首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.

Purpose

The sensitivity of soil organic carbon to global change drivers, according to the depth profile, is receiving increasing attention because of its importance in the global carbon cycle and its potential feedback to climate change. A better knowledge of the vertical distribution of SOC and its controlling factors—the aim of this study—will help scientists predict the consequences of global change.

Materials and methods

The study area was the Murcia Province (S.E. Spain) under semiarid Mediterranean conditions. The database used consists of 312 soil profiles collected in a systematic grid, each 12 km2 covering a total area of 11,004 km2. Statistical analysis to study the relationships between SOC concentration and control factors in different soil use scenarios was conducted at fixed depths of 0–20, 20–40, 40–60, and 60–100 cm.

Results and discussion

SOC concentration in the top 40 cm ranged between 6.1 and 31.5 g?kg?1, with significant differences according to land use, soil type and lithology, while below this depth, no differences were observed (SOC concentration 2.1–6.8 g?kg?1). The ANOVA showed that land use was the most important factor controlling SOC concentration in the 0–40 cm depth. Significant differences were found in the relative importance of environmental and textural factors according to land use and soil depth. In forestland, mean annual precipitation and texture were the main predictors of SOC, while in cropland and shrubland, the main predictors were mean annual temperature and lithology. Total SOC stored in the top 1 m in the region was about 79 Tg with a low mean density of 7.18 kg?Cm?3. The vertical distribution of SOC was shallower in forestland and deeper in cropland. A reduction in rainfall would lead to SOC decrease in forestland and shrubland, and an increase of mean annual temperature would adversely affect SOC in croplands and shrubland. With increasing depth, the relative importance of climatic factors decreases and texture becomes more important in controlling SOC in all land uses.

Conclusions

Due to climate change, impacts will be much greater in surface SOC, the strategies for C sequestration should be focused on subsoil sequestration, which was hindered in forestland due to bedrock limitations to soil depth. In these conditions, sequestration in cropland through appropriate management practices is recommended.  相似文献   

2.

Purpose

In this study, we quantified soil organic carbon (SOC) stocks and analyzed their relationship with biophysical factors and soil properties.

Materials and methods

The study region was Veracruz State, located in the eastern part of Mexico, covering an area of 72,410 km2. A soil database that contains physicochemical analyses of soil horizons such as carbon concentration data was the source of information used in this study. The database consisted of 163 soil profiles representing 464 genetic horizons. Statistical analysis was used to investigate the effect of each factor (climate, altitude, slope) on SOC stock to 0.50 m depth and to assess differences in the distribution of SOC stock in terms of soil depth (0.0–0.20, 0.20–0.40, 0.40–0.60, 0.60–0.80, 0.80–1.0 m) and land use. In order to compute the spatial distribution of SOC stock to 0.50 m depth based on the soil sampling location, the kriging method was used.

Results and discussion

Results indicated that SOC stock (0.50 m depth) ranged between 0.44 and 41.2 kg C m?2. Regression analysis showed that SOC stocks (0.50 m depth) are negatively correlated with temperature (r?=??0.38; P?<?0.001) and positively correlated with altitude (r?=?0.40; P?<?0.001) and slope (r?=?0.40; P?<?0.001). In addition, by multiple regression, temperature combined with precipitation explained more SOC stock variations (r?=?0.43; P?<?0.001) than the regression model with precipitation (r?=?0.13; P?=?0.16) alone. Also, slope combined with temperature and precipitation explained more SOC stock variations (r?=?0.46; P?<?0.001) than the regression model with slope alone. Forest lands, grasslands, and croplands have higher SOC stocks in the 0.0–0.20-m soil layer than in deeper layers. On average, forest lands, grasslands, croplands, and other lands (wetland and dunes) had a SOC stock of 13.6, 14.6, 15.1, and 8.5 kg C m?2 at 1 m depth, respectively. Soil color correlated (?0.25 ≤ r ≤ ?0.89) with SOC content.

Conclusions

Overall, these results indicate the influence of major interactions between biophysical factors and SOC stocks. This research indicated that SOC stock decreased with soil depth, but with slight variations depending on land use. Thus, there remains a need for more SOC data that include an improved distribution of soil sampling points in order to entirely understand the contributions of biophysical factors to SOC stocks in Veracruz State.  相似文献   

3.

