首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
 Acetylene, dimethyl ether (DME) and 2-chloro-6-trichloromethyl pyridine (nitrapyrin) were used as inhibitors to study the contributions of nitrification and denitrification to the production of N2O and nitric oxide (NO) in samples taken from the soil profile of a peatland drained for forestry. Acetylene and DME inhibited 60–100% of the nitrification activity in field-moist samples from the 0–5 cm and 5–10 cm peat layers, whereas nitrapyrin had no inhibitory effect. In the 0–5 cm peat layer the N2O production could be reduced by up to 90% with inhibitors of nitrification, but in the 5–10 cm peat layer this proportion was 20–30%. All the inhibitors removed 96–100% of the nitrification potential in peat-water slurries from the 0–5 cm peat layer, but the 5–10 cm layer had a much lower nitrification activity, and here the efficiency of the inhibitors was more variable. Litter was the main net source of NO in the peat profile. NO3 production was lower in the litter layer than in the peat, whereas N2O production was much higher in the litter than in the peat. Denitrification was the most probable source of N2O and NO in the litter, which had a high availability of organic substrates. Received: 14 July 1997  相似文献   

2.
 Nitrous oxide (N2O) emissions via the nitrification (I nit) and denitrification (I den) pathways were successfully measured with in-field incubation of soil cores in preserving jars at 0 Pa and 5–10 Pa acetylene. From the incubations, fractions of nitrification – N2O over total N2O (I nit / I tot) – and denitrification – N2O over total N2O (I den / I tot) – were obtained. Actual field emissions of N2O via nitrification (F nit) and denitrification (F den) were calculated by multiplying the fractions from the incubation technique with the daily N2O emission (F day) determined with a direct soil cover method. The approach presented here was successful for a whole range of soil moisture conditions in intensive grassland. F nit and F den followed the trends of soil ammonium and soil nitrate. Received: 31 October 1997  相似文献   

3.
 A low efficiency of use of N fertilisers has been observed in mid-Wales on permanent pasture grazed intensively by cattle. Earlier laboratories studies have suggested that heterogeneity in redox conditions at shallow soil depths may allow nitrification and denitrification to occur concurrently resulting in gaseous losses of N from both NH4 + and NO3 . The objective of the investigation was to test the hypothesis that both nitrification and denitrification can occur simultaneously under simulated field capacity conditions (∼5 kPa matric potential). Intact soil cores were taken from grassland subjected to both grazing and amenity use. The fate of applied NH4 + was examined during incubation. 15N was used as a tracer. Nitrapyrin was used as a nitrification inhibitor and acetylene was used to block N2O reductase. More than 50% of N applied as NH4 + disappeared over a period of 42 days from the soil mineral-N pool. Some of this N was evolved as N2O. Accumulation of NO3 –N in the surface 0–2.5 cm indicated active nitrification. Addition of nitrapyrin increased N recovery by 26% and inhibited both the accumulation of NO3–N and emission of N2O. When intact field cores were incubated after addition of 15N-urea, all of the N2O evolved was derived from added urea-N. It was concluded that nitrification and denitrification do occur simultaneously in the top 7.5 cm or so, of the silty clay loam grassland topsoils of mid-Wales at moisture contents typical of field capacity. The quantitative importance of these concurrent processes to N loss from grassland systems has not yet been assessed. Received: 15 December 1998  相似文献   

4.
 The experiment, carried out on a forest and arable light-textured soil, was designed to study the temperature response of autotrophic and heterotrophic N2O production and investigate how the N2O flux relates to soil respiration and O2 consumption. Although N2O production seemed to be stimulated by a temperature increase in both soils, the relationship between production rate and temperature was different in the two soils. This seemed to depend on the different contribution of nitrification and denitrification to the overall N2O flux. In the forest soil, almost all N2O was derived from nitrification, and its production rate rose linearly from 2  °C to 40  °C. A stronger effect of temperature on N2O production was observed in the arable soil, apparently as a result of an incremental contribution of denitrification to the overall N2O flux with rising temperature. The soil respiration rate increased exponentially with temperature and was significantly correlated with N2O production. O2 consumption stimulated denitrification in both soils. In the arable soil, N2O and N2 production increased exponentially with decreasing O2 concentration, though N2O was the main gas produced at any temperature. In the forest soil, only the N2 flux was related exponentially to O2 consumption and it outweighed the rate of N2O production only at >34  °C. Thus, it appears that in the forest soil, where nitrification was the main source of N2O, temperature affected the N2O flux less dramatically than in the arable soil, where a temperature increase strongly stimulated N2O production by enhancing favourable conditions for denitrification. Received: 26 August 1998  相似文献   

