首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
猪流感病毒H1N1、H1N2和H3N2亚型多重RT-PCR诊断方法的建立   总被引:2,自引:3,他引:2  
对我国分离到的猪流感病毒和GenBank数据库中已有的猪流感病毒H1N1、H1N2和H3N2亚型毒株的HA、NA基因核苷酸序列进行分析,分别选出各个病毒亚型HA和NA基因中高度保守且特异的核苷酸区域,设计扩增猪流感病毒H1和H3、N1和N2亚型的2套多重PCR特异性引物,建立了猪流感H1N1、H1N2和H3N2亚型病毒多重RT-PCR诊断方法。采用该方法对H1N1、H1N2、H3N2亚型猪流感病毒标准参考株进行RT-PCR检测,结果均呈阳性,对扩增得到的片段进行序列测定和BLAST比较,表明为目的基因片段。其它几种常见猪病病毒和其它亚型猪流感病毒的RT-PCR扩增结果都呈阴性。对107EID50/0.1mL病毒进行稀释,提取RNA进行敏感性试验,RT-PCR最少可检测到102EID50的病毒量核酸。对40份阳性临床样品的检测结果是H1N1、H1N2和H3N2亚型分别为16份、1份和20份,其它3份样品同时含有H1N1和H3N2亚型猪流感病毒,和鸡胚分离病毒结果100%一致。试验证明建立的猪流感病毒H1N1、H1N2和H3N2亚型多重RT-PCR诊断方法是一种特异敏感的诊断方法,可用于临床样品的早期快速诊断和分型。  相似文献   

2.
From May to September 2013, monthly samples were collected from swine in a Vietnamese slaughterhouse for influenza virus isolation and serological testing. A(H1N1)pdm09 viruses and a novel H3N2 originating from reassortment between A(H1N1)pdm09 and novel viruses of the North American triple reassortant lineage were isolated. Serological results showed low seroprevalence for the novel H3N2 virus and higher seroprevalence for A(H1N1)pdm09 viruses. In addition, serology suggested that other swine influenza viruses are also circulating in Vietnamese swine.  相似文献   

3.
Swine influenza viruses H1N1 and H3N2 have been reported in the swine population worldwide. From June 2008 to June 2009, we carried out serological and virological surveillance of swine influenza in the Hubei province in central China. The serological results indicated that antibodies to H1N1 swine influenza virus in the swine population were high with a 42.5% (204/480) positive rate, whereas antibodies to H3N2 swine influenza virus were low with a 7.9% (38/480) positive rate. Virological surveillance showed that only one sample from weanling pigs was positive by RT-PCR. Phylogenetic analysis of the hemagglutinin and neuraminidase genes revealed that the A/Sw/HB/S1/2009 isolate was closely related to avian-like H1N1 viruses and seemed to be derived from the European swine H1N1 viruses. In conclusion, H1N1 influenza viruses were more dominant in the pig population than H3N2 influenza viruses in central China, and infection with avian-like H1N1 viruses persistently emerged in the swine population in the area.  相似文献   

4.
Influenza A virus causes respiratory disease in both humans and animals. In this study, a survey of influenza A antibodies in domestic dogs and cats was conducted in 47 animal shelters in 19 provinces of Thailand from September 2011 to September 2014. One thousand and eleven serum samples were collected from 932 dogs and 79 cats. Serum samples were tested for influenza A antibodies using a multi‐species competitive NP‐ELISA and haemagglutination inhibition (HI) assay. The NP‐ELISA results showed that 0.97% (9/932) of dogs were positive, but all cat samples were negative. The HI test against pandemic H1N1, human H3N2 and canine H3N2 showed that 0.64% (6/932) and 1.20% (1/79) of dogs and cats were positive, respectively. It is noted that all six serum samples (5 dogs and 1 cat) had antibodies against pandemic H1N1. In summary, a serological survey revealed the evidence of pandemic H1N1 influenza exposure in both dogs and cats in the shelters in Thailand.  相似文献   

