首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fly ash, the particulate matter resulting from high temperature combustion of coal, was historically dispersed into the atmosphere and settled as fly-ash spheres on the surface soil from a variety of boilers, including those of steam locomotives and steam-powered farm machinery. In Central Illinois, fly ash provides a time marker extending back to 1850s, coinciding with the development of railroads and cultivation. Two railroads, the primary sources of fly ash, were constructed just south of the Cahokia study site in 1852 and 1854. The objectives of this study were to determine: (1) the distribution, depth of occurrence and the total amount of fly ash present in soil profiles on stable, cultivated and uncultivated summit sites with little or no soil erosion; (2) the effects of elevation, aspect, slope gradient, landscape position, distance from source, past vegetation and time on the amount and depth of fly ash; (3) the effects of erosion on sloping sideslopes; and (4) the amount of deposition of fly-ash rich sediment on footslopes and toeslopes. Total fly-ash content of soil was similar for stable, cultivated and uncultivated summits. Two mound sideslopes maintained a high amount of fly ash because of a lack of cultivation and erosion for the past 80 or more years. Erosion reduced the depth of occurrence and the amount of fly ash present on cultivated sideslopes. It appeared that fly-ash content was initially deposited uniformly within the local landscape even though there were slight variations in the aspect, elevation, slope gradient, and distance from the source. The erosion phases of the soils on all landscape positions were determined based on the amount of fly ash remaining in soil surface layers. Accelerated erosion of cultivated sideslopes resulted in the deposition of fly-ash rich sediment on the adjacent footslopes or toeslopes. The proposed fly-ash method provides a tool to assess the extent of soil translocation from a cultivated landscape and subsequent deposition.  相似文献   

2.
An understanding of the spatial distribution of soil erosion and deposition in a catchment is important for designing soil and water conservation measures. Traditional monitoring techniques provide limited information on the spatial patterns of erosion and deposition. The fallout radionuclide 137Cs was used to document rates and patterns of soil redistribution within a small (0.17 km2) gully catchment located near An'sai in Shaanxi Province, representative of the Loess Plateau of China. The local reference inventory was estimated to be 2266 Bq m−2 and the 137Cs inventories of 198 soil cores collected from the catchment, ranged from 0 to 3849 Bq m−2. The coefficient of variation of the inventories of the individual cores was 0.85, reflecting the complex pattern of 137Cs redistribution by soil erosion and deposition. Estimates of erosion rates derived from 137Cs measurement ranged from less than 25 to 150 Mg ha−1 year−1, with about 70% of the net soil loss from the catchment coming from the gully area. The 137Cs technique was shown to provide an effective means of documenting the spatial distribution of soil erosion and deposition within the small catchment.  相似文献   