Purpose

The purpose of this study is to understand spatial and temporal variations of soil organic carbon (SOC) under rapid urbanization and support soil and environmental management.

Materials and methods

SOC data in 1979 and 2006, of 228 and 1,104 soil samples respectively, were collected from surface agricultural lands in Fuyang County, East of China. Land use data were also gathered at the same time.

Results and discussion

The mean SOC was 17.3 (±4.6) g/kg for the 1979 data and 18.5(±5.8) g/kg for 2006. There was a significant difference in SOC between the 2 years according to the t test result. Geostatistical analysis indicated that SOC had a moderate spatial correlation controlled by extrinsic anthropogenic activities. The spatial distribution of SOC, derived from ordinary kriging, matched the distribution of industry and urbanization. Using a six-level SOC classification scheme (<3.5, 3.5–5.8, 5.8–11.6, 11.6–17.4, 17.4–23.2, and >23.2 g/kg) created by Zhejiang Province, approximately 15 % of soil had SOC increase from low to high levels from 1979 to 2006.

Conclusions

The main cause of SOC variation in the study area was land use change from agriculture to industrial or urbanized uses. The increasing SOC trend near most towns may be attributed to use of organic manure, urban wastes, sewage sludge, and chemical fertilizers on agricultural land.  相似文献   

4.

Purpose

Understanding organic carbon mineralization and its temperature response in subtropical paddy soils is important for the regional carbon balance. There is a growing interest in factors controlling soil organic carbon (SOC) mineralization because of the potential for climate change. This study aims to test the hypothesis that soil clay content impedes SOC mineralization in subtropical paddy soils.

Materials and methods

A 160-day laboratory incubation at temperatures from 10 to 30 °C and 90% water content was conducted to examine the dynamics of SOC mineralization and its temperature response in three subtropical paddy soils with different clay contents (sandy loam, clay loam, and silty clay soils). A three-pool SOC model (active, slow, and resistant) was used to fit SOC mineralization.

Results and discussion

Total CO2 evolved during incubation following the order of clay loam > silty clay > sandy loam. The temperature response coefficients (Q 10) were 1.92?±?0.39, 2.36?±?0.22, and 2.10?±?0.70, respectively, for the sandy loam soil, clay loam soil, and silty clay soil. But the soil clay content followed the order of silty clay > clay loam > sandy loam. The sandy loam soil neither released larger amounts of CO2 nor showed higher temperature sensitivity, as expected, even though it contains lower soil clay content among the three soils. It seems that soil clay content did not have a dominant effect which results in the difference in SOC mineralization and its temperature response in the selected three paddy soils. However, dissolved organic carbon (DOC; representing substrate availability) had a great effect. The size of the active C pool ranged from 0.11 to 3.55% of initial SOC, and it increased with increasing temperature. The silty clay soil had the smallest active C pool (1.40%) and the largest Q 10 value (6.33) in the active C pool as compared with the other two soils. The mineralizable SOC protected in the silty clay soil, therefore, had even greater temperature sensitivity than the other two soils that had less SOC stabilization.

Conclusions

Our study suggests that SOC mineralization and its temperature response in subtropical paddy soils were probably not dominantly controlled by soil clay content, but the substrate availability (represented as DOC) and the specific stabilization mechanisms of SOC may have great effects.  相似文献   

5.

Purpose

Excessive exchangeable sodium and high pH significantly decrease soil structural stability and permeability. Long-term application of cattle manure is an important management practice that can affect water-stable aggregates (WSAs), as well as aggregate stability and distribution of soil organic carbon (SOC) and total nitrogen (TN) in solonetzic soils.

Material and methods

Experiments were carried out in a randomized complete block design comprising five treatments according to the cattle manure application history: corn (Zea mays) with manure applied for 1, 5, 12, and 17 years were used as the experimental treatments and corn without manure application was used as a control. Soil properties, including WSAs, mean weight diameter (MWD), and SOC and TN concentrations in bulk soils and WSAs, were measured across all treatments. The relationships among the measured soil attributes were determined using stepwise regression analysis.