5.
Avian-lineage H3N2 canine influenza virus (CIV)-associated respiratory disease, which can be fatal, emerged in South Korean dogs in 2007. We show here that dogs experimentally infected with CIV only developed respiratory tract diseases, as no extrapulmonary lesions and virus antigens were detected. This differs from the multiorgan diseases that avian influenza H5N1 induces in small experimental animals. However, the CIV-infected dogs developed a distinctively severe, long-persistent bronchointerstitial pneumonia, which differs from the acute but short-term bronchopneumonia that human (H1N1 and H3N2) influenza cause in rodents and ferrets. Histopathology and in situ TUNEL assays revealed that the neutrophils infiltrating the lesions were undergoing apoptosis, which probably reflects the attempts by the body to maintain appropriate numbers of neutrophils for defense against secondary bacterial infections. Our observations suggest that neutrophils along with the related chemoattractant cytokines (TNF-α, IL-1 and IL-8, etc.) may play a key role in the pathogenesis of H3N2 CIV in dogs.  相似文献   

6.
H3N2犬流感病毒(canine influenza virus, CIV)已在中国多地的犬群中流行,是禽流感跨宿主感染并形成新分支的近期案例。研究表明,PA-X基因与甲型流感病毒适应新宿主的能力相关,且其长度能够影响甲型流感病毒的复制及致病能力。为了解PA-X基因的长度变化对H3N2 CIV复制能力及致病力的影响,本研究利用H3N2 CIV的8质粒操作系统,拯救了三株重组H3N2 CIV毒株:PA-X基因表达大小为232个氨基酸多肽的亲本病毒CIV_PA-X_232;对PA编码区第191、192位氨基酸的密码子进行改造,PA-X基因不表达蛋白的重组病毒CIV_PA-X_Knock;对PA+1编码区第232位氨基酸进行突变,PA-X基因表达大小为252个氨基酸多肽的重组病毒CIV_PA-X_252。通过比较3株重组病毒的聚合酶活性,在MDCK细胞中的复制效率及对小鼠致病性的差异,来评价表达不同长度的PA-X基因对H3N2 CIV的影响。结果显示,CIV_PA-X_252和CIV_PA-X_Knock的聚合酶活性显著(P<0.05)高于CIV_PA-X_232,且CIV_PA-X_...  相似文献   

7.
Influenza is a viral disease that affects human and several animal species. In Brazil, H1N1, H3N2 and 2009 pandemic H1N1 A(H1N1)pdm09 influenza A viruses (IAV) circulate in domestic swine herds. Wild boars are also susceptible to IAV infection but in Brazil until this moment there are no reports of IAV infection in wild boars or in captive wild boars populations. Herein the occurrence of IAV in captive wild boars with the presence of lung consolidation lesions during slaughter was investigated. Lung samples were screened by RT-PCR for IAV detection. IAV positive samples were further analyzed by quantitative real-time PCR (qRRT-PCR), virus isolation, genomic sequencing, histopathology and immunohistochemistry (IHC). Eleven out of 60 lungs (18.3%) were positive for IAV by RT-PCR and seven out of the eleven were also positive for A(H1N1)pdm09 by qRRT-PCR. Chronic diffuse bronchopneumonia was observed in all samples and IHC analysis was negative for influenza A antigen. Full genes segments of H1N2 IAV were sequenced using Illumina's genome analyzer platform (MiSeq). The genomic analysis revealed that the HA and NA genes clustered with IAVs of the human lineage and the six internal genes were derived from the H1N1pdm09 IAV. This is the first report of a reassortant human-like H1N2 influenza virus infection in captive wild boars in Brazil and indicates the need to monitor IAV evolution in Suidae populations.  相似文献   

8.
In 2009, an influenza virus (IV), A/canine/Shandong/JT01/2009 (CA/SD/JT01/09), was isolated from the dog exhibiting respiratory signs in China, and was a novel H5N2. Intraspecies transmission of the virus in dog population had thus far remained unclear. To determine whether the novel H5N2 was transmitted among dogs, we conducted contact exposure and inoculation experiments. Susceptible dogs were housed in the room which the novel H5N2 infected dogs were housed in. As a result, the direct contact resulted in intraspecies transmission. Most of the infected dogs and the sentinel animals developed mild respiratory syndrome, including transient increased body temperatures, conjunctivitis, sneezing, nasal discharge and mild coughing, virus shedding and seroconversion, but no fatal disease. These data suggest that dogs may play a role in transmission and spread of influenza virus.  相似文献   