3.
Soil losses affect the physical, chemical and biological soil properties and as a consequence reduce soil productivity. Erosion reduces or eliminates root-explorable soil depth and crop available water, selectively decreases the nutrient and organic matter content, and exposes soil layers with unsuitable characteristics for crop growth. Yield is hence assumed to be a function of root growth, which in turn is a function of the soil environment. In order to evaluate the water erosion impact on soil properties and productivity, a study was carried out on a Typic Haplustalfs soil, with sorghum (Sorghum bicolor (L) Moench), located in Chaguaramas in the Central Plains of Venezuela. Four different study locations with the same soil type, with slopes ranging from 3% to 6% and with different levels of erosion were selected: Chaguaramas I (slightly eroded), Chaguaramas II, (moderately eroded), Chaguaramas III (moderately eroded), and Chaguaramas IV (severely eroded). A sorghum–livestock farming system was introduced 30 years ago. Secondary tillage with a disc harrow (without mulch on the topsoil) was applied for seedbed preparation. Fertilizers and pesticides were applied uniformly over the entire fields. Soil samples from each horizon were analysed for particle size distribution, water retention, bulk density, pH and organic matter content. The relative production potential was estimated using the Productivity Index developed by Pierce et al. [Pierce, F.C., W.E. Larson, R.H. Dowdy and W.A. Graham. 1983. Productivity of soils: assessing long-term changes due to erosion. Journal of Soil and Water Conservation. 38 39–44.], and adapted to the methodology proposed by Delgado [Delgado F. 2003. Soil physical properties on Venezuelan steeplands: applications to conservation planning. The Abdus Salam International Centre for Theoretical Physics. College on Soil Physics. 11 pp.] for Venezuelan soil conditions. The Productivity Index (PI) could estimate the tolerable rate of soil productivity loss. A soil erosion risk was assessed by the Erosion Risk Index (ERI) taking into account the soil hydrological characteristics (infiltration–runoff ratio), rainfall aggressiveness and topography (slope). The Productivity Index (PI) and the Erosion Risk Index (ERI) were used to classify the lands for soil conservation priorities, for conservation requirements and for alternative land uses. The results showed that: (a) the Productivity Index (PI) decreased with increasing level of erosion, (b) the Productivity Index (PI) was mainly affected by changes in available water storage capacity, bulk density and pH, (c) the erosion risk (ERI) was strongly affected by slope gradient and rainfall aggressiveness, (d) the areas were classified as critical lands and super-critical lands, with high to very high soil conservation requirements, depending on the level of soil erosion.  相似文献   

4.
Cover crops are a very effective erosion control and environmental conservation technique. When cover crops freeze at the beginning of the winter period, the above-ground biomass becomes less effective in protecting the soil from water erosion, but roots can still play an important role in improving soil strength. However, information on root properties of common cover crops growing in temperate climates (e.g. Sinapis alba (white mustard), Phacelia tanacetifoli (phacelia), Lolium perenne (ryegrass), Avena sativa (oats), Secale cereale (rye), Raphanus sativus subsp. oleiferus (fodder radish)) is very scarce. Therefore, root density distribution with soil depth and the erosion-reducing effect of these cover crops during concentrated flow erosion were assessed by conducting root auger measurements and controlled concentrated flow experiments with 0.1 m topsoil samples. The results indicate that root density of the studied cover crops ranges between 1.02 for phacelia and 2.95 kg m− 3 for ryegrass. Cover crops with thick roots (e.g. white mustard and fodder radish) are less effective than cover crops with fine-branched roots (e.g. ryegrass and rye) in preventing soil losses by concentrated flow erosion. Moreover, after frost, the erosion-reducing potential of phacelia and oats roots decreased. Amoeba diagrams, taking into account both below-ground and above-ground plant characteristics, identified ryegrass, rye, oats and white mustard as the most suitable species for controlling concentrated flow erosion.  相似文献   

5.
Tillage and crop management effects on soil erosion in central Croatia   总被引:4,自引:0,他引:4  
Soil erosion continues to be a primary cause for soil degradation and the loss of soil quality throughout the world. Our objectives were to quantify soil erosion (referred to as erosional drift) and to assign erosion risk to six tillage and crop management treatments evaluated from 1995 to 1999 for a 5-year maize (Zea mays L.), soybean (Glycine hyspida L.), winter wheat (Triticum aestivum L.), oil-seed rape (Brassica napus var. oleifera L.), and spring barley (Hordeum vulgare L.) plus double-crop soybean rotation on Stagnic Luvisols in central Croatia. Standard black fallow (tilled, unsown, and without any vegetative cover) Universal Soil Loss Equation (USLE) plots were used to establish the erosion potential associated with the rainfall pattern for each year. Soil loss from the check plots was several times greater than the T value, which is estimated to be 10 t ha−1 per year. During the 2 years when spring seeded maize or soybean were grown (1995 and 1996) erosion risk was extremely high, especially for treatments where tillage and planting (row direction) were up and down the slope. When autumn seeded winter wheat or oil-seed rape were grown (1996/1997 or 1997/1998), soil erosion was insignificant. Also, except when plowing and sowing were up and down slope, erosion loss for the spring barley plus double-crop soybean crops in 1999 was insignificant. With no-tillage, soil erosion from the maize and soybean crops was reduced 40 and 65% compared to plowing up and down slope, even though the planting direction was still up and down the slope. With the exception of maize in 1995, erosion losses were moderate to insignificant when plowing and planting were performed across the slope. We conclude that erosion risk can be used as a reliable indicator of sustainable land management and that using no-tillage or plowing and planting perpendicular to the predominant slope are effective soil conservation practices for this region.  相似文献   