Results and discussion

Results indicated that micro-aggregates mainly accumulated in soils without manure application, while manure application significantly increased macro-aggregates formation. MWD was highest when manure was applied to the soil for 1 year, decreased after 5 years, and increased again after 12 years. SOC and TN concentrations in bulk soils and WSAs increased with the number of years of manure application, with the highest concentrations observed for 17 years in bulk soils. Stepwise regression analysis showed that WSAs 2–5 mm, SOC in WSAs 0.25–0.5 mm, and TN in WSAs 0.1–0.25 mm were dominant independent variables affecting aggregate stability, and that SOC in WSAs 0.25–0.5 mm and TN in WSAs <0.1 mm were dominant independent variables affecting SOC and TN concentrations in bulk soils, respectively.

Conclusions

Long-term application of manure to a solonetz significantly increased macro-aggregates and aggregate stability as well as SOC and TN in bulk soils and all aggregate sizes. These results are likely related to binding agent production as well as C and N accumulation from manure application.  相似文献   

6.

Purpose

Wet meadows formed on alluvial deposits potentially store large amounts of soil carbon (C) but its stability is subject to the impacts of management practices. The objective of this study was to quantify and characterize soil organic carbon (SOC) and nitrogen (N) in mountain wet meadows across ranges of meadow hydrology and livestock utilization.

Materials and methods

Eighteen wetlands in the southern Sierra Nevada Mountains representing a range of wetness and livestock utilization levels were selected for soil sampling. In each wetland meadow, whole-solum soil cores delineated by horizon were analyzed for total and dissolved organic C (DOC) total (TN) and mineral nitrogen and soil water content (SWC). Multiple regression and GIS analysis was used to estimate the role of wet meadows in C storage across the study area landscape.

Results and discussion

Average solum SOC contents by wetland ranged from 130 to 805 Mg ha?1. All SOC and TN components were highly correlated with SWC. Regression analyses indicated subtle impacts of forage utilization level on SOC and TN concentrations, but not on whole-solum, mass-per-area stocks of SOC and TN. Proportions of DOC and TN under seasonally wet meadows increased with increasing utilization. GIS analysis indicated that the montane landscape contains about 54.3 Mg SOC ha?1, with wet meadows covering about 1.7% of the area and containing about 12.3% of the SOC.

Conclusions

Results indicate that soil organic C and N content of meadows we sampled are resilient to current light to moderate levels of grazing. In seasonally wet meadows, higher proportions of DOC and N with increasing utilization indicate vulnerability to loss. Partial drying of the wettest and seasonally wet meadows could result in losses of over five % of landscape SOC.  相似文献   

7.

Purpose

Soil properties are highly heterogeneous in forest ecosystems, which poses difficulties in estimating soil carbon (C) and nitrogen (N) pools. However, little is known about the relative contributions of environmental factors and vegetation to spatial variations in soil C and N, especially in highly diverse mixed forests. Here, we examined the spatial variations of soil organic carbon (SOC) and total nitrogen (TN) in a subtropical mixed forest in central China, and then quantified the main drivers.

Materials and methods

Soil samples (n = 972) were collected from a 25-ha forest dynamic plot in Badagonshan Nature Reserve, central China. All trees with diameter at breast height (DBH) ≥1 cm and topography data in the plot were surveyed in detail. Geostatistical analyses were used to characterize the spatial variability of SOC and TN, while variation partitioning combined with Mantel’s test were used to quantify the relative contribution of each type of factors.

Results and discussion

Both surface soil (0–10 cm) and subsurface soil (10–30 cm) exhibited moderate spatial autocorrelation with explainable fractions ranged from 31 to 47 %. The highest contribution to SOC and TN variation came from soil variables (including soil pH and available phosphorus), followed by vegetation and topographic variables. Although the effect of topography was weak, Mantel’s test still showed a significant relationship between topography and SOC. Strong interactions among these variables were discovered. Compared with surface soil, the explanatory power of environmental variables was much lower for subsurface soil.

Conclusions

The differences in relative contributions between surface and subsurface soils suggest that the dominating ecological process are likely different in the two soil depths. The large unexplained variation emphasized the importance of fine-scale variations and ecological processes. The large variations in soil C and N and their controlling mechanisms should be taken into account when evaluating how forest managements may affect C and N cycles.
  相似文献   

8.

Purpose

The impacts of land-use change on dynamics of soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) in the subsoil (>?30 cm) are poorly understood. This study aims to investigate whether the effects of land-use change on stocks and stoichiometric ratios (RCN, RCP, and RNP) of SOC, TN, and TP can be different between topsoil (0–30 cm) and subsoil (30–60 cm) in the Ili River Valley, northwest China.

