首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以纤维素纳米纤丝和多壁碳纳米管为主要原料,采用一步水热法、冰模板法冷冻干燥以及高温煅烧法,成功制得具有多级连通类木材管胞状孔结构的氮掺杂碳点的复合衍生碳气凝胶,并对其微观形貌、化学结构、比表面积和孔隙度进行表征。通过循环伏安测试、恒电流充放电测试、交流阻抗测试和长循环测试等电化学表征手段分析其电化学性能。结果表明:碳气凝胶表面经高温煅烧得到大量氮、氧杂原子掺杂的碳微颗粒和碳微绒毛,提高了碳气凝胶的缺陷态结构含量和比表面积,其比表面积可达377.9 m2/g;在三电极测试体系下,比电容可达121.8 F/g(测试电流密度为0.2 A/g,电压窗口为-0.2~0.8 V);在2 A/g的电流密度下,进行5 000次充放电循环后,电容保持率可达131.7%。衍生碳气凝胶独特的微观形貌和高比表面积,为能量存储提供了更快速和便捷的电子/离子传输通道、优异的导电性和更高的比容量,为超级电容器等储能器件电极材料的设计提供了木基生物质资源利用的新思路。  相似文献   

2.
针对纤维素(CE)气凝胶机械回弹性、尺寸稳定性差等问题,基于冷冻干燥工艺和化学气相沉积技术,利用聚乙烯醇(PVA)对CE进行复配,以甲基三乙氧基硅烷(MTES)对CE/PVA进行改性,制备了具有轻质性、高弹性和疏水性的多孔S-CE/PVA复合气凝胶。研究了PVA添加量对S-CE/PVA复合气凝胶力学性能的影响,随着引入PVA质量分数的增加,纤维素气凝胶的压缩强度增加;当PVA添加量为纤维素质量的15%(S-CE/PVA-15%)时,气凝胶压缩应力增加至66 kPa,比纯的硅烷改性纤维素气凝胶提升了6.5倍。同时探究了MTES改性对复合气凝胶微观结构、热稳定性、亲/疏水性、比表面积和物理特性的影响,改性后的S-CE/PVA复合气凝胶具有紧密的片层结构,初始分解温度由284.0℃上升至314.6℃,水接触角高达115°,比表面积为109.42 cm3/g,密度为0.045 g/cm3,孔隙率大于95%。  相似文献   

3.
以纳米纤维素纤丝(NCFs)为原料,在四氯化锡的催化下与1,4-丁二醇二缩水甘油醚(BDGE)发生交联反应制备了多孔的纳米纤维素气凝胶,采用扫描电镜、傅里叶变换红外光谱仪、X射线衍射仪、热重分析仪、X射线光电子能谱和全自动比表面积及物理吸附分析仪,对制备的纳米纤维素气凝胶的微观形貌、化学结构、晶型结构、热稳定性、表面元素及比表面积进行了表征,考察了纳米纤维素气凝胶的密度、溶剂吸收、形状恢复以及重复使用性能。结果表明:NCFs与BDGE发生了交联反应,制备的纳米纤维素气凝胶具有连续的多孔网络结构,其仍保持原来的纤维素I型结构,初始分解温度在300℃以上,m(BDGE)∶m(NCFs)为2∶1时,制备的气凝胶密度为0.020 2 mg/cm3,比表面积为25.6 m2/g,吸水倍数为36.5 g/g。气凝胶在水中5 s能迅速恢复其原来形状,在DMSO中20 s能恢复形状的90%,气凝胶重复使用5次,吸水倍数仍高达30.4 g/g。  相似文献   

4.
纤维素气凝胶因具有强亲水性和低油水选择性,且目前纤维素气凝胶表面的疏水化处理过程较冗长,限制了其在油水分离领域的应用。为了解决上述问题,笔者以硫酸水解微晶纤维素制备得到的纳米纤维素(CNC)为原料,利用甲基三甲氧基硅烷(MTMS)在水相中对其进行硅烷化改性,通过冷冻干燥得到了硅烷化纤维素复合气凝胶。结果表明:所制备的纤维素复合气凝胶具有轻质、多孔特性,随着MTMS添加量的增加,密度逐渐升高(≤0.012 0 g/cm^3),孔隙率略有下降; MTMS的加入对纤维素复合气凝胶的微观形貌影响不大,其骨架结构以二维片层形貌为主,聚甲基硅氧烷均匀地包覆在纤维素片层表面; MTMS的加入使纤维素复合气凝胶的热稳定性明显提高,且未改变纤维素气凝胶的晶型结构,但导致其结晶度逐渐下降。纤维素复合气凝胶的表面接触角随着MTMS添加量的增加而升高,最高达到153.7°,表现出优异的超亲油/超疏水性能。作为吸油材料,超疏水纤维素复合气凝胶不仅可以吸附多种油类和有机溶剂(吸附容量达到52~121 g/g),而且表现出很好的循环使用性能。  相似文献   