6.
An experiment to evaluate the impact of water erosion and cultivation on the soil carbon dynamic and carbon stock in a semiarid area of South-East Spain was carried out. The study was performed under three different land use scenarios: (1) forest; (2) abandoned agricultural field; and (3) non-irrigated olive grove. Experimental erosion plots (in olive grove and forest) and sediment traps (in the abandoned area) were used to determine the carbon pools associated with sediments and runoff after each event occurring between September 2005 and November 2006.

Change in land use from forest to cultivated enhanced the risk of erosion (total soil loss in olive cropland seven-fold higher than in the forest area) and reduced the soil carbon stock (in the top 5 cm) by about 50%. Mineral-associated organic carbon (MOC) represented the main C pool in the three study areas although its contribution to soil organic carbon (SOC) was significantly higher in the disturbed areas (78.91 ± 1.81% and 77.29 ± 1.21% for abandoned and olive area, respectively) than in the forest area (66.05 ± 3.11%). In both, the olive and abandoned soils, the reduction in particulate organic carbon (POC) was proportionally greater than the decline in MOC.

The higher degree of sediment production in the olive cropland had an important consequence in terms of the carbon losses induced by erosion compared to the abandoned and forest plots. Thus, the total OC lost by erosion in the sediments was around three times higher in the cultivated (5.12 g C m−2) than the forest plot (1.77 g C m−2). The abandoned area displayed similar OC losses as a result of erosion as the forest plot (in the measurement period: 2.07 g C m−2, 0.63 g C m−2 and 0.65 g C m−2 for olive, forest and abandoned area, respectively). MOC represented the highest percentage of contribution to total sediment OC for all the events analysed and in all uses being, in general these values higher in Olive (74–90%) than in the other two areas (55–80%). The organic carbon lost was basically linked to the solid phase in the three land uses, although the contribution of DOC to total carbon loss by erosion varied widely with each event.

Data from this study show that the more labile OC fraction (POC) lost in soil in the cultivated area was mainly due to the effect of cultivation (low overall biomass production and residue return together with high C mineralization) rather than to water erosion, given that the major part of the OC lost in sediments was in the form of MOC.  相似文献   


7.
The area burned by wildfire in the states of Arizona and New Mexico in the southwestern US has been increasing in recent years. In many cases, high severity burns have caused dramatic increases in runoff and sediment yield from burned watersheds. This paper describes the potential and limitations of the HEC6T sediment transport model to describe changes in channel scour and deposition following the Cerro Grande fire near Los Alamos, New Mexico. Following the fire, Pueblo Canyon, near Los Alamos, was subject to a peak flow two orders of magnitudes higher than any discharge in the 7-year period of record, and twice the initial post-fire estimate of the 100-year event. HEC6T requires that the limits of scour and deposition on a cross-section be specified prior to application. This was achieved by using geomorphologic principles, predicted post-burn hydrology and long-term estimates of channel change derived from air photos, to estimate post-fire channel widths. Because significant quantities of silt and clay were present in the runoff, erosion shear stress and erosion rate parameters for cohesive sediments had to be obtained experimentally. After a sensitivity analysis, an optimization routine was used to estimate the optimal model parameter values for sensitive parameters. HEC6T was able to accurately model the change in cumulative sediment volume change derived from Airborne Laser Swath Mapping (ALSM, often called Lidar) taken before and after the large post-fire event. One discrepancy between the HEC6T model prediction and the ALSM-estimated change was that the ALSM-estimated change showed the greatest amount of deposition in a portion of the canyon with increasing slope, which the HEC6T model did not predict. Any sediment transport model will predict increased sediment transport capacity with increasing energy slope, so that it was considered to be beyond the capability of any sediment transport model to predict this deposition. Therefore, HEC6T simulated the overall changes in scour and deposition within reasonable expectation of the capabilities of physically-based sediment transport modeling indicating that it is capable of modeling sediment transport in ephemeral channels following wildfire.  相似文献   