Materials and methods

Soil samples (0–10, 10–20, 20–30, 30–40, 40–50, and 50–60 cm) were collected from a pasture (PT), a 27-year-old cropland (CL) converted from PT, and a 13-year-old poplar (Populus tomentosa Carr.) plantation (PP) converted from CL. SOC, TN, and TP concentrations and soil bulk density were determined to calculate stocks and stoichiometric ratios (molar ratios) of SOC, TN, and TP.

Results and discussion

Conversion from PT to CL led to substantial losses in SOC, TN, and TP pools in both topsoil and subsoil, and the reduction rates in subsoil (13.8–24.7%) were higher than those in topsoil (8.5–17.3%), indicating that C, N, and P pools in subsoil could also be depleted by cultivation. Similar to topsoil, significant increases in SOC, TN, and TP stocks were detected after afforestation on CL in subsoil, although the increase rates (31.2–56.2%) were lower than those in topsoil (47.8–69.1%). Soil pH and electrical conductivity (EC), which generally increased after conversion from PT to CL while decreased after CL afforestation, showed significant negative correlations with SOC, TN, and TP, suggesting that cultivation might lead to soil degradation, whereas afforestation contributed to soil restoration in this area. Significant changes in C:N:P ratios in topsoil were only detected for RNP after conversion from CL to PP. By contrast, land-use change significantly altered both RCN and RNP in the subsoil, demonstrating that the impacts of land-use change on RCN and RNP were different between topsoil and subsoil. The significant relationship between soil EC and RNP suggested that RNP might be a useful indicator of soil salinization.

Conclusions

Stocks of SOC, TN, and TP as well as RCN and RNP in subsoil showed different responses to land-use change compared to those in topsoil in this typical agro-pastoral region. Therefore, it is suggested that the effects of land-use change on dynamics of SOC, TN, and TP in subsoil should also be evaluated to better understand the role of land-use change in global biogeochemical cycles.
  相似文献   

9.

Purpose

Soil organic carbon (SOC) stock is one of the most important carbon reservoirs on the earth and plays a vital role in the global climate change. However, research on the carbon sequestration and storage of coastal wetland soil is very scarce. Therefore, a study in the coastal wetland was conducted to investigate the SOC distribution, storage, and variation under the influence of human activities.

Materials and methods

Surface soil samples in different seasons and profile soil samples were collected in the Changyi coastal wetland. SOC content, soil physicochemical properties, and sedimentation rate were determined. Organic carbon storage and burial flux were calculated. On the basis of correlation analysis and comparative study, factors affecting the distribution and storage of SOC were investigated.

Results and discussion

The average SOC content of the surface soil in June and November was 4.65 and 6.13 g kg?1, respectively. The distribution of surface SOC content was consistent with the distribution of vegetation and was affected by the soil particle size. In plant-covered area, the relationship between SOC content and depth could be expressed by the power function y?=?ax b . The contribution of plants to SOC was only significant in the shallow layer. As for the deep layer, the SOC content was higher in the mudflat. The organic carbon storage in the upper 1 m soil was estimated at 1.795 kg m?2 in average and the total organic carbon storage of Changyi wetland was estimated at 6.373?×?107 kg. The sedimentation rate was very low and the average organic carbon burial flux of the whole wetland was 17.5 g m?2 a?1.

Conclusions

Low sedimentation rate, weak downward migration, and high decomposition rate of organic matter caused by poor hydrological condition were the reasons why the SOC storage in Changyi wetland was low. Under intensive human activities, the Changyi wetland was drying and the organic carbon storage was reducing. Strategies were proposed to be taken urgently to restore the wetland for the long-term benefit.
  相似文献   

10.

Purpose

Despite the ancillary knowledge that soil N is chiefly retained as soil organic matter, little is known about how it is affected by other soil and environmental factors, especially in the tropics. In this study, we performed a comprehensive survey of soils under native vegetation in Minas Gerais, Brazil, aiming to (a) measure soil Kjeldahl-N concentrations to a 1-m depth, (b) identify the main affecting factors of soil N retention, and (c) predict N through soil profile based on organic C (SOC) and its main conditioning factors.

