首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The control of growth is a complex mechanism regulated by several metabolic hormones including growth hormone (GH) and thyroid hormones. In avian species, as well as in mammals, GH secretion is regulated by hypothalamic hypophysiotropic hormones. Since thyrotropin-releasing hormone (TRH) and growth hormone-releasing factor (GRF) are potent GH secretagogues in poultry, we were interested in determining the influence of daily intravenous administration of either peptide or both simultaneously on circulating GH and IGF-I concentrations and whether an improvement in growth rate or efficiency would be obtained.

Male broiler chicks were injected once daily for a period of 21 days with either GRF (10 μg/kg), TRH (1 μg/kg) or both GRF and TRH (10 and 1 μg/kg respectively) between four and seven weeks of age. On the last day of the experiment, following intravenous injection of TRH, GRF or a combination of GRF and TRH, plasma GH levels were significantly (P<.05) increased to a similar extent in control chicks and in those which had received daily peptide injections for the previous 21 days. Circulating GH levels between 10 and 90 min post-injection were significantly (P<.05) greater and more than additive than GH levels in chicks injected with both GRF and TRH when compared to those injected with either peptide alone. Mean plasma T3 concentrations during that same time period were significantly elevated (P<.05) above saline-injected control chick levels in birds treated with TRH or GRF and TRH respectively, regardless of whether the chicks had received peptide injections for the previous 21 days. There was no evidence of pituitary refractoriness to chronic administration of either TRH or GRF injection in terms of growth or thyroid hormone secretion.

Despite the large elevation in GH concentration each day, growth rate, feed efficiency and circulating IGF-I concentrations were not enhanced. Thus the quantity or secretory pattern of GH secretion induced by TRH or GRF administration was not sufficient to increase plasma IGF-I concentration or growth.  相似文献   


2.
A determination of age of the prepubertal gilt at which ovaries affect uterine growth is necessary before establishing the extent to which length of uterus is influenced by inherent differences, as opposed to those due to ovarian secretions. In Exp. 1 and 2, the effect of presence of ovaries on uterine growth was determined following ovariectomy in 186 crossbred gilts. The uterus was examined 40 or 80 d after ovariectomy for length, weight and diameter. Growth of uterine horns in gilts from 20 to 60 d of age was equal with or without ovaries. Uterine horns in ovariectomized gilts continued to grow slowly from 60 to 140 d of age and then remained static to 180 d of age. Uterine horns in gilts with ovaries increased rapidly in length, weight and diameter, with concomitant increase in ovarian weight between 100 and 180 d of age. In Exp. 3, uterine growth and ovarian compensation after unilateral ovariectomy and hysterectomy at 60 d of age were determined in 85 crossbred gilts from 60 to 180 d of age to evaluate the unilateral ovariohysterectomy model for studying association of uterine length before puberty and subsequent uterine capacity. In response to removal of an ovary and a uterine horn, the remaining ovary compensated, but the remaining uterine horn did not. This study demonstrated that the ovaries did not influence uterine growth until after 60 d of age and that unilateral ovariohysterectomy could be performed as early as 60 d of age without altering consequent normal uterine growth.  相似文献   

3.
Forty gilts (mean wt = 72 kg) were administered daily either vehicle (C = control) or 70 micrograms porcine growth hormone (pGH)/kg BW. After 30 d of treatment, eight gilts per group (Exp. 1) were slaughtered and blood, uteri and ovaries were collected. Follicular fluid (FFl) was collected and granulosa cells (GC) were cultured. The remaining gilts (Exp. 2) were treated for up to 35 additional days and examined twice daily for estrus. Estrusal gilts were removed from the experiment. Noncyclic gilts (n = 9 of 12 pGH; n = 4 of 12 C) were slaughtered on d 66 and their ovaries were examined. Ovarian weights were not different for pGH and C gilts in either Exp. 1 (P greater than .1) or Exp. 2 (P = .09). Uterine weights were greater for pGH-treated than for C gilts (P less than .007) in Exp. 1, but not in Exp. 2. Concentrations of estradiol (E2) in plasma and FF1 and of progesterone (P) in plasma and FF1 were not different for pGH and C gilts. Concentrations of insulin-like growth factor-I (IGF-I) in FF1 and in serum were greater for pGH than for C gilts (P less than .01). Concentration of P in serum-free medium of cultured GC was lower for GH than for C (P less than .05) in the presence or absence of gonadotropins in Exp. 1. The FSH-stimulated secretion of P was also lower for GC of pGH-treated gilts in Exp. 2, indicating a failure of GC to differentiate in culture. Only one pGH gilts in Exp. 2 manifested estrus, compared with seven C gilts (P less than .025). In Exp. 1, ADG was higher (P less than .03) and feed/gain lower (P less than .07) for pGH gilts. Longissimus muscle area (LMA) was not different (P = .19) between groups. Backfat thickness (BF) was lower (P less than .005) in pGH than in C in both Exp. 1 and 2. We conclude that exogenous pGH increased growth rate, improved feed efficiency and altered carcass traits in gilts. However, these effects were associated with impaired ovarian development of prepubertal gilts and a low incidence of estrus.  相似文献   