8.
Interrill erosion, which is less visible in the landscape than rill and gully erosion, may cause major sediment deposits in the lower part of cultivated fields. It is often associated with runoff resulting from sealing and crusting, and soil properties such as soil detachability or soil aggregate stability have been used to express soil resistance to interrill erosion processes, i.e., interrill erodibility. From a literature review including more than fifteen erosion models, we have identified three main methods used to measure these properties: aggregate stability and splash cup detachability, methods performed in the laboratory using only a few grams of soil, and standard plot methods that are based on field plot measurements. This difference makes the parameters involved in assessing interrill erodibility dependent upon the scale and the hydrological processes involved and difficult to compare. According to the literature, the sensitivity of actual erosion models to interrill erodibility is lower than the sensitivity to hydrological properties and rill erodibility parameters. This numerical study shows that erodibility measurements from the three major assessment methods give different results regarding the contribution of interrill erosion and show that the sensitivity of erosion modeling to interrill erodibility may in fact be greater than shown in the literature on global sensitivity analysis.  相似文献   

9.
10.
水热对三峡水库消落带退耕稻田土壤有机碳矿化的影响   总被引:1,自引:0,他引:1  
唐江  丁长欢  樊晶晶  连茂山  慈恩  王子芳  谢德体 《土壤》2016,48(6):1203-1209
采用模拟培养的方法,研究了不同水热条件对三峡水库消落带退耕稻田土壤有机碳(SOC)矿化的影响。试验共设3个培养温度(10、20和30℃)和4个水分梯度(40%田间持水量(WHC)、70%WHC、100%WHC和浅层淹水)。结果表明:1在66天培养期内,各培养温度(10~30℃)下,70%WHC、100%WHC和浅层淹水处理之间的SOC累积矿化量均无明显差异,其中10℃培养时40%WHC处理下的累积矿化量要显著低于70%WHC和100%WHC水分处理(P0.05),但与浅层淹水无明显差异,而20℃和30℃培养时40%WHC处理下的累积矿化量则要显著低于其他水分处理,表明相较于70%WHC的水分处理,40%WHC水分处理会抑制消落带退耕稻田SOC矿化,而高水分(100%WHC和浅层淹水)对SOC矿化则无明显促进和抑制作用。2在相同水分条件下,消落带退耕稻田SOC累积矿化量均随培养温度升高而增加。3高温下各水分处理之间的温度敏感性无显著差异,而低温下水分对温度敏感性有显著影响,低温浅层淹水处理下的Q10为2.33,显著高于40%WHC处理,与70%WHC和100%WHC处理之间无明显差异。且随着温度升高,浅层淹水下消落带退耕稻田SOC矿化的温度敏感性显著降低,而在土壤含水量≤100%WHC下则无明显变化。温度和水分均能显著影响SOC矿化,但二者无明显的交互效应。4双库一级矿化动力学模型拟合结果表明,水分和温度通过影响消落带退耕稻田土壤易分解有机碳含量和难分解有机碳的矿化速率,从而影响SOC矿化。  相似文献   