5.
为了探讨再生纤维素气凝胶对碘蒸气的吸附去除能力,用天然竹纤维制备再生纤维素球形气凝胶(RCSA),然后通过银氨络离子在纤维素表面的吸附和反应,得到Ag2O/再生纤维素球形复合气凝胶(Ag2O/RCSA),以127I作为放射性131I的同位素研究了复合气凝胶对碘的吸附。采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)和BET比表面积等检测手段对制备的Ag2O/RCSA样品的形貌、晶型、孔隙结构和碘吸附性能进行了表征。研究结果表明:纳米Ag2O粒子的引入使RCSA颜色由白色变为棕色,RCSA原始的三维网结构没有发生变化;纳米Ag2O粒子均匀分布在纤维素骨架中,并与纤维素紧密结合;Ag2O/RCSA与RCSA一样都表现为Ⅳ型吸附/脱附等温线,BET比表面积、BJH孔体积比RCSA明显减小,平均孔径大小变化不大;Ag2O/RCSA对碘蒸气的吸附是气凝胶孔隙的物理吸附和Ag2O转变为Ag I的化学吸附共同作用,总吸附量为87.8 mg/g。  相似文献   

6.
7.
以竹粉为原料制备纳米纤维素基体材料,以聚乙烯醇(PVA)为增强相,在酸性环境下采用冷冻干燥法制得PVA/CNFs(纳米纤维素)复合气凝胶;采用三甲基氯硅烷(TMCS)对其进行疏水改性处理,随后将其浸渍到还原氧化石墨烯(r GO)悬浮液中,最终制得疏水型r GO/PVA/CNFs复合气凝胶;通过扫描电子显微镜(SEM)、傅里叶变换红外光谱(FT-IR)、拉曼光谱(Raman)、接触角(CA)和吸油性能测试,对所制气凝胶的微观形貌、化学结构、疏水性能及吸油性能进行表征。结果表明:制得的复合气凝胶密度为6.78 mg/cm3,具有均匀的三维网状多孔结构,且孔洞结构表面均被石墨烯片层覆盖;经过TMCS疏水处理后,在气凝胶表面形成疏水层结构。FT-IR和Raman分析表明,TMCS疏水改性处理并未改变PVA/CNFs复合气凝胶的化学结构。经疏水处理后气凝胶与水的接触角为138°左右,吸油倍率为78 g/g左右,且吸附过程迅速,饱油后也能悬浮于溶液表面,便于回收再利用。  相似文献   

8.
水凝胶是一类经物理或化学交联形成具有独特三维网络结构的软物质材料,具有良好的生物相容性、优异的柔韧性、结构可设计性和功能可调性,在多功能材料领域备受关注.纤维素是自然界中含量最丰富的天然高分子材料,除了生物相容性好、可生物降解和可再生等优点,纤维素大分子链上的多羟基结构具有形成多重氢键作用的特点,易与水凝胶基体形成良好...  相似文献   

9.
K-卡拉胶和纳米微晶纤维素(CNC)共混时可以得到凝胶多糖。多糖总质量分数为1%,K-卡拉胶与纳米微晶纤维素的比例为9∶1时,可达到协同相互作用的最大值。研究了pH值和体系盐离子浓度对凝胶强度的影响,并通过FT-IR光谱和Raman光谱对这两种多糖之间的相互作用机理进行了初步的探讨。  相似文献   