Materials and methods

Soils under 36 fragments of native forest and savanna were sampled at five depths (0–10, 10–20, 20–40, 40–60, and 60–100 cm) and characterized by physical and chemical analyses, including total N determined by the micro-Kjeldahl method. Single and multivariate regressions were used to predict N concentrations based on soil properties and climatic factors.

Results and discussion

The average N concentrations ranged between 0.12 and 7.54 g kg?1, decreasing with depth, and can be predicted using SOC concentrations (R 2 = 0.86). Multivariate regressions using more input data, namely texture, cation exchange capacity (CEC), and altitude increased slightly R 2 values (0.68–0.90) for separate soil depths, but not for the whole dataset (R 2 = 0.85).

Conclusions

We demonstrated that N can be adequately predicted based on SOC concentrations, for any depth and forest type. The implications of the stable SOC/N relation and their coupled cycles and the environmental factors affecting N retention in Brazilian weathered soils are further discussed.
  相似文献   

11.

Purpose

Soil organic carbon (SOC) sequestration in croplands plays a critical role in climate change mitigation and food security, whereas the stability and saturation of the sequestered SOC have not been well understood yet, particularly in rice (Oryza sativa L.) fields. The objective of this study was to determine the long-term effect of inorganic fertilization alone or combined with organic amendments on SOC stability in a double rice cropping system, and to characterize the saturation behavior of the total SOC and its fractions in the paddy soil.

Materials and methods

Soils were collected from a long-term field experiment in subtropical China where different fertilization regimes have been carried out for 31 years. The total SOC pool was separated into four fractions, characteristic of different turnover rates through chemical fractionation. Annual organic carbon (C) inputs were also estimated by determining the C content in crop residues and organic amendments.

Results and discussion

Relative to the initial level, long-term double rice cropping without any fertilizer application significantly increased SOC concentration, suggesting that double rice cropping facilitates the storage and accumulation of SOC. The partial substitution of inorganic fertilizers with organic amendments significantly increased total SOC concentration compared to the unfertilized control. Total SOC increased significantly with greater C inputs and did not show any saturation behavior. Increased SOC was primarily stored in the labile fraction with input from organic amendments. However, other less labile SOC fractions showed no further increase with greater C inputs exhibiting C saturation.

Conclusions

While the paddy soil holds a high potential for SOC sequestration, stable C fractions saturate with increasing C inputs, and thus, additional C inputs mainly accumulate in labile soil C pools.  相似文献   

12.

Purpose

Soils of tidal marshes play an important role in regional carbon (C) cycles as they are able to store considerable amounts of organic carbon (OC). However, the C dynamics of marsh soils of the Elbe estuary have not been investigated so far. Therefore, the aim of this study was to identify the sources and distribution of soil organic carbon (SOC) and the factors influencing the SOC pools of tidal marshes of the study region.

Materials and methods

In this study, SOC pools were determined in different salinity zones and elevation classes of the estuarine marshes. The amount of initial allochthonous OC was derived from the OC content in fresh sediments. The difference to the recent OC content in the soils was interpreted as autochthonous accumulation or mineralization by microorganisms.

Results and discussion

Young, low marshes of the study sites seem to be predominantly influenced by allochthonous OC deposition whereas the older, high marshes show autochthonous OC accumulation in the topsoils (0–30 cm) and mineralization in the subsoils (30–70 cm). SOC pools of the whole profile depth (0–100 cm) did not significantly differ between elevation classes, but decreased significantly with increasing salinity from 28.3 kg m?2 in the most upstream site of the oligohaline zone to 9.7 kg m?2 in the most downstream site of the polyhaline zone. Even though the areal extent of the investigated salinity zones was similar, the SOC mass within 100 cm soil depth decreased from 0.62 Tg (1 Tg = 1012 g) in the oligohaline zone to 0.18 Tg in the polyhaline zone.

Conclusions

Elevation was found to be one factor influencing the SOC pools of tidal marshes. However, salinity seems to be an even stronger influencing factor reducing the above-ground biomass and, accordingly, the autochthonous OC input as well as the allochthonous input by enhanced mineralization of OC along the course of the estuary. An upstream shift of the salinity zones by sea level rise could, therefore, lead to a reduction of the SOC storage of the estuarine marshes.
  相似文献   

13.