11.
Gully erosion: Impacts, factors and control   总被引:21,自引:1,他引:21  
C. Valentin  J. Poesen  Yong Li 《CATENA》2005,63(2-3):132
Gully erosion attracts increasing attention from scientists as reflected by two recent international meetings [Poesen and Valentin (Eds.), Catena 50 (2–4), 87–564; Li et al., 2004. Gully Erosion Under Global Change. Sichuan Science Technology Press, Chengu, China, 354 pp.]. This growing interest is associated with the increasing concern over off-site impacts caused by soil erosion at larger spatial scales than the cultivated plots. The objective of this paper is to review recent studies on impacts, factors and control of gully erosion and update the review on ‘gully erosion and environmental change: importance and research needs’ [Poesen et al., 2003. Catena 50 (2–4), 91–134.]. For the farmers, the development of gullies leads to a loss of crop yields and available land as well as an increase of workload (i.e. labour necessary to cultivate the land). Gullies can also change the mosaic patterns between fallow and cultivated fields, enhancing hillslope erosion in a feedback loop. In addition, gullies tend to enhance drainage and accelerate aridification processes in the semi-arid zones. Fingerprinting the origin of sediments within catchments to determine the relative contributions of potential sediment sources has become essential to identify sources of potential pollution and to develop management strategies to combat soil erosion. In this respect, tracers such as carbon, nitrogen, the nuclear bomb-derived radionuclide 137 Cs, magnetics and the strontium isotopic ratio are increasingly used to fingerprint sediment. Recent studies conducted in Australia, China, Ethiopia and USA showed that the major part of the sediment in reservoirs might have come from gully erosion.Gullies not only occur in marly badlands and mountainous or hilly regions but also more globally in soils subjected to soil crusting such as loess (European belt, Chinese Loess Plateau, North America) and sandy soils (Sahelian zone, north-east Thailand) or in soils prone to piping and tunnelling such as dispersive soils. Most of the time, the gullying processes are triggered by inappropriate cultivation and irrigation systems, overgrazing, log haulage tracks, road building and urbanization. As exemplified by recent examples from all over the world, land use change is expected to have a greater impact on gully erosion than climate change. Yet, reconstructions of historical causes of gully erosion, using high-resolution stratigraphy, archaeological dating of pottery and 14C dating of wood and charcoal, show that the main gully erosion periods identified in Europe correspond to a combination not only of deforestation and overuse of the land but also to periods with high frequency of extreme rainfall events.Many techniques have proved to be effective for gully prevention and control, including vegetation cover, zero or reduced tillage, stone bunds, exclosures, terracing and check dams. However, these techniques are rarely adopted by farmers in the long run and at a larger spatial scale because their introduction is rarely associated with a rapid benefit for the farmers in terms of an increase in land or labour productivity and is often contingent upon incentives.  相似文献   

12.
To assess the effects of climate change on soil erosion we need to model changes in rate, frequency and extent of erosion. Present day rates of soil erosion for agricultural land in England and Wales are known from a national monitoring scheme and also from a local one. The latter, for the South Downs, covers a seven-year period and includes climatic data. This shows a strong correlation between total erosion and a Rainfall Index. The availability of these databases allows us to use existing models such as EPIC and an Expert System to predict erosion rates for postulated warmer and wetter (winter) conditions. EPIC is particularly suitable for specific sites where detailed data exists and crop yield implications can also be modelled. A rule-based Expert System approach allows us to examine erosion rates at a different scale across the landscape. We postulate that water erosion rates on arable land in the lowlands will increase markedly in severity, frequency and extent especially if land use changes. In the uplands predicted climatic warming suggests a longer growing season and fewer frosts: these may lead to a decrease in erosion of overgrazed eroding slopes. Increases in erosion rates are not inevitable if policy decisions are taken and implemented in good time.  相似文献   

