首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
在一台平床干燥机上,进行稻谷深层干燥试验,研究各种层厚下,热风风量、稻谷温度和稻谷含水率沿平床表面的分布规律以及稻谷温度和稻谷含水率沿层厚方向的分布状况,结果表明:沿平床表面,风量、稻谷温度和含水率的分布明显不均。增加稻谷层厚,保持层厚均匀可以显著改革这种不均匀性。沿层厚方向,稻谷温度和含水率明显分层。当谷层过厚,底层稻谷过度干燥而表层稻谷却得不到有效干燥。  相似文献   

2.
稻谷固定床式深层干燥试验研究   总被引:11,自引:1,他引:11  
以木反和通风板构建一台面积22.3m^2的固定床干燥机,采用燃油直接燃烧加热的方式对谷物进行干燥。在不同的热风温度、稻谷初始含水率及总厚度条件下,测定了稻谷干燥的均匀性、各层稻谷的温升曲线和干燥曲线,分析了干燥参数对干燥床性能的影响。研究表明:沿层厚方向存在显著的温度梯度,干燥逐层进行。热风温度越高、总厚度越大,分层干燥现象越明显。在定风量的条件下,热风温度要对干燥的热量消耗无明显影响;总厚度增加、稻谷初含水率降低,干燥的热量消耗呈降低趋势。  相似文献   

3.
油茶籽热风干燥动力学研究   总被引:3,自引:0,他引:3  
为研究油茶籽热风干燥特性,探讨热风温度、初始干基含水率对油茶籽干燥速率的影响,在不同初始干基含水率、不同热风温度条件下分别对油茶籽进行干燥,并比较了9种数学模型在油茶籽热风干燥中的适用性。结果表明,油茶籽热风干燥过程并没有出现恒速干燥段,干燥主要发生在降速干燥阶段。物料初始干基含水率、温度是影响干燥的主要因素,初始干基含水率越低、干燥温度越高,干燥到目标含水率所用时间越短。干燥过程中,有效水分扩散系数随温度升高而增大,热风温度从50℃升高到80℃,其有效水分扩散系数由1.3132×10-9m2/s增大到3.9223×10-9m2/s,油茶籽的干燥活化能为33.6193kJ/mol;通过比较决定系数R2、均方根误差eRMSE以及卡方检验值χ2得出,Lewis模型为描述油茶籽热风薄层干燥的最优模型,预测值与试验值的均方误差为1.36%,最大相对误差小于4%,表明模型预测的干燥曲线和试验干燥曲线一致性较好。  相似文献   

4.
为了对高水分小麦热风干燥工艺建立及其设备研制提供理论依据,进行了不同热风温度、风速和物料薄层厚度条件下的高水分小麦热风干燥试验,获得了高水分小麦的干燥曲线和干燥速度曲线;同时,分析了热风温度、风速和薄层厚度对干燥速度的影响,并建立了高水分小麦热风干燥数学模型。试验结果表明:高水分小麦热风干燥在不同干燥条件下干燥速度最大值出现在前25~35min时间段内,干燥过程中无明显的恒速干燥阶段,高水分小麦热风干燥的数学模型符合Page方程。  相似文献   

5.
高湿稻谷多段逆流干燥缓苏解析模型研究   总被引:10,自引:0,他引:10  
为了获得高湿稻谷逆流干燥层内的水分分布,实现干燥过程动态跟踪和调控,基于干燥水分扩散模型和深层干燥质量平衡方程,在线解析稻谷逆流干燥水分变化,给出了稻谷多段逆流干燥、缓苏复杂工艺条件下,层内含水率分布及干燥速率解析式,验证了风量谷物比为4,温度50℃的热风流过0.5 m厚的逆流层后,仍具有较强的干燥能力,解析结果与实测的干燥机出粮口水分偏差在±0.5%范围内,证实了解析模型的可靠性。  相似文献   

6.
风干板栗太阳能-热泵联合干燥特性与数学模型研究   总被引:1,自引:0,他引:1  
为研究风干板栗太阳能-热泵联合干燥特性,以新鲜板栗为原料,探讨干燥温度、干燥风速、装载量对风干板栗干燥速率和干基含水率的影响,在不同干燥温度、干燥风速、装载量条件下分别对新鲜板栗进行干燥,并比较了6种数学模型在风干板栗太阳能-热泵联合干燥的适用性,同时以Fick第二扩散定律为依据,确定风干板栗不同干燥条件下的有效水分扩散系数。结果表明:风干板栗干燥过程由调整阶段和降速干燥阶段控制,主要表现为降速干燥;干燥温度越高、干燥风速越高以及装载量越小,干燥至目标含水率所用时间越短,干燥速率越大;干燥过程中,有效水分扩散系数随干燥温度及干燥风速的升高、装载量的降低呈现增大的趋势,干燥温度从15℃升高到35℃,其有效水分扩散系数由3.00124×10-10m2/s增大到8.42115×10-10m2/s,干燥风速由1.0m/s升高到5.0m/s,其有效水分扩散系数由4.54717×10-10m2/s增大到9.13767×10-10m2/s;装载量从0.6kg升高至5.4kg,其有效水分扩散系数由1.14753×10-9m2/s降至3.20443×10-10m2/s;通过比较决定系数(R2)、残差平方和及卡方(χ2)得出,Page模型为描述风干板栗太阳能-热泵联合干燥的最优模型,验证发现试验值与模型预测值拟合度较高,Pearson相关系数为0.998,二者显著相关(P<0.05),说明Page模型能够较好地反映风干板栗干燥过程中水分变化规律。  相似文献   