5.
 Potential effects of earthworms (Lumbricus terrestris L.) inoculated into soil on fluxes of CO2, CH4 and N2O were investigated for an untreated and a limed soil under beech in open topsoil columns under field conditions for 120 days. Gas fluxes from L. terrestris, beech litter and mineral soil from soil columns were measured separately in jars at 17  °C. The inoculation with L. terrestris and the application of lime had no effect on cumulative CO2 emissions from soil. During the first 3–4 weeks earthworms significantly (P<0.05) increased CO2 emissions by 16% to 28%. In contrast, significantly lower (P<0.05) CO2 emission rates were measured after 11 weeks. The data suggest that earthworm activity was high during the first weeks due to the creation of burrows and incorporation of beech litter into the mineral soil. Low cumulative CH4 oxidation rates were found in all soil columns as a result of CH4 production and oxidation processes. L. terrestris with fresh feces and the beech litter produced CH4 during the laboratory incubation, whereas the mineral soil oxidised atmospheric CH4. Inoculation with L. terrestris led to a significant reduction (P<0.02) in the CH4 oxidation rate of soil, i.e. 53% reduction. Liming had no effect on cumulative CH4 oxidation rates of soil columns and on CH4 fluxes during the laboratory incubation. L. terrestris significantly increased (P<0.001) cumulative N2O emissions of unlimed soil columns by 57%. The separate incubation of L. terrestris with fresh feces resulted in rather high N2O emissions, but the rate strongly decreased from 54 to 2 μg N kg–1 (dry weight) h–1 during the 100 h of incubation. Liming had a marked effect on N2O formation and significantly (P<0.001) reduced cumulative N2O emissions by 34%. Although the interaction of liming and L. terrestris was not significant, N2O emissions of limed soil columns with L. terrestris were 8% lower than those of the control. Received: 2 September 1999  相似文献   

6.
Diversity of denitrifying microflora and ability to reduce N2O in two soils   总被引:1,自引:0,他引:1  
 The ozone-depleting gas N2O is an intermediate in denitrification, the biological reduction of NO3 to the gaseous products N2O and N2 gas. The molar ratio of N2O produced (N2O/N2O+N2) varies temporally and spatially, and in some soils N2O may be the dominant end product of denitrification. The fraction of NO3 -N emitted as N2O may be due at least in part to the abundance and activity of denitrifying bacteria which possess N2O reductase. In this study, we enumerated NO3 -reducing and denitrifying bacteria, and compared and contrasted collections of denitrifying bacteria isolated from two agricultural soils, one (Auxonne, soil A) with N2O as the dominant product of denitrification, the other (Chalons, soil C) with N2 gas as the dominant product. Isolates were tested for the ability to reduce N2O, and the presence of the N2O reductase (nosZ)-like gene was evaluated by polymerase chain reaction (PCR) using specific primers coupled with DNA hybridization using a specific probe. The diversity and phylogenetic relationships of members of the collections were established by PCR/restriction fragment length polymorphism of 16s rDNA. The two soils had similar numbers of bacteria which used NO3 as a terminal electron acceptor anaerobically. However, the soil A had many more denitrifiers which reduced NO3 to gaseous products (N2O or N2) than did soil C. Collections of 258 and 281 bacteria able to grow anaerobically in the presence of NO3 were isolated from soil A and soil C, respectively. These two collections contained 66 and 12 denitrifying isolates, respectively, the others reducing NO3 only as far as NO2 . The presence of nosZ sequences was generally a poor predictor of N2O reducing ability: there was agreement between the occurrence of nosZ sequences and the N2O reducing ability for only 42% of the isolates; 35% of the isolates (found exclusively in soil A) without detectable nosZ sequences reduced N2O whereas 21% of the isolates carrying nosZ sequences did not reduce this gas under our assay conditions. Twenty-eight different 16S rDNA restriction patterns (using two restriction endonucleases) were distinguished among the 78 denitrifying isolates. Two types of patterns appeared to be common to both soils. Twenty-three and three types of patterns were found exclusively among bacteria isolated from soils A and C, respectively. The specific composition of denitrifying communities appeared to be different between the two soils studied. This may partly explain the differences in the behaviour of the soils concerning N2O reduction during denitrification. Received: 31 October 1997  相似文献   