Purpose

While the influence of integrated fertility management systems on yield and N cycling in Mollisols is documented, its effect on soil C sequestration remains to be determined. We examined the response of organic C pools and crop yields to 21 years’ organic amendments applied at relatively low rates in a high-C Mollisol to optimize win–win management practices that balance agronomic and environmental interests.

Materials and methods

This study was based on five treatments: CK (unfertilized control), NPK (chemical fertilizer alone), NPKS1 (NPK plus crop residues), NPKS2 (NPK plus double amounts of crop residues), and NPKM (NPK plus pig manure). Crop yield was determined by harvesting a defined area. Organic C was quantified by dry combustion. A two-step acid hydrolysis technique was used to quantify hydrolysable and non-hydrolysable C fractions.

Results and discussion

All organic-treated plots produced significantly higher crop yields than the NPK plots, but only the manure treatment resulted in a significant increase in SOC compared with the NPK treatment after 21 years of experiment. It seems that the effects of organic amendments on SOC depend primarily on the type of organic materials when the application rates were relatively low. This indicated that organic amendments offer relatively short-term soil benefits for plant growth. The pig manure builds SOC over the long term, which provides secondary benefits while also sequestering C.

Conclusions

Overall, manure integrated with mineral fertilizer should be recommended to maintain the SOC content and increase crop yield in the Mollisols.  相似文献   

14.

Purpose

Submerged rice cultivation has been practiced in China for 7000 years. Empirical evidence on changes of soil organic carbon (SOC) contents in paddy soils over this historical time period is scarce. Therefore, a field study was conducted to investigate the effect of submerged rice cultivation on the accumulation and preservation of SOC in paddies.

Materials and methods

Two buried ancient paddy profiles (6280 years BP, named P-01 and P-03) in the Yangtze Delta of eastern China were excavated to illustrate the development of SOC contents in soils during the evolution of paddies under anthropogenic land use and environmental changes from the prehistoric period to the present time. Trends in SOC concentrations, total nitrogen concentrations, and stable carbon isotope ratio were identified for different points in time.

Results and discussion

Accumulation of organic carbon was found in the paddy soil layers of P-01 at 100–174 cm depth. This site was taken under submerged rice cultivation in about 6280 years BP. The average SOC concentration in the prehistoric paddy topsoil in 100–130 cm depth was 1.27 %, which is seven times higher than that in the adjacent uncultivated land at 103–130 cm depth of P-03. This implies that the paddy soil has experienced substantial CO2 sequestration under submerged management during that time. By about 3320 years BP, organic carbon contents were halved, potentially due to marine inundation by sea level rise. Up to the year 2003, the SOC contents in all horizons in the present time paddy soil have increased, especially in the surface layer, indicative of continuous rice cultivation. However, due to rapid urbanization and industrialization, the cultivation of paddies in eastern China has gradually been discontinued leading to the loss of SOC stocks of approximately 10 % in a 6-year interval (from 2003 to 2009). A significant relationship between SOC and rice phytolith contents was found in the paddy soil horizons of P-01 (r?=?0.71, p?<?0.01) and P-03 (r?=?0.72, p?<?0.01), suggesting that phytolith-occluded organic carbon could be used as a biomarker to ascertain the development of SOC in the evolution of rice paddies over the past 6000 years.

Conclusions

Submerged rice cultivation led to a noticeable accumulation of SOC in paddies. Phytolith-occluded organic carbon could be used as a biomarker to monitor changes of OC contents in paddy soils.
  相似文献   

15.

Purpose

The objectives of the study were (1) to quantify the long-term effects of nitrogen-phosphorus fertilizer (NP) and a combination of nitrogen-phosphorus with organic manure (NPM) on total soil organic carbon (SOC) and total soil inorganic carbon (SIC), (2) to identify the changes of SOC and SIC in soil particle-size fractions, and (3) to investigate the relationship between SOC and SIC.

Materials and methods

Two long-term field experiments (sites A and B) were performed in 1984 (site A) and 1979 (site B) in the North China Plain. The soil samples were collected in 2006 and separated for clay, silt and sand size particle fractions and then determined for SOC and SIC.

Results and discussion

The long-term fertilization significantly increased SOC in 0–20 cm soil layer by 9–68% but significantly decreased or had no effect on SIC. In total, soil carbon storage was little affected by NP, but significantly increased by NPM application (p < 0.05). Fertilization affected both SOC and SIC in sand- and silt-sized particles but not in clay-size fraction. Both NP and NPM increased SOC in sand- and silt-sized particles by 8.7–123.9% in the 0–20 cm layer but decreased SIC up to 80.4% in the 40–60 cm layer. The SOC concentration in the particle-size fractions was negatively correlated with SIC concentration, which may imply an antagonistic interaction between organic and inorganic carbon levels.