4.
Two experiments were performed to examine the influence of exogenous growth hormone on the reproductive axis in gilts. Experiment one employed 26 Yorkshire × Landrace prepubertal gilts, which were selected at 150 d and 86.5 ± 1.5 kg bodyweight (BW) and assigned equally to two treatments. Gilts received injections of either porcine growth hormone at 90 μg/kg BW, or vehicle buffer, from 150 to 159 d. At 154 d gilts received 500 IU PMSG, followed 96 hr later by 250 IU hCG. Gilts were slaughtered at 163 days and their ovaries recovered to determine ovulatory status. In each treatment, gilts failed to show any ovarian response to PMSG/hCG. All remaining control gilts ovulated and their ovaries appeared morphologically normal. In gilts receiving exogenous growth hormone, fewer ovaries (4/11, P<.01) appeared morphologically normal. The ovaries of all other growth hormone injected gilts had very large (12–25 mm) non-luteinized follicles. In experiment two, 20 prepubertal Yorkshire × Landrace gilts were selected at 138 days and 85 kg BW. These gilts received injections of growth hormone at 90 μg/kg BW (n=9) or vehicle (n=11) from 138 to 147 days. At 143 days, all gilts were given an injection of estradiol benzoate (EB) at 15 μg/kg BW. Blood samples were taken at the time of EB injection, at 24 and 36 hr and then at 6 hr intervals until 78 hr. All samples were assayed for serum LH concentrations. The EB induced LH peak height was lower (P<.04) in gilts receiving exogenous growth hormone than in controls. The results presented indicate that the daily injection of growth hormone at 90 μg/kg BW reduced the estradiol-induced release of LH in addition to reducing the number of corpora lutea in gonadotrophin stimulated gilts.  相似文献   

5.
To determine whether recombinant porcine somatotropin (rpST) alters reproduction, 40 crossbred gilts weighing 59.1 +/- .5 kg at 125 +/- 1 d of age were assigned randomly to an experiment arranged as a 2 x 2 factorial. Eight gilts were given daily injections of diluent until they reached 104 kg BW (DW), and eight received diluent injections until puberty (DP). Twelve gilts were given rpST (4 mg/d) until 104 kg BW (PW) and 12 were given rpST injections until puberty (PP). All gilts were individually fed on an ad libitum basis an 18% CP corn-soybean meal diet (1.2% lysine and 3.1 Mcal/kg of ME). Beginning at 5 mo of age, gilts were exposed 20 min daily to mature boars. Serum concentrations of progesterone were measured weekly from 5 to 8 mo of age to verify age of puberty. Gilts observed in pubertal estrus were mated to two different boars 10 h apart. At 47 +/- 1 d of gestation, gilts were slaughtered to assess fetal development. After 60 d of treatment, serum LH and FSH profiles were determined in blood samples drawn at 20-min intervals for 4 h from eight diluent- and eight rpST-treated gilts fitted with indwelling jugular catheters. By 28 d, feed intake, feed/gain, and blood urea nitrogen were decreased (P less than .005) by rpST. Treatments did not affect (P greater than .05) the proportion of gilts attaining first ovulation (DW = 6/6; DP = 10/10; PW = 7/9; PP = 14/14) or conception rate (DW = 5/6; DP = 7/10; PW = 4/6; PP = 11/12).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Two trials involving 128 gilts were conducted to determine the effect of nutritional status during the first 28 d postnatally on subsequent growth and reproductive performance. Nutritional status was altered by adjusting litter size at birth to either 6 or 12 pigs and maintaining a lactation length of either 13 or 28 d. Pigs weaned at d 13 were fed on an ad libitum basis or at 50% of ad libitum through d 28. After d 28, all pigs were fed the same diets through the first parity. By market weight (d 154) pigs recovered differences in body weight imposed during the early postnatal period. Postnatal nutritional status did not alter age at puberty. Gilts weaned at d 28 from litter size 6 produced 2.4 more (P less than .05) ova than gilts from litter size 12; however, when weaned at d 13, gilts from litter size 6 produced 2.3 fewer ova than gilts from litter size 12. Feed restriction for 15 d postweaning did not depress ovulation rate in gilts. Subsequent litter size was not affected by postnatal litter size, lactation length or feed restriction, even though growth rate and ovulation rate had been altered by treatments imposed during the first 28 d postnatally. Assuming no difference in fertilization, these data suggest that prenatal mortality was altered by the early postnatal treatments and was the limiting factor for litter size. Until factors that influence prenatal losses are characterized and controlled, the alteration of nutritional status by changes in postnatal litter size, lactation length or feeding level will not detrimentally affect subsequent litter size in gilts.  相似文献   