13.
黑碳添加对土壤有机碳矿化的影响   总被引:10,自引:0,他引:10  
通过室内培养试验,向土壤中分别添加不同温度制备的黑碳,热解温度分别为350℃(T350)、600℃(T600)和850℃(T850),研究了黑碳添加对土壤有机碳矿化的影响。结果表明,不同温度条件制备的黑碳在15℃和25℃培养条件下,土壤CO2释放速率总的趋势是前期分解速率快,后期缓慢。在整个培养过程中(112天),随着培养时间的延长,土壤CO2释放速率下降趋势逐渐降低,CO2释放速率相对值的大小随着培养温度的的升高而增大。在不同温度培养条件下,添加黑碳后土壤CO2-C累计量均是T350>T600>T850,T350土壤CO2-C累计量最高分别为415.26 mg/kg和733.82 mg/kg。添加不同黑碳后,土壤有机碳矿化增加率存在极显著差异(p<0.01),表明不同温度制备的黑碳对土壤有机碳矿化的影响显著。  相似文献   

14.
15.
X.C. Zhang  M.A. Nearing 《CATENA》2005,61(2-3):185
The potential for global climate changes to increase the risk of soil erosion is clear, but the actual damage is not. The objectives of this study were to evaluate the potential impacts of climate change on soil erosion, surface runoff, and wheat productivity in central Oklahoma. Monthly projections were used from the Hadley Centre's general circulation model, HadCM3, using scenarios A2a, B2a, and GGa1 for the periods of 1950–1999 and 2070–2099. Projected changes in monthly precipitation and temperature distributions between the two periods were incorporated into daily weather series by means of a stochastic weather generator (CLIGEN) with its input parameters adjusted to each scenario. The Water Erosion Prediction Project (WEPP) model was run for four climate scenarios including a recent historical climate and three tillage systems (conventional tillage, conservation tillage, and no-till). HadCM3-projected mean annual precipitation during 2070–2099 at El Reno, Oklahoma decreased by 13.6%, 7.2%, and 6.2% for A2a, B2a, and GGa1, respectively; and mean annual temperature increased by 5.7, 4.0, and 4.7 °C, respectively. Predicted average annual soil loss in the tillage systems other than no-till, compared with historical climate (1950–1999), increased by 18–30% for A2a, remained similar for B2a, and increased by 67–82% for GGa1. Predicted soil loss in no-till did not increase in the three scenarios. Predicted mean annual runoff in all three tillage systems increased by 16–25% for A2a, remained similar for B2a, and increased by 6–19% for GGa1. The greater increases in soil loss and runoff in GGa1 were attributed to greater variability in monthly precipitation as projected by HadCM3. The increased variability led to increased frequency of large storms. Small changes in wheat yield, which ranged from a 5% decrease in B2a to a 5% increase in GGa1, were because the adverse effects of the temperature increase on winter wheat growth were largely offset by CO2 rise as well as the bulky decrease in precipitation occurred outside the growing season. The overall results indicate that no-till and conservation tillage systems will be effective in combating soil erosion under projected climates in central Oklahoma.  相似文献   

16.
不同土壤坡面细沟侵蚀差异与其影响因素   总被引:11,自引:1,他引:11  
采用室内纯净水人工模拟降雨试验,在坡度为10°、15°、20°、25°坡面,土槽为5 m、10 m两种规格,对两种土壤((土娄)土与黄绵土)分别进行雨强为1.5 mm min-1,的降雨实验,利用三维激光扫描仪对每一场降雨后的坡面进行监测,分析不同坡度对细沟侵蚀的影响,比较两种土壤坡面细沟侵蚀的差异,以及其差异的影响因子.结果表明:(土娄)土土壤颗粒以粉粒与黏粒为主,粉粒占总质量的64.12%,黏粒为28.42%.黄绵土的土壤颗粒以粉粒为主占总质量的67.95%,黏粒与沙粒含量较少,黏粒占14.52%,沙粒占17.53%.在相同条件下,(土娄)土降雨过程中人渗缓慢,产流时间、坡面流速均快于黄绵土,跌坎出现时间也较早,使其更容易产生细沟.(土娄)土的径流量高于黄绵土,在降雨过程中,径流稳定时间较早.(土娄)土侵蚀量高于黄绵土,(土娄)土产沙率呈增加趋势,黄绵土含沙量变化不明显.从坡面细沟发育来看,(土娄)土坡面细沟成平行状分布,黄绵土细沟为较宽树枝状.  相似文献   