Conclusions

These results illustrate the importance of soil inorganic carbon pool in evaluating soil total carbon pool in semi-arid farmlands. Previous assessments of the effects of fertilizers on the soil carbon pool, using only SOC determinations, require re-evaluation with the inclusion of SIC determinations.
  相似文献   

16.

Purpose

So far, the soil organic carbon (SOC) literature is dominated by studies in the humid environments with huge stocks of vulnerable carbon. Limited attention has been given to dryland ecosystems despite being often considered to be highly sensitive to environmental change. Thus, there is insufficient research about the spatial patterns of SOC stocks and the interaction between soil depth, ecohydrology, geomorphic processes, and SOC stocks. This study aimed at identifying the relationship between surface characteristics, vegetation coverage, SOC, and SOC stocks in the arid northern Negev in Israel.

Materials and methods

The study site Sede Boker is ideally suited because of well-researched but variable ecohydrology. For this purpose, we sampled five slope sections with different ecohydrologic characteristics (e.g., soil and vegetation) and calculate SOC stocks. To identify controlling factors of SOC stocks on rocky desert slopes, we compared soil properties, vegetation coverage, SOC concentration, and stocks between the five ecohydrologic units.

Results and discussion

The results show that in Sede Boker, rocky desert slopes represent a significant SOC pool with a mean SOC stock of 0.58?kg?C?m?2 averaged over the entire study area. The spatial variability of the soil coverage represents a strong control on SOC stocks, which varies between zero in uncovered areas and 1.54?kg?C?m?2 on average in the soil-covered areas. Aspect-driven changes of solar radiation and thus of water availability are the dominant control of vegetation coverage and SOC stock in the study area.

Conclusions

The data indicate that dryland soils contain a significant amount of SOC. The SOC varies between the ecohydrologic units, which reflect (1) aspect-driven differences, (2) microscale topography, (3) soil formation, and (4) vegetation coverage, which are of greatest importance for estimating SOC stocks in drylands.  相似文献   

17.

Purpose

This study aims to explore the dynamics of the factors influencing soil organic carbon (SOC) sequestration and stability at erosion and deposition sites.

Materials and methods

Thermal properties and dissolved aromatic carbon concentration along with Al, Fe concentration and soil specific surface area (SSA) were studied to 1 meter depth at two contrasting sites.

Results and discussion

Fe, Al concentrations and SSA size increased with depth and were negatively correlated with SOC concentration at the erosion site (P?<?0.05), while at the deposition site, these values decreased with increasing depth and were positively correlated with SOC concentration (P?<?0.05). TG mass loss showed that SOC components in the two contrasting sites were similar, but the soils in deposition site contained a larger proportion of labile organic carbon and smaller quantities of stable organic carbon compared to the erosion site. SOC stability increased with soil depth at the erosion site. However, it was slightly variable in the depositional zone. Changes in SUVA254 spectroscopy values indicated that aromatic moieties of DOC at the erosion site were more concentrated in the superficial soil layer (0–20 cm), but at the deposition site they changed little with depth and the SUVA254 values less than those at the erosion site.

Conclusions

Though large amounts of SOC accumulated in the deposition site, SOC may be vulnerable to severe losses if environmental conditions become more favorable for mineralization in the future due to accretion of more labile carbon. Deep soil layers at the erosion site (>30 cm deep) had a large carbon sink potential.
  相似文献   

18.

Purpose

Plantation is an important strategy for forest restoration and carbon (C) storage. Plantations with different tree species could significantly affect soil properties, including soil pH, soil nutrient content, soil microbial activities, and soil dissolved organic C. Changes in these abiotic and biotic factors could regulate mineralization of soil organic C (SOC). However, it remains unclear to what extent these factors affect the mineralization of SOC under different tree species plantations.

Materials and methods

Soil was collected at 0–10 cm depth from plantations with Pinus elliottii Engelm. var. elliottii, Araucaria cunninghamii, and Agathis australis, respectively, in southeast Queensland, Australia. Soil samples were assayed for soil organic C; organic N and mineralization of SOC; soil particle size; total C, N, and P; and pH. In addition, a 42-day laboratory incubation with substrate additions was done to examine the influence of different substrates and their combinations on bio-available organic C.