7.
Two experiments determined how feed restriction and realimentation altered metabolism and ovarian function in gilts. In Exp. 1, cyclic (INTACT-R, n=6) and ovariectomized (OVEX-R, n=6) gilts were fed restricted diets (.23 kg feed.d-1) or ovariectomized (OVEX-C, n=6) gilts were fed control diets (1.81 kg.d-1). Estrous cycles stopped after 46 +/- 9 d of feed restriction. Average weight (WT), backfat thickness (BF) and concentrations of insulin (INS) were lower and free fatty acids (FFA) were greater in OVEX-R than in OVEX-C gilts. Frequency of luteinizing hormone (LH) release (peaks.6 h-1) was reduced by feed restriction (.2 +/- .2, 1.8 +/- 1.0 and 5.8 +/- .2 in INTACT-R, OVEX-R and OVEX-C gilts, respectively). Patterns of secretion of LH and follicle stimulating hormone (FSH) after gonadotropin releasing hormone (GnRH) or estradiol benzoate were not altered by feed restriction. Feed intake was then increased in INTACT-R and OVEX-R gilts beginning on d 80 and 82, respectively. Resumption of estrous cycles in INTACT-R gilts occurred on d 116.0 +/- 4.0 and was preceded by a significant increase in WT, but not BF, and a linear increase in concentration and frequency of release of LH. Increasing feed intake in OVEX-R gilts increased WT and frequency of LH release, while FFA decreased and INS increased to concentrations not different from those of OVEX-C gilts. The hypothesis that nutritionally-induced anestrus resulted from decreased activity of the hypothalamic pulse-generator was evaluated in Exp. 2 by providing 144 hourly pulses (iv) of saline (n=3), GnRH (n=3) or LH (n=4) to nutritionally-anestrous gilts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Studies were conducted into effects of various steroid hormone doses on uterus development and steroid levels in blood plasma and endometrium of ovariectomized cyclic gilts. Differences were found to exist between experimental and control animals with regard to uterus weight and length in the wake of ovariectomy and steroid treatment. Steroid concentrations in blood plasma exhibited discernible changes, depending on dosage. As to endometrial hormone concentrations, some dependence on applied progesterone doses was recordable only from oestrone sulphate levels.  相似文献   

9.
将1日龄AA肉鸡400只,随机分成4组.1~4组肌肽添加剂量分别为0、20、40和60 mg/L,于每周末测定周增重、料重比、小肠发育或血清激素水平.结果显示,肌肤各组的周增重均高于对照组.但4~6周差异不显著(P>0.05).肌肽各组的料重比均低于对照组(P<0.05或P<0.01).肌肽第1周各组不同程度提高小肠各段的相对重,之后出现相反的影响.肌肽处理没有影响生长激素(GH)组间的差异.肌肽各组T3水平除4周高于对照组外(P>0.05),其他均低于对照组,并且第6周差异显著(P<0.05).肌肽各组第4周T4水平低于对照组(P<0.01),而6周时组间没有差异.结果表明,肌肽能够提高肉鸡的生长性能;有效促进雏鸡的小肠生长发育;生长中期肌肤还可使血清T4向T3的转化明显加强.  相似文献   