10.
《林业科学》2021,57(7)
【目的】探究马尾松树皮纳米木质纤维素气凝胶吸附剂对Cr~(3+)、Cu~(2+)、Pb~(2+)、Ni~(2+)的吸附性能,阐明马尾松树皮和纳米木质纤维素气凝胶吸附重金属离子的相关机理,以更好地利用农林废弃物马尾松树皮制备出成本低廉、便于产业化的生物质吸附材料,为其大规模应用奠定理论基础。【方法】将抽提后的马尾松树皮绝干样品在80℃水浴加热搅拌条件下使用对甲苯磺酸溶液处理1 h,反应结束后趁热过滤并透析滤渣。滤渣样品通过微射流均质机20次,得到马尾松树皮纳米木质纤维素。固含量2%的马尾松树皮纳米木质纤维素样品-20℃冷冻120 min后进行冷冻干燥,得到马尾松树皮纳米木质纤维素气凝胶。研究马尾松树皮纳米木质纤维素气凝胶吸附剂对Cr~(3+)、Cu~(2+)、Pb~(2+)、Ni~(2+)的最大吸附容量(q_e)以及其等温吸附特性、吸附热力学特性和吸附动力学特性。【结果】马尾松树皮纳米木质纤维素气凝胶吸附剂对Cr~(3+)、Cu~(2+)、Pb~(2+)和Ni~(2+)的最大吸附容量(q_e)分别为132.7、130.4、186.7和123.4 mg·g~(-1)。马尾松树皮纳米木质纤维素气凝胶吸附Cr~(3+)符合Temkin等温吸附(R~2=0.990 1),且为不均匀的单层吸附。吸附热力学特性研究表明,马尾松树皮纳米木质纤维素气凝胶吸附Cr~(3+)的过程符合热力学规律,R~2=0.992 9,且为非自发复合吸附过程,升高温度对吸附过程的促进作用与放热反应对吸附过程的抑制作用甚至会出现相互抵消的情况。马尾松树皮纳米木质纤维素气凝胶吸附Cr~(3+)符合准二级动力学模型(R~2=0.991 0),其吸附Cr~(3+)的速率主要受化学作用而非物质传输步骤影响,特别是二者之间电子的化学分享或共价键交换等过程。【结论】基于廉价的生物质———马尾松树皮制备的马尾松树皮纳米木质纤维素气凝胶可作为重金属离子的有效吸附剂,表现出较为理想的吸附容量,静态吸附涉及的条件较为简单,具有一定的可试验推广性,马尾松树皮基吸附剂的开发也可推动廉价生物质的资源化利用。马尾松树皮和纳米木质纤维素气凝胶2种吸附剂的吸附性能稳定可靠,有望通过优化工艺提升性能;但是需要基于大规模甚至中试规模试验才能检验其有效性,进而指导工艺优化,得到性能更加出色的马尾松树皮纳米木质纤维素气凝胶作为重金属离子吸附剂。  相似文献   

11.
以鞣花酸(EA)为发色团,将其掺杂在海藻酸钠(SA)中,经过与Zn2+、Ca2+等二价金属离子交联凝胶化,凝胶经过冷冻干燥得到绿色余辉气凝胶(EA@SA)。对EA@SA气凝胶进行光物理性能分析,结果显示,使用不同的二价金属阳离子交联的气凝胶均有良好的磷光发射,EA@SA-Zn、EA@SA-Ca、EA@SA-Sr、EA@SA-Ba气凝胶磷光寿命分别为275.71,157.59,123.92和144.56 ms,其中EA@SA-Zn气凝胶的磷光寿命最长。测试的荧光光谱及荧光寿命表明,EA@SA-Zn气凝胶的荧光发射以430 nm为发射中心,荧光寿命达到5.87 ns。SEM测试结果表明,制备的EA@SA-Zn气凝胶内部呈现网状多孔结构并且结构较为疏松,丰富的孔隙结构为EA分子提供良好的基质环境。同时,EA@SA-Zn气凝胶的元素映射图显示其表面均匀分布C、O、Zn、Cl 4种元素,这说明Zn2+与海藻酸钠交联充分,从而成功制备EA@SA-Zn气凝胶。将制备的EA@SA-Zn气凝胶放置在不同湿度环境下,随着相对湿度的增加,磷光...  相似文献   

12.
以木材液化物为前驱体原料,经凝胶、碳化、活化法制备的碳气凝胶(CA)为基材,通过两步水热法在其骨架表面原位负载NiCo2S4得到NiCo2S4/木材液化物碳气凝胶(NiCo2S4-CA)复合电极材料。利用扫描电子显微镜(SEM)、氮气吸附-脱附实验、傅里叶红外光谱(FT-IR)、X射线衍射(XRD)、X射线光电子能谱(XPS)等手段来表征NiCo2S4-CA材料的物相结构和表面形貌,通过循环伏安法、恒电流充放电及电化学交流阻抗等测试方法研究其电化学性能,探究其电荷储存机理。结果表明:NiCo2S4纳米颗粒锚定在具有珊瑚网络结构的CA骨架表面,形成丰富的多级孔隙结构。CA的引入有利于NiCo2S4的良好分散,缓解其团聚问题,且不会改变NiCo2S4的晶体结构。NiCo2  相似文献   