7.
为了提高玉米果穗干燥均匀性和干燥效率,降低干燥品质损失,通过研制玉米果穗深床层干燥试验台,并进行不同风速(0.5、1m/s)、热风温度(常温(即室温),50、60、70℃)以及料层厚度(180、360、540、720mm)下玉米果穗干燥特性以及品质试验研究,确定最佳的玉米果穗深床层干燥工艺与参数。试验结果表明,提高热风温度和风速均会提高干燥速率,风速0.5m/s时,热风温度50、60、70℃条件下第1层的干燥时间分别为28、20、14h,而常温通风干燥下192h后含水率仅下降到20%,随着热风温度的降低,干燥时间显著延长;提高热风风速有利于提高干燥速率,第3、4层玉米果穗干燥速率受风速的影响大于第1、2层;随着料层的增加,各干燥条件下干燥速率显著降低,干燥时间延长;常温条件下果穗各料层长时间处于高湿环境,从而在玉米果穗高含水率阶段采用常温通风干燥方式容易造成内部高湿和发热现象;干燥过程中玉米籽粒含水率先下降,果穗芯轴的含水率高于籽粒。与对照组相比,各组干燥物料的亮度均下降,提高热风风速和温度会降低亮度;常温通风干燥玉米籽粒电导率最低,随着温度和风速的提高,电导率升高,表明籽粒内部结构破坏较大;干燥后玉米籽粒淀粉含量和可溶性糖含量均有所减小,其中70℃、0.5m/s条件下玉米淀粉含量最低,60℃和70℃、0.5m/s条件下玉米可溶性糖含量较低。根据研究结果,确定玉米果穗深床层干燥工艺为先热风干燥后常温通风干燥的方式,热风温度50℃或60℃、风速0.5m/s、通风管路单侧料层厚度为360mm为较优的果穗热风干燥工艺参数。  相似文献   

8.
稻谷固定床深层干燥的计算机模拟   总被引:3,自引:0,他引:3  
针对稻谷固定床深层间歇干燥过程中的加热和缓苏两个阶段建立了数学模型,用C语言编制了相应的运算程序。用该模型计算了不同干燥介质温度和湿度、不同粮食初始含水率和温度条件下,不同层厚处稻谷的含水率和温度,计算结果与试验结果基本相符。  相似文献   

9.
为探究水稻秸秆营养穴盘的干燥特性及干燥过程中含水率的变化规律,在不同的干燥温度(50、55、60、65、70℃)、热风速度(1. 0、1. 5、2. 0、2. 5、3. 0 m/s)和微波功率(180、360、540、720、900 W)条件下对水稻秸秆营养穴盘进行了微波热风耦合干燥试验,研究不同干燥因素对干燥速率和有效水分扩散系数的影响,并建立了干燥动力学模型。研究结果表明:水稻秸秆营养穴盘微波热风耦合干燥过程只有降速干燥阶段,没有明显的恒速干燥阶段;微波热风耦合干燥可明显增强物料内部的水分扩散能力,提高有效水分扩散系数,且变化规律与水分比的变化规律一致,有效水分扩散系数变化范围为2. 296 41×10~(-8)~6. 147 36×10~(-8)m~2/s。通过对12个干燥动力学数学模型进行拟合,得到Midilli et al模型具有最大R~2平均值、最小的χ~2和均方根误差平均值,且在不同条件下的水分比试验值和预测值具有很好的一致性,说明该模型适合用于预测水稻秸秆营养穴盘微波热风耦合干燥过程中含水率的变化规律。  相似文献   

10.
为探索陈皮的热泵干燥特性,并实现热泵干燥过程中陈皮的含水率预测,研究了不同干燥温度(50、55、60℃)、干燥风速(1.0、2.0、3.0m/s)、堆叠厚度(20、30、40mm)对陈皮干燥时间和干燥速率的影响。将干燥温度、干燥风速、堆叠厚度和干燥时间作为输入层,隐藏层个数为10,陈皮的干燥含水率为输出层,搭建一个BP神经网络预测模型。研究结果表明:干燥温度、干燥风速和堆叠厚度都是影响陈皮干燥含水率的重要因素,提高干燥温度、增加干燥风速和减少堆叠厚度能够提高陈皮的干燥速率,缩短干燥时间。基于陈皮热泵干燥特性构建结构为“4-10-1”的BP神经网络模型,含水率预测值与实测值之间的均方误差MSE为0.004 21,决定系数R2=0.997,模型运行稳定,含水率预测结果准确且快速,能够为陈皮干燥过程中的含水率在线预测提供科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号