile hybrid and its potential in breeding are discussed.  相似文献   

4.
Phytophthora root and stem rot caused by Phytophthora sojae, is one of the most damaging diseases of soybean, for which management is principally done by planting resistant cultivars with race specific resistance which are conferred by Rps (Resistance to Phytophthora sojae) genes. The Rps8 locus, identified in the South Korean landrace PI 399073, is located in a 2.23 Mbp region on soybean chromosome 13. In eight cv. Williams (rps8/rps8) × PI 399073 (Rps8/Rps8) populations, this region exhibited strong segregation distortion. In a cross between the South Korean lines PI 399073 (Rps8/Rps8) and PI 408211B (multiple Rps genes) this region segregated in a Mendelian fashion. In this study, microsporogenesis was evaluated to identify meiotic abnormalities that may be associated with the segregation distortion of the Rps8 region. Pollen was collected from greenhouse-grown plants of the parental genotypes: Williams, PI 399073, and PI 408211B; as well as selected Rps8/rps8 RILs from Williams × PI 399073 BC4F2:3 and PI 399073 × PI 408211B F4:5 populations. There were no differences for pollen viability among the genotypes. However, for PI 399073, a mix of dyads, triads, tetrads and pentads was observed. A high frequency of meiotic abnormalities including fragments, laggards, multinucleated microspores; and microcytes containing DNA was also observed in Rps8/rps8 Williams × PI 399073 BC4F2:3 RILs. These meiotic abnormalities may contribute to the high degree of segregation distortion present in the Williams × PI 399073 populations.  相似文献   

5.
Genetic analysis of four self-incompatible lines in Brassica napus   总被引:3,自引:0,他引:3  
G. S. Yang    C. B. Chen    G. L. Zhou    C. N. Geng    C. Z. Ma    J. X. Tu  T. D. Fu 《Plant Breeding》2001,120(1):57-61
Reciprocal hybridization between four self-incompatible lines of Brassica napus: 271, 181, 184 and ‘White Flower’, revealed incompatibility. The reciprocal F1s obtained by bud pollination showed self-incompatible reactions, and no segregation for self-incompatibility was observed in all the reciprocal F2 populations, indicating that lines 271, 181, 184 and ‘White Flower’ were genetically identical with regard to self-incompatibility. Observations of self-incompatibility in 17 hybrids from crosses between line 271 and 17 varieties of B. napus showed 10 of the F1 hybrids to be self-compatible, while four were partially self-compatible and three were self-incompatible. Genetic analysis based on F2 and BC1 populations from five self-compatible F1 hybrids and two self-incompatible F1 hybrids suggested the existence of at least two loci controlling the self-incompatibility of line 271: one is the S locus, with dominant and recessive relationships between the S alleles, and the other is the suppressor (sp) of the S locus. The sp locus is genetically different from the S locus, and also shows dominant and recessive relationships between the sp alleles.  相似文献   

6.
Powdery mildew is one of the most important melon pathogens all over the world. So far, many genes conferring resistance to powdery mildew of melon have been described, but few of these have been finely mapped or cloned. Two F2 populations derived from Ano2 × Hami413 and Ano2 × Queen were used to map the powdery mildew resistance gene by methods of Bulked Segregation Analysis (BSA), comparative genomics and Resistance Gene Analogues (RGA) mapping. It was found that the resistance to powdery mildew in Ano2 was conferred by a dominant gene, and the gene was named Pm-AN. The genetic analysis revealed that Pm-AN located between two codominant markers RPW and MRGH63B in linkage groupV. The genetic distances between Pm-AN and these two markers were 1.4–1.8 and 1.6–2 cM. No recombination was found between Pm-AN and markers ME/E1, SRAP23. Pm-AN was located in a RGA-rich region and cosegregated with the RGA marker MRGH5 and the resistance gene Vat. Synteny analysis showed that markers in this region were collinear between melon and cucumber. Segregation distortion was found in this region using both Ano2 × Hami413 and Ano2 × Queen F2 populations, and the distortion was more distinct in Ano2 × Hami413 F2 population. The center of segregation distortion was located in the RGA rich region harboring Pm-AN.  相似文献   