13.
将AA(丙烯酸)和AM(丙烯酰胺)单体通过自由基聚合及物理交联构建PAAAM(聚丙烯酸-聚丙烯酰胺)水凝胶的基本骨架,再将TEMPO(2,2,6,6-四甲基哌啶-1-氧基)纳米纤维素-石墨烯(TOCN-GN)纳米导电复合物作为纳米增强相均匀分散到水凝胶基体中,通过Fe~(3+)物理交联水凝胶中的羧基形成离子配位键,建立更加紧密的交联网络,合成双重物理交联TOCN-GN/PAAAM复合水凝胶。TOCNs起到了纳米增强和协助分散GN的双重作用,而GN在提高力学性能的同时,也赋予水凝胶优异的导电性能。通过对复合水凝胶的化学结构、微观形貌、力学强度和导电性能等分析发现:当TOCNs的质量分数为2.0%,GN的质量分数为0.7%,Fe~(3+)浓度为0.10 mol/L时,导电水凝胶的综合性能最佳,如良好的抗压强度(2.15 MPa)、可拉伸性(当断裂伸长率为568.4%时,拉伸应力到达132.0 kPa)、优异的自恢复性能和抗疲劳能力(60 min内恢复效率高达92.1%)。由于GN和Fe~(3+)的存在,TOCNs可协助GN形成良好的导电通路,电导率可达2.49 S/m。此类复合导电水凝胶有望在可穿戴传感设备领域得以应用。  相似文献   

14.
水凝胶是由亲水性聚合物通过物理或化学交联方式形成的3D网络结构材料,通常具有亲水性、黏弹性、生物相容性等特点,广泛应用于生物工程、柔性电子等领域。传统水凝胶一般采用化石基聚合物为原料,其使用和废弃过程对人体和环境存在潜在威胁;同时水凝胶长时间使用后,在机械外力作用下易产生破坏,从而会对其结构完整性和性能产生影响。具有自我修复能力的水凝胶破损后利用超分子相互作用或可逆共价作用可以恢复到与起始状态几乎相同的机械性能,对延长水凝胶使用寿命具有重要意义。纤维素是一种天然有机聚合物,主要来源于自然界中的树木等天然材料,具有无毒、无害、生物相容性好等优点,符合绿色环保理念,应用前景广阔。纤维素链上丰富的含氧基团可与水分子形成氢键网络,有利于制备具自愈能力的水凝胶。对纤维素进行化学改性得到纤维素衍生物,如羧甲基纤维素、羟乙基纤维素等,可以扩大其在水凝胶领域的应用。本研究综述以纤维素以及纤维素衍生物为原料的一类自愈合水凝胶,总结传统自愈合水凝胶存在的缺点并提出相关改性策略。纤维素因自身晶体结构以及内部超分子相互作用导致其在水中难以溶解,故一般采用分散体系或溶解体系进行纤维素水凝胶的制备,通过调控水凝胶...  相似文献   

15.
以纳米纤维素(CNF)为生物质诱导剂,通过水热合成法制备了碳掺杂氧化锌(C-ZnO),通过XRD、FT-IR、SEM和DRS对C-ZnO进行了表征,并测试了C-ZnO对四环素的光催化降解性能。研究结果表明:纳米纤维素诱导制备C-ZnO时,分散性较好,晶粒尺寸减小,并实现了碳掺杂,能带宽度有所减小。与普通氧化锌相比,C-ZnO对四环素的物理吸附没有影响,但是光催化降解四环素时,降解去除速率较快。当水热温度为200℃、n(Zn~(2+))∶n(OH~-)为1∶4、硝酸锌与纳米纤维素质量比为100∶1时,制得的C-ZnO光照120 min,四环素的去除率高达96.1%。  相似文献   

16.
纤维素是自然界丰富的天然有机高分子,具有价廉易得、环境友好、力学性能良好等优点,开发和利用空间非常广阔。传统水凝胶存在力学强度差、结构功能单一等问题,而引入纤维素及其衍生物是改善其性能的一种重要手段。因此通过物理或者化学方法对纤维素进行改性,制备具有自愈合性能的凝胶,受到科技工作者的广泛关注和研究。笔者以物理型和化学型自愈合凝胶为主线,综述了近年来采用纤维素制备自愈合材料的研究进展,为纤维素基自愈合凝胶的制备和应用提供参考。以纤维素基凝胶的自愈合机理进行分类,重点介绍了利用氢键、疏水相互作用、主-客体相互作用、金属配位作用和静电作用等物理作用,以及硼酸酯键、双硫键、酰腙键、烯胺键和Diels-Alder反应等化学作用构建的凝胶。分析了自愈合凝胶的设计思路,探讨了凝胶自愈合性能的影响因素,同时总结了基于纤维素制备的自愈合凝胶的结构特性及其在柔性电子、生物医疗、组织工程等方面的应用。最后,探讨了纤维素基自愈合凝胶所面临的问题,并展望了其研究前景。  相似文献   