7.
8.
After implementation of legislative measures for the reduction of environmental hazards from nitrate leaching and ammonia volatilisation when using organic manures and fertilizers in Europe, much attention is now paid to the specific effects of these fertilizers on the dynamics of global warming-relevant trace gases in soil. Particularly nitrogen fertilizers and slurry from animal husbandry are known to play a key role for the CH4 and N2O fluxes from soils. Here we report on a short-term evaluation of trace gas fluxes in grassland as affected by single or combined application of mineral fertilizer and organic manure in early spring. Methane fluxes were characterised by a short methane emission event immediately after application of cattle slurry. Within the same day methane fluxes returned to negative, and on average over the 4-day period after slurry application, only a small but insignificant trend to reduced methane oxidation was found. Nitrous oxide emissions showed a pronounced effect of combined slurry and mineral fertilizer application. In particular fresh cattle slurry combined with calcium ammonium nitrate (CAN) mineral fertilizer induced an increase in mean N2O flux during the first 4 days after application from 10 to 300 μg N2O-N m−2 h−1. 15N analysis of emitted N2O from 15N-labelled fertilizer or manure indicated that easily decomposable slurry C compounds induced a pronounced promotion of N2O-N emission derived from mineral CAN fertilizer. Fluxes after application of either mineral fertilizer or slurry alone showed an increase of less than 5-fold. The NOx sink strength of the soil was in the range of −6 to −10 μg NOx-N m−2 h−1 and after fertilization it showed a tendency to be reduced by no more than 2 μg NOx-N m−2 h−1, which was a result of both, increased NO emission and slightly increased NO2 deposition. Associated determination of the N2O:N2 emission ratio revealed that after mineral N application (CAN) a large proportion (c. 50%) was emitted as N2O, while after application of slurry with easily decomposable C and predominantly -N serving as N-source, the N2O:N2 emission ratio was 1:14, i.e. was changed in favour of N2. Our work provides evidence that particularly the combination of slurry and nitrate-containing N fertilizers gives rise to considerable N2O emissions from mineral fertilizer N pool.  相似文献   

9.
 Nitrous oxide (N2O) emissions and methane (CH4) consumption were quantified following cultivation of two contrasting 4-year-old pastures. A clover sward was ploughed (to 150–200 mm depth) while a mixed herb ley sward was either ploughed (to 150–200 mm depth) or rotovated (to 50 mm depth). Cumulative N2O emissions were significantly greater following ploughing of the clover sward, with 4.01 kg N2O-N ha–1 being emitted in a 48-day period. Emissions following ploughing and rotovating of the ley sward were much less and were not statistically different from each other, with 0.26 and 0.17 kg N2O-N ha–1 being measured, respectively, over a 55-day period. The large difference in cumulative N2O between the clover and ley sites is presumably due to the initially higher soil NO3 content, greater water filled pore space and lower soil pH at the clover site. Results from a denitrification enzyme assay conducted on soils from both sites showed a strong negative relationship (r=–0.82) between soil pH and the N2O:(N2O+N2) ratio. It is suggested that further research is required to determine if control of soil pH may provide a relatively cheap mitigation option for N2O emissions from these soils. There were no significant differences in CH4 oxidation rates due to sward type or form of cultivation. Received: 1 November 1998  相似文献   

10.
 At two field sites representing northeastern German minerotrophic fens (Rhin-Havelluch, a shallow peat site; Gumnitz, a partially drained peat site) the influence of different factors (N fertilization, groundwater table, temperature) on N2O and CH4 emissions was investigated. The degraded fens were sources or sinks of the radiatively active trace gases investigated. The gas fluxes measured were much higher than those found in other terrestrical ecosystems such as forests. Lowering the groundwater table increased the release of N2O and the oxidation of CH4. High CH4 emission rates occurred when the groundwater tables and soil temperatures were high (>12  °C). N fertilization stimulated the release of N2O only when application rates were very high (480 kg N ha–1). A moderate N supply (60 or 120 kg N ha–1) hardly increased the release of N2O in spite of high soluble soil NO3 contents. Received: 31 October 1997  相似文献   