7.
Broadening the genetic base of the C genome of Brassica napus canola by use of B. oleracea is important. In this study, the prospect of developing B. napus canola lines from B. napus?×?B. oleracea var. alboglabra, botrytis, italica and capitata crosses and the effect of backcrossing the F1’s to B. napus were investigated. The efficiency of the production of the F1’s varied depending on the B. oleracea variant used in the cross. Fertility of the F1 plants was low—produced, on average, about 0.7 F2 seeds per self-pollination and similar number of BC1 seeds on backcrossing to B. napus. The F3 population showed greater fertility than the BC1F2; however, this difference diminished with the advancement of generation. The advanced generation populations, whether derived from F2 or BC1, showed similar fertility and produced similar size silique with similar number of seeds per silique. Progeny of all F1’s and BC1’s stabilized into B. napus, although B. oleracea plant was expected, especially in the progeny of F1 (ACC) owing to elimination of the A chromosomes during meiosis. Segregation distortion for erucic acid alleles occurred in both F2 and BC1 resulting significantly fewer zero-erucic plants than expected; however, plants with?≤?15% erucic acid frequently yielded zero-erucic progeny. No consistent correlation between parent and progeny generation was found for seed glucosinolate content; however, selection for this trait was effective and B. napus canola lines were obtained from all crosses. Silique length showed positive correlation with seed set; the advanced generation populations, whether derived from F2 or BC1, were similar for these traits. SSR marker analysis showed that genetically diverse canola lines can be developed by using different variants of B. oleracea in B. napus?×?B. oleracea interspecific crosses.  相似文献   

8.
The Polima cytoplasmic male sterility (CMS) system has been successfully used in three/two-line hybrid production in rapeseed (Brassica napus L.). However, the sterility of the Polima (pol) CMS lines is sensitive to temperature fluctuations. Also, traces of pollen can cause self-pollination within the CMS lines, which results in reduced levels of F1 hybrid seed purity and leads to a significant yield loss. Self-incompatibility (SI) is another important approach for hybrid seed production in rapeseed. Despite having a wide range of restorers and being easily selected in a breeding program, SI system has some drawbacks. In this study, SI genes from a self-incompatible line of Brassica napus were transferred to a pol CMS line and S372A, a novel line of combined cytoplasmic male sterility with self-incompatibility was bred. Due to the SI genes, this line produced very few seeds when it was selfed at low temperature and no seeds at high temperature. This suggested that the line with CMS + SI had combined the advantages and overcome the disadvantages of both the pol CMS and SI systems. Furthermore, our results showed that most of the maintainers and all the restorers of the pol CMS system were also maintainers and restorers of the CMS + SI line, respectively. This indicates that the CMS + SI system can be easily used to establish three-line hybrids of rapeseed, and we believe this novel system could be extended to other species of Brassica.  相似文献   