17.
The year to year carry-over effects of biomass additions under different plant populations on runoff and erosion are unclear. The objective of this study was to quantify the impact of different plant populations on residue cover to elucidate the effects of residue cover on runoff and erosion. The residue management system involved shredding of corn (maize) biomass after harvest, incorporating the residue in the spring, and leaving the land fallow until it was no-till planted the following spring. Runoff and soil losses were measured on 18 runoff plots with plots arranged in two areas with each having three randomized treatments (0%, 50%, and 100% plant population) with three replications. The two areas were managed as a fallow/no-till corn rotation in two cycles of alternating years. Surface residue cover was highly dynamic with significant changes between cycles and seasons in response to the management practices. The annual soil losses were reduced by 47% and 54% for the 50% and 100% plant populations, respectively compared to the control. However, the annual soil loss even for the 100% plant population was still nearly seven times the tolerable soil loss limit of 7 ton ha−1. The normal erosion protection afforded by no-till practices was lost by the incorporation of residue the previous year.  相似文献   

18.
土壤有机碳稳定性及其影响因素   总被引:14,自引:3,他引:14  
吴庆标  王效科  郭然 《土壤通报》2005,36(5):743-747
土壤有机碳库在全球碳循环中起着重要作用。利用文献资料,阐明土壤有机碳稳定性理论及其影响因素。土壤有机碳稳定性指土壤有机碳在当前条件下抵抗干扰和恢复原有水平的能力。它是由土壤的理化性质所决定的,是自然因素和人为因素共同作用的结果。土壤有机碳的降解包括生物降解作用和物理化学降解作用等,生物降解作用是主要的过程。把土壤有机碳库分成活性碳库、慢性碳库、惰性碳库,能较好地与土壤微生物的生物降解过程相对应。构建土壤有机碳稳定性概念模型,能更系统地理解有机碳在土壤中的稳定机制。  相似文献   

19.
Surface irrigation is the oldest and the most widely used method of irrigation. One disadvantage of surface irrigation is soil erosion. New technology employing water-soluble polymers may provide a technique that is effective and affordable to control soil erosion. Water-soluble anionic organic compound known as polyacrylamide polymer (PAM) is the most successful polymer in controlling soil erosion. This study investigated the effect of spraying PAM on the soil surface to control soil erosion and to increase soil infiltration on a Jordanian clay loam soil. Different PAM concentrations, namely 5, 10, and 20 mg/l in addition to the control (0 mg/l) were used in this study. The highest effect of PAM on the measured properties was attained at 20 mg/l. We noticed that PAM's efficiency was decreased with subsequent irrigations. The reduction in soil erosion was 72 and 47.6%, the reduction in runoff water turbidity was 83 and 35%, the increase in water advance time was 6 and 0.9% and the increase in soil infiltration was 36 and 20.8% for the first and fourth irrigation, respectively. PAM's efficiency in flocculating soil particles was studied in the lab where we noticed that its efficiency in sedimentation was increased as its concentration increased.  相似文献   

20.
China's northeastern Black Soil Region, one of the country's most important crop production areas, has been seriously affected by soil erosion. This study evaluated the effects of soil erosion on the long-term productivity of this region. We used a modified productivity index (MPI) model (MPI is a number between 0 and 1, with 1 indicating highest productivity) to assess the current effects of soil erosion on soil productivity, as well as to predict long-term change in productivity. Samples from 21 black soil profiles yielded varying MPI values, although most MPI values were indicative of moderate productivity. Organic matter content and available water capacity impact MPI values in the region, whereas soil clay content and pH were less important. Overall, organic matter content and available water capacity of soil profiles decreased consistently as depth of erosion increased. Modeling indicated that MPI in the region will decrease by 0.0052 for each centimeter of topsoil eroded; this rate represents 1% of the current average MPI for the study area. The model predicts a 9.6% productivity reduction over 100 years and a 48.3% reduction over 500 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号