11.
Improved-fallow agroforestry systems are increasingly being adopted in the humid tropics for soil fertility management. However, there is little information on trace gas emissions after residue application in these systems, or on the effect of tillage practice on emissions from tropical agricultural systems. Here, we report a short-term experiment in which the effects of tillage practice (no-tillage versus tillage to 15 cm depth) and residue quality on emissions of N2O, CO2 and CH4 were determined in an improved-fallow agroforestry system in western Kenya. Emissions were increased following tillage of Tephrosia candida (2.1 g N2O-N ha−1 kg N applied−1; 759 kg CO2-C ha−1 t C applied−1; 30 g CH4-C ha−1 t C applied−1) and Crotalaria paulina residues (2.8 g N2O-N ha−1 kg N applied−1; 967 kg CO2-C ha−1 t C applied−1; 146 g CH4-C ha−1 t C applied−1) and were higher than from tillage of natural-fallow residues (1.0 g N2O-N ha−1 kg N applied−1; 432 kg CO2-C ha−1 t C applied−1; 14.7 g CH4-C ha−1 t C applied−1) or from continuous maize cropping systems. Emissions from these fallow treatments were positively correlated with residue N content (r = 0.62–0.97; P < 0.05) and negatively correlated with residue lignin content (r = −0.56, N2O; r = −0.92, CH4; P < 0.05). No-tillage of surface applied Tephrosia residues lowered the total N2O and CO2 emitted over 99 days by 0.33 g N2O-N ha−1 kg N applied−1 and 124 kg CO2-C ha−1 t C applied−1, respectively; estimated to provide a reduction in global warming potential of 41 g CO2 equivalents. However, emissions were increased from this treatment over the first 2 weeks. The responses to tillage practice and residue quality reported here need to be verified in longer term experiments before they can be used to suggest mitigation strategies appropriate for all three greenhouse gases.  相似文献   

12.
Nitrogen monoxide production and consumption in an organic soil   总被引:2,自引:0,他引:2  
 Factors controlling NO production, consumption, and emission rates were examined in an organic soil. Emission rates were measured in the enclosed headspaces of intact soil cores under three fertilisation treatments (unfertilised or 100 kg N ha–1 as NH4Cl or as NaNO3), with and without the nitrification inhibitor C2H2 (20–70 μl l–1). Nitrification was always the main source of NO emitted across the soil surface, even when the soil was nearly saturated. Fertilisation of soil with NH4Cl increased NO emission both by stimulating NO production from nitrification, and by decreasing the NO consumption rate constant. Addition of NaNO3 also stimulated the production of NO and N2O during nitrification in aerobic soil slurry experiments. This effect was eliminated by adding C2H2 and was therefore not related to denitrification. In loose soil samples, the increase in NO-N production after NH4Cl addition represented as much as 26% of the added N. However, in intact cores, 95% of the NO produced through nitrification was oxidised within the soil column rather than emitted to the atmosphere. We concluded that nitrification is the primary NO source from this organic soil, that surface NO emissions are much lower than gross NO production rates, and that gaseous N oxide (NO and N2O) losses during nitrification can be affected by both soil NH4 + and NO3 . Received: 15 December 1998  相似文献   

13.
An automated laboratory soil incubation system enabled the effects on gaseous emissions from a soil to be quantified accurately, when amended with slurry plus a nitrification inhibitor: dicyandiamide (DCD), or 3,4-dimethylpyrazole phosphate (DMPP). Nitrification inhibitors applied with slurry under simulated Portuguese conditions were very efficient in reducing N2O emission, and did not increase CH4 emissions significantly, when the soil was predominantly aerobic. The inhibitors were also indirectly effective in reducing N2O emissions due to denitrification during a subsequent anaerobic phase. All gaseous emissions followed strong diurnal patterns that were positively correlated with soil temperature and obeyed a Q10=2 relationship. The widespread use of DCD and DMPP inhibitors with slurry applied to Portuguese soils could have the potential to reduce N2O emissions from this source by ten- to 20-fold.  相似文献   

14.
 Generally, grasslands are considered as sinks for atmospheric CH4, and N input as a factor which reduces CH4 uptake by soils. We aimed to assess the short- and long-term effects of a wide range of N inputs, and of grazing versus mowing, on net CH4 emissions of grasslands in the Netherlands. These grasslands are mostly intensively managed with a total N input via fertilisation and atmospheric deposition in the range of 300–500 kg N ha–1 year–1. Net CH4 emissions were measured with vented, closed flux chambers at four contrasting sites, which were chosen to represent a range of N inputs. There were no significant effects of grazing versus mowing, stocking density, and withholding N fertilisation for 3–9 years, on net CH4 emissions. When the ground-water level was close to the soil surface, the injection of cattle slurry resulted in a significant net CH4 production. The highest atmospheric CH4 uptake was found at the site with the lowest N input and the lowest ground-water level, with an annual CH4 uptake of 1.1 kg CH4 ha–1 year–1. This is assumed to be the upper limit of CH4 uptake by grasslands in the Netherlands. We conclude that grasslands in the Netherlands are a net sink of CH4, with an estimated CH4 uptake of 0.5 Gg CH4 year–1. At the current rates of total N input, the overall effect of N fertilisation on net CH4 emissions from grasslands is thought to be small or negligible. Received: 27 January 1998  相似文献   