9.
In the last decade, the cabbage seedpod weevil (Ceutorhynchus obstrictus (Marsham)) has become a major insect pest of canola (Brassica napus L.) in Canada reducing seed yields up to 35%. Therefore, the benefits of developing weevil resistant germplasm to canola breeders and the industry would reduce input costs, pesticide use, environmental degradation and increase yield. Yellow mustard (Sinapis alba L.) is resistant to C. obstrictus (CSPW), although the exact mechanism is not known (McCaffrey et al. 1999). A unique canola population was generated at the University of Guelph from a cross between B. napus and S. alba through embryo rescue and backcrossed to canola several times prior to double haploid (DH) production. Approximately one-half of this DH population had canola quality glucosinolate concentration (<16 μmol/g) and was used for further breeding. The hypothesis was that some DH progeny from this cross inherited resistance to CSPW from S. alba. Weevil infestation levels were assessed for the B. napus × S. alba BC2 and BC3 DH populations in the field over 7 years in Alberta where weevil pressure is strong to establish the resistant or susceptible status of these lines. The basic objectives for this study were to confirm field resistance in the B. napus × S. alba germplasm in Ontario and to identify any biochemical markers associated with resistance/susceptibility. Canola doubled haploid lines derived from BC2 or BC3 families were field screened for resistance (R) followed by chemical analysis of glucosinolates to detect biochemical polymorphisms correlated with CSPW resistance using High Performance Liquid Chromatography (HPLC). Two polymorphic peaks were found, one each, from extracts of upper cauline leaves and Stage 3 pod seed, with retention times of ~23 and 19 min, respectively. These HPLC peaks consistently correlated with larval infestation data and the peak differences between R and S DH lines were significant. Therefore, these two peaks can be considered as biochemical markers in this breeding germplasm and may play a role in rapid and early detection of CSPW resistance.  相似文献   

10.
The pol cytoplasmic male-sterility system has been widely used as a component for utilization of heterosis in Brassica napus and offers an attractive system for study on nuclear–mitochondrial interactions in plants. Genetic analyses have indicated that one dominant gene, Rfp, was required to achieve complete fertility restoration. As a first step toward cloning of this restorer gene, we attempted molecular mapping of the Rfp locus using the amplified fragment length polymorphism (AFLP) technique combined with bulked segregant analysis (BSA) method. A BC1 population segregating for Rfp gene was used for tagging. From the survey of 1,024 AFLP primer combinations, 13 linked AFLP markers were obtained and five of them were successfully converted into sequence characterized amplified region (SCAR) markers. A population of 193 plants was screened using these markers and the closest AFLP markers flanking Rfp were at the distances of 2.0 and 5.3 cM away, respectively. Further the AFLP or SCAR markers linked to the Rfp gene were integrated to one doubled-haploid (DH) population derived from the cross Quantum × No.2127-17 available in our laboratory, and Rfp gene was mapped on N18, which was the same as the previous report. These molecular markers will facilitate the marker-assisted selection (MAS) of pol CMS restorer lines.  相似文献   

11.
Gene effects of resistance to two isolates of Phytophthora nicotianae in two crosses of pepper were investigated using separate generation means analysis. Additive-dominance models were inadequate in all cases. Digenic parameter models were adequate in three cases and the probability of goodness of fit of models was negatively correlated with the aggressiveness of the pathogen. None of these models explained variation among generation means in the combined cross Beldi × CM334 with P. nicotianae isolate Pn2. Additive × additive, dominance × dominance and dominance × additive effects were significant in most cases. Additive and dominance effects (of negative sign) contribute more to resistance than to susceptibility. Additive variance was greater than environmental and dominance variance and ranged from 0.038 to 0.224. Narrow-sense heritabilities were dependent upon the cross and inoculate and ranged from 86 to 92%. The results of this study indicate that selection with more aggressive isolates of the pathogen will be useful for enhancing resistance in pepper.  相似文献   

12.
The oilseed Brassica rapa flowers and matures earlier than B. oleracea, as well as their amphidiploid B. napus. Therefore, earliness of B. rapa has been investigated as a source of variation for earliness in B. napus breeding programs. Variation for days to flower exists in B. oleracea; however, its earliest flowering variant B. alboglabra flowers 2–3 weeks later than B. napus. We hypothesized that the C genome of B. alboglabra carries alleles for early flowering which are different from the C-genome alleles of B. napus; and these alleles can be used for the improvement of B. napus. To test this, we examined flowering time in pedigree and DH populations from two B. napus × B. alboglabra crosses. A B. napus line with about a week earlier flowering than the B. napus parent was achieved through reconstitution of its C genome following pedigree selection. Introgression of the B. alboglabra allele in the early flowering pedigree lines is also evident from the presence of B. alboglabra-specific SSR alleles in this line. However, application of doubled haploidy failed to generate any line that flowered earlier than the B. napus parent, which is probably due to the difficulty of obtaining large numbers of euploid B. napus DH lines from this interspecific cross. Thus, we demonstrate that a trait of the diploid species, which apparently looks undesirable, might in fact be highly valuable for the improvement of amphidiploids; and knowledge from this research can also be applied for other traits.  相似文献   