9.
H3N8 canine influenza virus (H3N8 CIV) was first reported as a novel canine respiratory pathogen in racing greyhounds and shelter dogs in the U.S.A. in 2004. Phylogenetic analyses determined that this host-adapted pathogen originated from interspecies transmission of an equine influenza virus (EIV), but it is unknown when the transmission occurred prior to discovery in 2004. The objective of this study was to determine if racing greyhound and shelter dog sera collected from 1984 to 2004 had serological evidence of exposure to H3N8 CIV or EIV. Archived sera from 702 racing greyhounds and 1568 shelter dogs were tested for H3 antibodies to the original 2004 CIV isolate, as well as EIV isolates from 1991 to 1999. None of the racing greyhounds from 1984 and 1985 had detectable H3 antibodies. One of the shelter dogs, which entered a north Florida shelter in 2004, was seropositive. For racing greyhounds sampled from 1999 to 2004, 133/520 (26%) dogs had antibodies to both CIV and EIV H3 proteins. The annual seroprevalence was 27% in 1999, 28% in 2000, 10% in 2001, 1% in 2002, 41% in 2003, and 28% in 2004. The odds of H3 seropositivity were greater among dogs that raced > or =6 months, raced on > or =2 tracks, and raced in 1998, 2002, and 2003. Many of the seropositive dogs raced at tracks that were involved in 'kennel cough' epidemics in 1998-1999 and 2002-2003. Based on serological evidence, a H3N8 canine influenza-like virus was circulating in racing greyhounds in the U.S.A. as early as 1999.  相似文献   

10.
Swine influenza monitoring programs have been in place in Italy since the 1990 s and from 2009 testing for the pandemic H1N1/2009 virus (H1N1pdm) was also performed on all the swine samples positive for type A influenza. This paper reports the isolation and genomic characterization of a novel H1N2 swine influenza reassortant strain from pigs in Italy that was derived from the H1N1pdm virus. In May 2010, mild respiratory symptoms were observed in around 10% of the pigs raised on a fattening farm in Italy. Lung homogenate taken from one pig showing respiratory distress was tested for influenza type A and H1N1pdm by two real time RT-PCR assays. Virus isolation was achieved by inoculation of lung homogenate into specific pathogen free chicken embryonated eggs (SPF CEE) and applied onto Caco-2 cells and then the complete genome sequencing and phylogenetic analysis was performed from the CEE isolate. The lung homogenate proved to be positive for both influenza type A (gene M) and H1N1pdm real time RT-PCRs. Virus isolation (A/Sw/It/116114/2010) was obtained from both SPF CEE and Caco-2 cells. Phylogenetic analysis showed that all of the genes of A/Sw/It/116114/2010, with the exception of neuraminidase (NA), belonged to the H1N1pdm cluster. The NA was closely related to two H1N2 double reassortant swine influenza viruses (SIVs), previously isolated in Sweden and Italy. NA sequences for these three strains were clustering with H3N2 SIVs. The emergence of a novel reassortant H1N2 strain derived from H1N1pdm in swine in Italy raises further concerns about whether these viruses will become established in pigs. The new reassortant not only represents a pandemic (zoonotic) threat but also has unknown livestock implications for the European swine industry.  相似文献   

11.
H3N2亚型猪流感病毒HA基因序列测定及抗原性分析   总被引:2,自引:3,他引:2  
采用RT-PCR技术对4株H3N2亚型猪流感病毒的HA基因进行了扩增,将获得的PCR产物分别与pMD18-T克隆载体连接,进行序列测定。测序结果显示,4个毒株均含有完整的开放阅读框,并且均未发现核苷酸插入或缺失现象;分离毒株间核苷酸同源性为99.4%~99.7%,氨基酸同源性为98.2%~99.3%。同源性分析表明,4个毒株与2003年的猪流感病毒广东分离株有很高同源性(均在99%以上),说明近段时间我国H3N2亚型的猪流感病毒变异不大,重组的频率不是很高,同时又与人流感病毒香港分离株有较高的同源性(均为99.4%)。交叉血凝抑制试验显示,S3株与其他3毒株抗原性差异明显。鉴于猪在流感病毒传播与复制间的特殊地位,应密切监测猪流感。  相似文献   