10.
A study was conducted to determine the effect of social crowding on the development of endocrine organs involved in the reproductive process in growing and finishing gilts. One hundred four littermate gilts weighing approximately 30 kg were randomly assigned to treatment groups of either 8 or 16 pigs/pen. Gilts raised in pens of eight were allotted 1.06 m2 per pig from 30 to 65 kg and 1.25 m2 from 65 to 100 kg; whereas, one-half the area was provided for gilts raised in pens of 16. Littermate gilts raised in pens of 8 and 16 were slaughtered on the same day when the average weight of pigs reached 100 kg. At slaughter, the brain, adrenals, pituitary, uterus and ovaries were removed and weighted. The brain was lyophilyzed and reweighed to yield dry brain weight. Gilts raised in the low-density groups had heavier adrenal (P less than .01), pituitary (P less than .08), brain (P less than .11), dry-brain (P less than .02), uterine (P less than .09) and ovarian (P less than .07) tissues. Furthermore, significantly more gilts in the low-density, compared with the high-density groups, had ovulated at slaughter. In a second study, eight littermate gilts raised in pens of 8 or 16 and weighing approximately 100 kg were moved to individual pens and fitted with a jugular vein catheter. Following blood sample collection at 15-min intervals for 2 h, 200 IU of adrenocorticotropin (ACTH) were infused into the cannula. Blood samples were collected at 15-min intervals for an additional 2 h. There were no differences between basal or ACTH-stimulated concentrations of plasma cortisol between treatment groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The purpose of the present study was to clarify the hypothalamic action of leptin on the secretion of luteinizing hormone (LH) and growth hormone (GH) in cattle. Intracerebroventricular (the third ventricle) injections of leptin were given to fully fed castrated Holstein calves. Blood samples were collected at 10‐min intervals for 60 min after injection and 20‐min intervals for 60 min before injection and for 60–180 min after injection through an indwelling catheter in the external jugular vein. Plasma LH and GH levels were examined by homologous radioimmunoassay. The administration of 10 µg of leptin stimulated a significant (P < 0.05) release of GH but not LH. Average GH levels began to rise after 30 min and were significantly increased at 40, 50 and 60 min after the injection, compared with the respective control values (P < 0.05). The present result suggests that leptin may act partly on the hypothalamus to stimulate the release of GH in castrated calves.  相似文献   

12.
Experimental studies were conducted into ovariectomized pregnant gilts to establish effects of exogenic hormone administration, with endogenic ovarian steroids excluded, upon uterus and fetus development as well as on hormone levels in blood plasma, endometrium, and allantoic fluid. Hormone concentrations in blood plasma were found to depend clearly on hormone doses applied after ovariectomy to preserve pregnancy. 2 to 3 weeks of smooth gravidity, following ovariectomy, were ensured on the 6th or 14th day after KB1 by daily application of very low doses of progesterone only (80 mg) or in combination with estrogens, the ratio being 480:1.  相似文献   

13.
Colostrum intake is important for health and postnatal development of neonatal calves. We studied the effects of enhanced first colostrum feeding on growth, health status, and metabolic and endocrine traits in calves during their 1st wk of life. Calves of group CL (GrCL; n = 7) were fed colostrum of milkings 1 to 6 twice daily during the first 3 d of life, followed by milk replacer (MR) up to d 7. Calves of group CH (GrCH; n = 7) were fed colostrum of the first milking during the first 3 d and then colostrum (of the first milking) twice daily, which on d 4, 5, 6, and 7 was diluted with 25, 50, 75, and 75 parts of MR, respectively. Pre- and postprandial blood samples were taken on d 1, 2, 3, and 7 for the determination of various metabolic and endocrine traits, and on d 5 intestinal absorption capacity was measured using the xylose absorption test. Rectal temperatures and fecal scores were higher (P < .05) in GrCH than in GrCL. Plasma concentrations of total protein and albumin were higher (P < .05) on d 7, IgG on d 2 and 3, and urea on d 2, 3, and 7 in GrCH than in GrCL. Plasma concentrations of triglycerides were higher (P < .05) on d 2 and of phospholipids and cholesterol were higher (P < .01) on d 7 in GrCH than in GrCL. Plasma insulin and glucagon concentrations were higher (P < .05) in GrCH than in GrCL, whereas prolactin and growth hormone concentrations were higher (P < .05) in GrCL than in GrCH. Enhanced colostrum intake had no effects on xylose absorption on d 5. Higher plasma protein, urea, and lipid concentrations in GrCH partly mirrored higher protein and fat intake but additionally pointed to higher protein synthesis and lipid turnover.  相似文献   