17.
纳米纤维素是天然一维纳米材料,具有高长径比、机械性能优良、独特的双折射效应等性质。基于纳米纤维素开发制备的各向异性水凝胶材料,表现出与皮肤、肌肉和软骨等天然组织相似的力学、光学、传质等性质的各向异性,在仿生工程、生物医学工程等领域具有优异的应用前景。围绕如何有效地利用纳米纤维素的自身结构特点开发高强度、功能性纳米纤维素基水凝胶,从制备方法、性质特征和应用3个角度,综述了近年来各向异性纳米纤维素基水凝胶的研究进展:系统总结了各向异性纳米纤维素基水凝胶材料自下而上和自上而下2种制备方法;重点阐述了其极高的力学强度、独特的双折射性质、可控的传质途径、各向异性导电、各向异性导热等优异特性;详细介绍了其在机械、显示、传感与生物医学等领域的应用情况。最后,根据各向异性纳米纤维素基水凝胶的研究进展,提出其探索低成本、简便的新型制备方法,提升其多功能性与构建其可预测的本构模型仍是各向异性纳米纤维素基水凝胶未来研究的重点。  相似文献   

18.
羧甲基纤维素凝胶对乙草胺的控制释放研究   总被引:3,自引:0,他引:3  
羧甲基纤维素(CMC)经Fe3 交联得到的凝胶载体可以有效延缓除草剂乙草胺的释放速率,有助于减轻农药污染.采用50%乙草胺被释放所需时间(t50)衡量乙草胺的释放速率,结果表明乙草胺由水凝胶中释放的t50值不足8h.将CMC水凝胶干燥处理可以使t50值提高到100h以上,同时制剂中的载药量越少释放速度越慢.采用控制释放模型对释放动力学数据进行分析得到,乙草胺从干凝胶中的释放主要由扩散机理控制.红外光谱分析证实了乙草胺与CMC之间主要通过氢键结合.  相似文献   

19.
采用液相混合法制备了纳米纤维增强苯乙烯-丁二烯-丙烯腈(ABS)复合材料,研究了纳米纤维素晶须(NCW)含量对复合材料性能影响。SEM测试表明,添加少量的NCW即会对复合材料的断裂面形态造成明显影响。热重分析发现,NCW的加入会降低复合材料的热稳定性。当NCW含量为10%时,复合材料热分解温度下降20%。红外光谱(FTIR)测试表明,在复合材料中纳米纤维素间的自由羟基和氢键数量明显下降。拉伸性能和动态机械性能测试表明,NCW含量为5%时复合材料的性能增加明显,拉伸强度上升11%,模量上升19%。研究结果表明,采用液相混合法制备纳米纤维素晶须/ABS复合材料时,丙酮溶液和ABS中存在的—CN对改善复合材料的界面相容性尤为关键。  相似文献   

20.
超级电容器作为清洁可持续的储能设备,其电化学性能主要由电极材料决定,因此电极材料逐渐成为当前储能领域的研究热点。木材因其天然的多尺度微/纳米孔隙结构以及可再生、可生物降解等特点,逐渐被用于电极材料的研究。以巴沙木为基材,首先采用脱木素联合TEMPO氧化法将木材细胞壁分离具有纳米网络结构的木材气凝胶(TDW),然后将纳米纤维素分散的碳纳米管(CNT)悬浮液通过满细胞法浸渍到木材气凝胶中,冷冻干燥后在导管孔和细胞间隙中形成了连续的碳纳米管导电网络结构,最后进行聚吡咯(PPy)原位聚合,在细胞壁和导管孔中构建成具有纳米导电网络结构的TDW/CNT/PPy复合电极。电化学性能测试显示,由于在TDW的宏观孔隙中导电网络的构建,TDW/CNT/PPy的电化学性能明显优于TDW/PPy电极,而且随着碳纳米管比例的增加而增强,其中,TDW/CNT-2/PPy在1.0 mA/cm2扫描速率下的比电容达到389 F/g、面电容为10.5 F/cm2,而且在10 mA/cm2扫描速率下经过10 000次循环后的电容保持率为95.1%。本研究通...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号