13.
Fusarium wilt, caused by Fusarium oxysporum f. sp. melonis (F.o.m), is a worldwide soil-borne disease of melon (Cucumis melo L.). The most effective control measure available is the use of resistant varieties. Resistance to races 0 and 2 of this fungal pathogen is conditioned by the dominant gene Fom-1. An F2 population derived from the ‘Charentais-Fom1’ × ‘TRG-1551’ cross was used in combination with bulked segregant analysis utilizing the random amplified polymorphic DNA (RAPD) markers, in order to develop molecular markers linked to the locus Fom-1. Four hundred decamer primers were screened to identify three RAPD markers (B17649, V01578, and V061092) linked to Fom-1 locus. Fragments amplified by primers B17649 and V01578 were linked in coupling phase to Fom1, at 3.5 and 4 cM respectively, whereas V061092 marker was linked in repulsion to the same dominant resistant allele at 15.1 cM from the Fom-1 locus. These RAPDs were cloned and sequenced in order to design primers that would amplify only the target fragment. The derived sequence characterized amplified region (SCAR) markers SB17645 and SV01574 (645 and 574 bp, respectively) were present only in the resistant parent. The SV061092 marker amplified a band of 1092 bp only in the susceptible parent. These markers are more universal than the CAPS markers developed by Brotman et al. (Theor Appl Genet 10:337–345, 2005). The analysis of 24 melon accessions, representing several melon types, with these markers revealed that different melon types behaved differently with the developed markers supporting the theory of multiple, independent origins of resistance to races 0 and 2 of F.o.m.  相似文献   

14.
The genetics of resistance to Cucumber mosaic virus (CMV) in Cucumis sativus var. hardwickii R. Alef, the wild progenitor of cultivated cucumber was assessed by challenge inoculation and by natural infection of CMV. Among the 31 genotypes of C. sativus var. hardwickii collected from 21 locations in India the lowest mean percent disease intensity (PDI) was recorded in IC-277048 (6.33%) while the highest PDI was observed in IC-331631 (75.33%). All the four cultivated varieties (DC-1, DC-2, CHC-1 and CHC-2) showed very high PDI and susceptible disease reaction. Based on mean PDI, 8 genotypes were categorized as resistant, 13 as moderately resistant, 9 as moderately susceptible and one as susceptible. A chi-square test of frequency distribution based on mean PDI in F2 progenies of six resistant × susceptible crosses revealed monogenic recessive Mendelian ratio 1(R):3(S) to be the best fit. This monogenic recessive model was further confirmed by 1(R):1(S) ratio as the best fit for back cross with resistant parent and no fit for either 3:1 or 1:1 in the back cross with the susceptible parent. The results revealed that CMV resistance in C. sativus var. hardwickii was controlled by a single recessive gene. Considering the cross compatibility between C. sativus var. hardwickii and cultivated cucumber, the resistance trait can be easily transferred to cultivated species through simple backcross breeding.  相似文献   