14.
Prepubertal Friesian heifer calves (n = 24, initial BW = 195 +/- 5 kg) were assigned to a 2 x 2 factorial block design and used to evaluate the effects of daily GH treatment (0 or 15 mg/d) at either a low or a high feeding level in a 5-wk treatment period on endocrine measurements, hormone receptors, muscle growth, and overall performance. In the pretreatment period, a low feeding level was employed for all calves. During the treatment period, animals at the low feeding level had free access to a roughage-based mixture, whereas animals at the high feeding level had free access to a concentrate mixture and were offered 2 kg/d of the roughage-based mixture. Blood samples were collected weekly starting 3 wk before treatment. Longissimus (LM) and supraspinatus (SS) muscles were obtained at slaughter. Metabolizable energy intake was 81% higher, digestible CP intake was 140% higher, and ADG was 115% higher (all P < 0.001) at the high vs. low feeding level. Feed (DMI, ME, and protein) intake was not affected by GH treatment, but ADG was 18% higher (P < 0.13) in GH-treated than in control heifers at both feeding levels. Although of different magnitudes, the muscle anabolic effects of GH treatment and high vs. low feeding level were additive, and both treatments increased carcass weights (P < 0.02 and P < 0.001, respectively), LM (P < 0.05 and P < 0.001), and SS (P < 0.06 and P < 0.003). The anabolic effect of GH treatment was similar in both muscles, whereas the effect of feeding level was most pronounced in LM. Overall, GH treatment increased plasma GH, IGF-I (both P < 0.001), and IGFBP-3 (P < 0.02); however, GH treatment increased total IGF-I, free IGF-I, and IGFBP-3, and decreased IGFBP-2 mainly at the high feeding level (GH x feeding level interaction; P < 0.02, 0.01, 0.03, and 0.10, respectively). The high feeding level increased insulin, free and total IGF-I, and IGFBP-3 (all P < 0.001), but decreased GH and IGFBP-2 (both P < 0.001). High feeding increased type-1 IGF receptor density (P < 0.02), mainly in LM, in accordance with the largest anabolic response in this muscle, whereas GH treatment had no effect on type-1 IGF receptors. The results suggest that in skeletal muscle, the anabolic effects of exogenous GH are related to endocrine changes in the GH-IGF axis, whereas the effects of feeding level also seem to rely on IGF receptor density in the muscles.  相似文献   

15.
In an attempt to improve the reproductive performance of gilts mated at puberty, 70 Yorkshire x Landrace gilts were allocated at 120 d of age and 60 kg body weight to one of two treatments. Restricted gilts were fed 2.0 kg d-1 of a diet formulated to provide 18% crude protein and 14.5 MJ DE kg-1 from selection until mated at their first estrus (n = 35). Flushed gilts were fed 2.0 kg d-1 of the same diet from 120 to 150 d of age, but then had their feed intake increased to 3.5 kg d-1 until mated at their first estrus (n = 35). An additional group of gilts (control fed; n = 33) were fed 3.0 kg d-1 from selection until they were bred at their third estrus in order to investigate the influence of feed restriction on the onset of puberty. During gestation all gilts were fed 1.8 to 2.2 kg d-1 of a 16.8% crude protein diet having 13.7 MJ DE kg-1. Control fed gilts were younger (p less than 0.05) at puberty (150 d) than restricted (165 d) or flushed gilts (165 d). There was no difference in subsequent litter size between the restricted and flushed gilts (7.7 and 8.0, respectively). It is concluded that the institution of a flushing nutritional regime in the prepubertal period will not enhance piglet production from gilts mated at puberty.  相似文献   