15.
Nitrogen from fertilisers and crop residues can be lost as nitrous oxide (N2O), a greenhouse gas that causes an increase in global warming and also depletes stratospheric ozone. Nitrous oxide emissions, soil chemical status, temperature and N2O concentration in the soil atmosphere were measured in a field experiment on soil compaction in loam and sandy loam (cambisols) soils in south-east Scotland. The overall objective was to discover how the intensity and distribution of soil compaction by tractor wheels or by roller just before sowing influenced crop performance, soil conditions and production and emissions of N2O under controlled traffic conditions. Compaction treatments were zero, light compaction by roller (up to 1 Mg per metre of length) and heavy compaction by loaded tractor (up to 4.2 Mg). In this paper we report the effects on production and emissions of N2O and relate them to soil and crop conditions. Nitrous oxide fluxes were substantial only when the soil water content was high (>27 g per 100 g). Fertiliser application stimulated emissions in the spring whereas crop residues stimulated emissions in autumn and winter. Heavy compaction increased N2O emissions after fertiliser application or residue incorporation more than light or zero compaction. The bulk densities of the heavily and lightly compacted soils were up to 89% and 82% of the theoretical (Proctor) maxima. Higher soil cone resistances, temperatures and nitrogen availability and lower gas diffusivities and air-filled porosities combined to make the heavily compacted soil more anaerobic and likely to denitrify than the zero or lightly compacted soil. Compaction sufficient to increase N2O emissions significantly corresponded with adverse soil conditions for winter barley (Hordeum vulgare L.) growth. Soil tillage, which ensures that soil compaction is no greater than in our light treatment and is confined to near the soil surface, may help to mitigate both surface fluxes of N2O and losses to the subsoil.  相似文献   

16.
Independent soil microcosm experiments were used to investigate the effects of the fungicides mancozeb and chlorothalonil, and the herbicide prosulfuron, on N2O and NO production by nitrifying and denitrifying bacteria in fertilized soil. Soil cores were amended with NH4NO3 or NH4NO3 and pesticide, and the N2O and NO concentrations were monitored periodically for approximately 48 h following amendment. Nitrification is the major source of N2O and NO in these soils at soil moistures relevant to those observed at the field site where the cores were collected. At pesticide concentrations from 0.02 to 10 times that of a standard single application on a corn crop, N2O and NO production was inhibited by all three pesticides. Generally N2O production was inhibited by the pesticides from 10 to 62% and 20 to 98% at the lowest and highest dosages, respectively. Nitric oxide production was generally inhibited from about 5 to 47% and by 20 to 97% at the lowest and highest dosages, respectively. Nitrous oxide and nitric oxide production by nitrification was more susceptible to inhibition by these pesticides than denitrification. Production of both N2O and NO by nitrification was inhibited by as much as 99%, at the highest concentration of pesticide applied. The net production of N2O increased as soil moisture increased. The rate of NO production was greatest at the intermediate moistures investigated, between 14 and 19% gravimetric soil moisture, suggestive that nitrification is the dominant source of NO.  相似文献   

17.
Summary NO and N2O release rates were measured in an acidic forest soil (pH 4.0) and a slightly alkaline agricultural soil (pH 7.8) after the pH was adjusted to values ranging from pH 4.0 to 7.8. The total release of NO and N2O during 20 h of incubation was determined together with the net changes in the concentrations of NH 4 + , NO 2 and NO 3 in the soil. The release of NO and N2O increased after fertilization with NH 4 + and/or NO 3 ; it strongly decreased with increasing pH in the acidic forest soil; and it increased when the pH of the alkaline agricultural soil was decreased to pH 6.5. However, there was no simple correlation between NO and N2O release or between these compounds and activities such as the NO 2 accumulation, NO 3 reduction, or NH 4 + oxidation. We suggest that soil pH exerts complex controls, e.g., on microbial populations or enzyme activities involved in nitrification and denitrification.  相似文献   