Results and discussion

Our results suggested that SOC mineralization was mainly determined by soil pH and soil C content among plantations with different tree species, whereas SOC mineralization was not correlated with soil N and P contents. These results were further confirmed by the substrate addition experiments. SOC mineralization of soils from slash pine showed greater response to C (glucose) addition than soils from other two plantations, which suggested significant differences in SOC mineralization among plantations with different tree species. However, neither N addition nor P addition had significant effects on SOC mineralization.

Conclusions

Our results indicated that plantations with different tree species substantially affect the mineralization and stability of soil organic C pool mainly by soil pH and soil C content.
  相似文献   

19.

Purpose

The objective of this study was to determine the changes in the main soil chemical properties including pH, electrical conductivity (EC), available phosphorus (P), soil organic carbon (SOC) and total nitrogen (TN) stocks after long-term (31 years) additions of two types of organic matters—rice straw and rice straw compost, combined with NPK fertilizers in single rice paddy in a cold temperate region of Japan.

Materials and methods

A long-term experiment on combined inorganic fertilizers and organic matters in paddy rice cultivation began in May 1982 in Yamagata, northeastern Japan. After the 31st harvest, soil samples were collected from five treatments [(1) PK, (2) NPK, (3) NPK + 6 Mg ha?1 rice straw (RS), (4) NPK + 10 Mg ha?1 rice straw compost (CM1), and (5) NPK + 30 Mg ha?1 rice straw compost (CM3)] at five soil depths (0–5, 5–10, 10–15, 15–20, and 20–25 cm). Soil chemical properties of pH, EC, available P, SOC, and TN were analyzed.

Results and discussion

The pH decreased significantly only at the higher compost rate of 30 Mg ha?1, while EC increased in all the organic matter treatments. Available P significantly increased in the CM1 and CM3 treatments by 55.1 and 86.4 %. The amounts of SOC stock increased by 67.2, 21.4, and 8.6 %, and soil TN stock by 64.1, 20.2, and 8.5 % in CM3, RS, and CM1, respectively, compared to NPK treatment.

Conclusions

Significant changes in soil properties were observed after 31 years of organic matter applications with reference to PK- and NPK-fertilized rice paddy soils. A significant decrease in pH was observed with the application of a high rate (30 Mg ha?1) of rice straw compost but not with the conventional rate of 10 Mg ha?1. However, EC increased significantly relative to that of the PK- and NPK-fertilized plots in all the organic matter treatments. Available P significantly increased in the CM1 and CM3 treatments by 55.1 and 86.4 %. The amounts of SOC stock expressed as a percentage of total C applied to the soil were higher from 10 Mg ha?1 compost (28.7 %) than that from 6 Mg ha?1 rice straw (17.4 %), indicating a more effective soil organic C accumulation from rice straw compost than that from original rice straw.
  相似文献   

20.

Purpose

The purpose of this study was to better understand how both the content and flux of soil carbon respond to forest succession and anthropogenic management practices in forests in subtropical China.

Materials and methods

We assembled from the literature information on soil organic carbon (SOC) and soil respiration (Rs) covering the forest successional chronosequence from pioneer masson pine (Pinus massoniana) forest (MPF) to medium broadleaf and needleleaf mixed forest (BNMF) and the climax evergreen broadleaf forest (EBF), along with the two major forest plantation types found in subtropical China, Chinese fir (Cunninghamia lanceolata) forest (CFF) and Moso bamboo (Phyllostachys pubescens) forest (MBF).

Results and discussion

Both SOC and Rs increased along the forest successional gradient with the climax EBF having both the highest SOC content of 33.1?±?4.9 g C kg?1(mean?±?standard error) and the highest Rs rate of 46.8?±?3.0 t CO2?ha?1 year?1. It can be inferred that when EBF is converted to any of the other forest types, especially to MPF or CFF, both SOC content and Rs are likely to decline. Stand age did not significantly impact the SOC content or Rs rate in either types of plantation.

Conclusions

Forest succession generally increases SOC content and Rs, and the conversion of natural forests to plantations decreases SOC content and Rs in subtropical China.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号