16.
Yorkshire boars were used to evaluate the influence of duration of photoperiod and hemicastration on growth and testicular and endocrine functions. At 10 wk of age, 5 hemicastrate (HC) and 5 intact (I) boars were assigned to either 8 or 16 hr of light daily until 6 mo of age. Body weights were recorded biweekly throughout the experiment. Venous cannulae were placed in all boars at 6 mo of age, and serum was collected at 30 min intervals from 0800 to 2000 hr. Gonadotropin releasing hormone (GnRH) was infused at 2000 hr (50 micrograms) and at 2030 hr (250 micrograms), and samples of serum were collected until 2400 hr. The following day, all boars were castrated, and the weights and sperm content of the testes and epididymides were determined. At castration, all pigs were given implants containing testosterone. Two weeks later, pigs were again canulated, and serum was obtained at 15 min intervals for 2 hr. Growth of boars was not significantly affected by duration of photoperiod or number of testes. Duration of photoperiod did not affect weight or sperm content of testes or epididymides. Hemi-castrated boars had greater testicular (P less than .01) and capita-corpora (C-C) epididymal weights (P less than .05) and more testicular and C-C sperm (P less than .01) per testis. Neither average concentrations of luteinizing hormone (LH) nor number and amplitude of pulses of LH were affected by photoperiod treatment. However, HC boars had greater average concentrations of LH (P less than .05) than I boars (.71 +/- .05 vs .52 +/- .05 ng/ml). Hemicastrated boars in 16 hr light daily had greater concentrations of FSH in serum (P less than .05) than 8I, 8HC, and 16I boars. Intact and HC boars had similar concentrations of prolactin (PRL) and testosterone. Similarly, concentrations of PRL and testosterone were not affected by duration of photoperiod. Secretion of LH and testosterone after treatment with GnRH was not significantly affected by duration of photoperiod. In general, HC boars released more LH in response to GnRH treatment than I boars. Concentrations of LH were greater (P less than .05) in HC than I boars at .5, 1, 2, and 3 hr after GnRH and tended (P less than .10) to be elevated at 1.5, 2.5, 3.5 and 4 hr after GnRH. The FSH response to GnRH was greater (P less than .05) for 16HC than 8I, 8HC, or 16I boars.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Growth, carcass traits, and selected reproductive characteristics were evaluated in prepubertal gilts treated with either a constant mass of pGH or a mass of pGH adjusted periodically for changes in BW. Gilts (64 kg, n = 24) were given 24 daily injections of either vehicle (C; control) or one of two doses of pGH: 70 micrograms/kg of BW, with dose adjusted every 5th d for changes in BW (A; adjusted), or 70 micrograms/kg of initial BW (U; unadjusted). Gilts were slaughtered on d 25. Gilts treated with pGH had higher ADG (P less than .002) and improved feed efficiency (kg of feed/kg of gain; P = .0003) compared with controls. Weights of adrenal glands, liver, heart, and kidney were higher (all P less than .01) for Groups A and U than for Group C gilts. Average backfat thickness was less (P less than .004) for A and U gilts than for C gilts and less for Group A than for Group U (P less than .02). Furthermore, growth and carcass traits were similar (P greater than .05) for Groups A and U, except for measurements of first rib backfat, last rib backfat, and average backfat depth (P less than .05). Culture of granulosa cells (GC) was employed to assess ovarian function. Addition of FSH to the culture media enhanced secretion of progesterone (P4) by cultured GC from all in vivo treatments compared with unsupplemented cultures of GC (P less than .05). Addition of LH to the culture media enhanced secretion of P4 by cultured GC from pGH-treated gilts only (P less than .05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The objectives of the present study were 1) to study potential effects of previous nutritional treatment on developmental competence of early fertilized oocytes in vitro; 2) to study responses to insulin treatment during the period of feed restriction in the late luteal phase which has deleterious effects on subsequent fertility; and 3) to establish the metabolic and endocrine status of gilts during treatment and the subsequent periestrous period. Nineteen trios of littermate gilts were subjected to feed restriction during the first (RH) or second (HR) week of the estrous cycle. A second group of HR gilts received injections of long-acting insulin during their period of feed restriction (HR+I). Intensive sampling was performed in a subgroup of 23 animals on d 15 and 16 of the cycle for analyses of endocrine (gonadotropins and steroid hormones) and metabolic (insulin, IGF-I, leptin, total triiodothyronine [T3], and free T3) variables. Gilts were checked for estrus every 6 h, and time of ovulation was monitored by transcutaneous ultrasonography. Surgeries were performed 12 to 20 h after ovulation, and the early-fertilized oocytes recovered were cultured in vitro under standardized conditions. There was no treatment effect on the developmental competence of fertilized oocytes in vitro; however, ovulation rate was increased in HR+I gilts. No effect of treatment was observed on plasma leptin and IGF-I concentrations on d 15 and 16. However, HR+I gilts had higher (P < 0.05) postprandial insulin and lower (P < 0.05) postprandial total and free T3 on d 15. Plasma concentrations of LH, FSH, and progesterone on d 15 and 16 and plasma estradiol concentrations on d 16 were not affected by previous nutritional or insulin treatment. In the periestrous period, plasma concentrations of LH, FSH, and estradiol were higher (P < 0.05) in RH and HR+I, and the rise in plasma progesterone after the LH surge was lower (P < 0.05), than in HR gilts. No effect of treatment was observed on plasma concentrations of metabolic hormones, except on plasma leptin concentrations, which were higher (P < 0.05) at the time of the LH surge in RH gilts. These results suggest that feed restriction during the late luteal phase may have deleterious effects on ovarian function in the periestrous period, which may be counteracted by insulin.  相似文献   