15.
Summary Two RAPD markers linked to gene for resistance (assayed as pustule number cm−2 leaf area) to rust [Uromyces fabae (Pers.) de Bary] in pea (Pisum sativum L.) were identified using a mapping population of 31 BC1F1 [HUVP 1 (HUVP 1 × FC 1] plants, FC 1 being the resistant parent. The analysis of genetics of rust resistance was based on the parents, F1, F2, BC1F1 and BC1F2 generations. Rust resistance in pea is of non-hypersensitive type; it appeared to be governed by a single partially dominant gene for which symbol Ruf is proposed. Further, this trait seems to be affected by some polygenes in addition to the proposed oligogene Ruf. A total of 614 decamer primers were used to survey the parental polymorphism with regard to DNA amplification by polymerase chain reaction. The primers that amplified polymorphic bands present in the resistant parent (FC 1) were used for bulked segregant analysis. Those markers that amplified consistently and differentially in the resistant and susceptible bulks were separately tested with the 31 BC1F1 individuals. Two RAPD makers, viz., SC10-82360 (primer, GCCGTGAAGT), and SCRI-711000 (primer, GTGGCGTAGT), flanking the rust resistance gene (Ruf) with a distance of 10.8 cM (0.097 rF and LOD of 5.05) and 24.5 cM (0.194 rF and a LOD of 2.72), respectively, were identified. These RAPD markers were not close enough to Ruf to allow a dependable maker-assisted selection for rust resistance. However, if the two makers flanking Ruf were used together, the effectiveness of MAS would be improved considerably.  相似文献   

16.
A triploid hybrid with an ABC genome constitution, produced from an interspecific cross between Brassica napus (AACC genome) and B. nigra (BB genome), was used as source material for chromosome doubling. Two approaches were undertaken for the production of hexaploids: firstly, by self-pollination and open-pollination of the triploid hybrid; and secondly, by application of colchicine to axillary meristems of triploid plants. Sixteen seeds were harvested from triploid plants and two seedlings were confirmed to be hexaploids with 54 chromosomes. Pollen viability increased from 13% in triploids to a maximum of 49% in hexaploids. Petal length increased from 1.3 cm (triploid) to 1.9 cm and 1.8 cm in the two hexaploids and longest stamen length increased from 0.9 cm (triploid) to 1.1 cm in the hexaploids. Pollen grains were longer in hexaploids (43.7 and 46.3 μm) compared to the triploid (25.4 μm). A few aneuploid offsprings were also observed, with chromosome number ranging from 34 to 48. This study shows that trigenomic hexaploids can be produced in Brassica through interspecific hybridisation of B. napus and B. nigra followed by colchicine treatment.  相似文献   

17.
The inheritance of the resistance to Fusarium oxysporum f. sp. melonis (F.o.m.) races 0 and 2 in ‘Tortuga’, a Spanish cantalupensis accession, was studied from crosses of ‘Tortuga’ by the susceptible line ‘Piel de Sapo’ and the resistant one ‘Charentais-Fom1’ that carries the resistance gene Fom-1. The segregation patterns observed in the F2 (‘Tortuga’ × ‘Piel de Sapo’) and the backcross (‘Piel de Sapo’ × (‘Tortuga’ × ‘Piel de Sapo’) populations, suggest that resistance of ‘Tortuga’ to races 0 and 2 of F.o.m. is conferred by two independent genes: one dominant and the other recessive. In the F2 derived from the cross between accessions ‘Tortuga’ and ‘Charentais-Fom1’, the lack of susceptible plants indicated that the two accessions are carrying the same resistance gene (Fom-1). The analysis of 158 F2 plants (‘Tortuga’ × ‘Piel de Sapo’) with a Cleaved Amplified Polymorphic Sequence marker 618-CAPS, tightly linked to Fom-1 (0.9 cM), confirmed that ‘Tortuga’ also carries a recessive gene, that we propose to symbolize by fom-4.  相似文献   