18.
Tropical savanna ecosystems are a major contributor to global CO2, CH4 and N2O greenhouse gas exchange. Savanna fire events represent large, discrete C emissions but the importance of ongoing soil-atmosphere gas exchange is less well understood. Seasonal rainfall and fire events are likely to impact upon savanna soil microbial processes involved in N2O and CH4 exchange. We measured soil CO2, CH4 and N2O fluxes in savanna woodland (Eucalyptus tetrodonta/Eucalyptus miniata trees above sorghum grass) at Howard Springs, Australia over a 16 month period from October 2007 to January 2009 using manual chambers and a field-based gas chromatograph connected to automated chambers. The effect of fire on soil gas exchange was investigated through two controlled burns and protected unburnt areas. Fire is a frequent natural and management action in these savanna (every 1-2 years). There was no seasonal change and no fire effect upon soil N2O exchange. Soil N2O fluxes were very low, generally between −1.0 and 1.0 μg N m−2 h−1, and often below the minimum detection limit. There was an increase in soil NH4+ in the months after the 2008 fire event, but no change in soil NO3. There was considerable nitrification in the early wet season but minimal nitrification at all other times.Savanna soil was generally a net CH4 sink that equated to between −2.0 and −1.6 kg CH4 ha−1 y−1 with no clear seasonal pattern in response to changing soil moisture conditions. Irrigation in the dry season significantly reduced soil gas diffusion and as a consequence soil CH4 uptake. There were short periods of soil CH4 emission, up to 20 μg C m−2 h−1, likely to have been caused by termite activity in, or beneath, automated chambers. Soil CO2 fluxes showed a strong bimodal seasonal pattern, increasing fivefold from the dry into the wet season. Soil moisture showed a weak relationship with soil CH4 fluxes, but a much stronger relationship with soil CO2 fluxes, explaining up to 70% of the variation in unburnt treatments. Australian savanna soils are a small N2O source, and possibly even a sink. Annual soil CH4 flux measurements suggest that the 1.9 million km2 of Australian savanna soils may provide a C sink of between −7.7 and −9.4 Tg CO2-e per year. This sink estimate would offset potentially 10% of Australian transport related CO2-e emissions. This CH4 sink estimate does not include concurrent CH4 emissions from termite mounds or ephemeral wetlands in Australian savannas.  相似文献   

19.
 N2O emission from a wetland rice soil as affected by the application of three controlled-availability fertilizers (CAFs) and urea was investigated through a pot experiment. N2O fluxes from the N fertilized paddy soil averaged 44.8–69.3 μg N m–2 h–1 during the rice growing season, accounting for 0.28–0.51% of the applied N. The emission primarily occurred during the mid-season aeration (MSA) and the subsequent re-flooding period. Fluxes were highly correlated with the NO3 and N2O concentrations in the soil water. As there were relatively large amounts of NH4 +-N present in the soil of the CAF treatments at the beginning of MSA, leading to large amounts of NO3 -N during the MSA and the subsequent re-flooding period, the tested CAFs were not effective in reducing N2O emission from this paddy soil. The potential of applied CAFs to reduce N2O emissions from paddy soil is discussed. Received: 25 May 1999  相似文献   

20.
The aim was to investigate the effects of different N fertilisers on nitrous oxide (N2O) flux from agricultural grassland, with a view to suggesting fertiliser practices least likely to cause substantial N2O emissions, and to assess the influence of soil and environmental factors on the emissions. Replicate plots on a clay loam grassland were fertilised with ammonium sulphate (AS), urea (U), calcium nitrate (CN), ammonium nitrate (AN), or cattle slurry supplemented with AN on three occasions in each of 2 years. Frequent measurements were made of N2O flux and soil and environmental variables. The loss of N2O-N as a percentage of N fertiliser applied was highest from the supplemented slurry (SS) treatment and U, and lowest from AS. The temporal pattern of losses was different for the different fertilisers and between years. Losses from U were lower than those from AN and CN in the spring, but higher in the summer. The high summer fluxes were associated with high water-filled pore space (WFPS) values. Fluxes also rose steeply with temperature where WFPS or mineral N values were not limiting. Total annual loss was higher in the 2nd year, probably because of the rainfall pattern: the percentage losses were 2.2, 1.4, 1.2, 1.1 and 0.4 from SS, U, AN, CN and AS, respectively. Application of U in the spring and AN twice in the summer in the 2nd year gave an average emission factor of 0.8% – lower than from application of either individual fertiliser. We suggest that similar varied fertilisation practices, modified according to soil and crop type and climatic conditions, might be employed to minimise N2O emissions from agricultural land. Received: 30 August 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号