19.
Three experiments were conducted to examine relationships among dose and frequency of administration of exogenous porcine growth hormone (pGH) on growth traits and ovarian function of prepubertal gilts. In Exp. 1, gilts were treated with 0 or 5 mg of pGH daily for 42 d or 5 mg of pGH daily on alternate weeks over a 42-d period. In Exp. 2, gilts were treated with 0, 2.5, or 5 mg of pGH daily for 31 d or daily on alternate weeks for 31 d. In Exp. 3, gilts received 5 mg of pGH daily on either wk 1, 3, and 5 or wk 2, 4, and 6 during a 42-d period. In all experiments, ADG increased dramatically and feed efficiency improved markedly during treatment with pGH, and both traits declined rapidly during periods when treatment was withdrawn. Gilts treated with pGH daily on alternate weeks tended to be more similar (P greater than .05) to control gilts for growth rate, feed efficiency, and carcass measurements than to gilts that received continuous daily administration of pGH during the entire duration of the experiments. Increased concentrations of estradiol and insulin-like growth factor (IGF)-I in follicular fluid and serum, decreased concentrations of IGF-II in follicular fluid, and increased weights of ovaries were evident as both dose and frequency of exogenous pGH administration increased. Therefore, gilts are extremely sensitive to administration and withdrawal of exogenous pGH during the finishing phase of the production cycle and can respond within 7 d to changes in exogenous pGH treatment regimens. Alternate weekly administration of exogenous pGH in vivo may improve follicular function, as indicated by relationships among IGF-I and IGF-II, estradiol, and progesterone, but fails to improve overall growth and carcass traits compared with controls.  相似文献   

20.
Six series of experiments, involving 72 gilts in groups of 4 were carried out to investigate the effects of transportation, vibration and noise, and proximity of sexually mature adult breeding stock on attainment of first estrus in gilts of different ages. The animals grew normally during the periods of observation. Gilts aged 120 days (n = 12) at the start of the observations did not display estrus in response to exposure to vibration and noise or a 2 hr road journey. Similarly aged groups housed near adult breeding stock, but not exposed to vibration and noise, displayed estrus during the first 30 days of observation. All gilts aged 140 days (n = 12) displayed estrus within 5 days of being housed adjacent to adult breeding stock. Others, not housed near adult stock, but exposed to vibration and noise, or a road journey, did not consistently display estrus. When the observations were repeated on gilts aged 160 days (n = 12), the observations were similar. It was concluded that proximity of adult breeding stock and not transportation per se was the critical factor in inducing estrus behavior in normally growing gilts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号