18.
Interspecific hybridization was carried out between Lilium longiflorum and L. lophophorum var. linearifolium by using the cut style method of pollination, as a contrast, intraspecific hybridization between L. longiflorum ‘Gelria’ and L. longiflorum was also made, but no mature seeds and offspring were obtained from the two combinations under in vivo condition. Ovules excised from each carpel 5–35 days after pollination (DAP) were cultured on B5 or half-strength B5 medium containing sucrose at different concentrations in vitro. In L. longiflorum × L. lophophorum var. linearifolium, only 1.17% of ovules excised at 10 DAP developed into seedlings, and in L. longiflorum ‘Gelria’ × L. longiflorum, only 0.99% of ovules excised at 25 DAP developed into seedlings; none of the ovules excised at other different DAP in the two cross combinations produced any seedlings. The results showed that interspecific hybridization had a more serious post-fertilization barrier than the intraspecific hybridization, and that a lower concentration (3%) of sucrose led to better embryo development and higher percentage of seedlings in ovule cultures. All hybrid seedlings obtained were successfully transplanted to soil and grew normally. The progenies investigated were identified as true hybrids based on inter-simple sequence repeat (ISSR) analysis.  相似文献   

19.
7–7365AB is a recessive genic male sterile (RGMS) two-type line, which can be applied in a three-line system with the interim-maintainer, 7–7365C. Fertility of this system is controlled by two duplicate dominant epistatic genes (Bn;Ms3 and Bn;Ms4) and one recessive epistatic inhibitor gene (Bn;rf). Therefore an individual with the genotype of Bn;ms3ms3ms4ms4Rf_ exhibits male sterility, whereas, plant with Bn;ms3ms3ms4ms4rfrf shows fertility because homozygosity at the Bn;rf locus (Bn;rfrf) can inhibit the expression of two recessive male sterile genes in homozygous Bn;ms3ms3ms4ms4 plant. A cross of 7–7365A (Bn;ms3ms3ms4ms4RfRf) and 7–7365C (Bn;ms3ms3ms4ms4rfrf) can generate a complete male sterile population served as a mother line with restorer in alternative strips for the multiplication of hybrid seeds. In the present study, molecular mapping of the Bn;Rf gene was performed in a BC1 population from the cross between 7–7365A and 7–7365C. Bulked segregant analysis (BSA) and amplified fragment length polymorphism (AFLP) technique was used to identify molecular markers linked to the gene of interest. From a survey of 768 primer combinations, seven AFLP markers were identified. The closest marker, XM5, was co-segregated with the Bn;Rf locus and successfully converted into a sequence characterized amplified region (SCAR) marker, designated as XSC5. Two flanking markers, XM3 and XM2, were 0.6 cM and 2.6 cM away from the target gene, respectively. XM1 was subsequently mapped on linkage group N7 using a doubled-haploid (DH) mapping population derived from the cross Tapidor × Ningyou7, available at IMSORB, UK. To further confirm the location of the Bn;Rf gene, additional simple sequence repeat (SSR) markers in linkage group N7 from the reference maps were screened in the BC1 population. Two SSR markers, CB10594 and BRMS018, showed polymorphisms in our mapping population. The molecular markers found in the present study will facilitate the selection of interim-maintainer.  相似文献   

20.
Crown rust, which is caused by Puccinia coronata f. sp. avenae, P. Syd. & Syd., is the most destructive disease of cultivated oats (Avena sativa L.) throughout the world. Resistance to the disease that is based on a single gene is often short-lived because of the extremely great genetic diversity of P. coronata, which suggests that there is a need to develop oat cultivars with several resistance genes. This study aimed to identify amplified fragment length polymorphism AFLP markers that are linked to the major resistance gene, Pc68, and to amplify the F6 genetic map from Pc68/5*Starter × UFRGS8. Seventy-eight markers with normal segregation were discovered and distributed in 12 linkage groups. The map covered 409.4 cM of the Avena sativa genome. Two AFLP markers were linked in repulsion to Pc68: U8PM22 and U8PM25, which flank the gene at 18.60 and 18.83 centiMorgans (cM), respectively. The marker U8PM25 is located in the linkage group 4_12 in the Kanota × Ogle reference oat population. These markers should be useful for transferring Pc68 to genotypes with good agronomic characteristics and for pyramiding crown rust resistance genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号