12.
Dogs are companion animals that live in close proximity with humans. Canine H3N2 influenza virus has been isolated from pet dogs that showed severe respiratory signs and other clinical symptoms such as fever, reduced body weight, and interstitial pneumonia. The canine H3N2 influenza virus can be highly transmissible among dogs via aerosols. When we analyzed global gene expression in the lungs of infected dogs, the genes associated with the immune response and cell death were greatly elevated. Taken together, our results suggest that canine H3N2 influenza virus can be easily transmitted among dogs, and that severe pneumonia in the infected dogs may be partially due to the elevated expression of genes related to inflammation and apoptosis.  相似文献   

13.
Lin Y  Zhao Y  Zeng X  Lu C  Liu Y 《Veterinary microbiology》2012,158(3-4):247-258
The newly emerging canine influenza virus (CIV) causes considerable concerns for both veterinary and public health. During 2009-2010, six strains of H3N2 influenza virus were isolated from dogs in Jiangsu Province, China. Sequence and phylogenetic analysis of eight gene segments revealed that the six viruses were most similar to a recent canine-derived subtype H3N2 influenza virus isolated in cats from South Korea, which originated from avian strain. By comparing the deduced amino acid sequences of the hemagglutinin 1 (HA1) and neuraminidase (NA) genes of the six Jiangsu isolates against the most similar avian strains, we found that all isolates had several common mutations at the receptor-binding sites, potential glycosylation sites and cleavage site in HA1, and antigenic sites in both the HA1 and NA segments. Significantly, a unique two amino acid insertion in the NA stalk was found. Experimental infection of BALB/c mice revealed that viral RNA could be detected in the major rodent organs, such as brain, heart, spleen, kidney, liver and intestine, as well as the lung. All the sampled organs from infected mice showed significant lesions and viral antigen staining. This study highlights the potential of domesticated animals to become a reservoir for influenza virus and the need for surveillance programs to detect cross-species transmission.  相似文献   

14.
This paper reports on a serological and virological survey for swine influenza virus (SIV) in densely populated pig areas in Spain. The survey was undertaken to examine whether the H1N2 SIV subtype circulates in pigs in these areas, as in other European regions. Six hundred sow sera from 100 unvaccinated breeding herds across Northern and Eastern Spain were examined using haemagglutination inhibition (HI) tests against H1N1, H3N2 and H1N2 SIV subtypes. Additionally, 225 lung samples from pigs with respiratory problems were examined for the presence of SIV by virus isolation in embryonated chicken eggs and by a commercial membrane immunoassay. The virus isolates were further identified by HI and RT-PCR followed by partial cDNA sequencing. The HI test on sera revealed the presence of antibodies against at least one of the SIV subtypes in 83% of the herds and in 76.3% of the animals studied. Of the 600 sow sera tested, 109 (18.2%), 60 (10%) and 41 (6.8%) had SIV antibodies to subtype H1N2 alone, H3N2 alone and H1N1 alone, respectively. Twelve H3N2 viruses, 9 H1N1 viruses and 1 H1N2 virus were isolated from the lungs of pigs with respiratory problems. The analysis of a 436 nucleotide sequence of the neuraminidase gene from the H1N2 strain isolated further confirmed its identity. Demonstrably, swine influenza is still endemic in the studied swine population and a new subtype, the H1N2, may be becoming established and involved in clinical outbreaks of the disease in Spain.  相似文献   

15.
A serological survey for the detection of antibodies to influenza A(H1N1)pdm09 was carried out in a population of dogs and cats in Germany. A total of 1150 sera collected in 2010 and 2011 were screened using an ELISA targeting anti‐nucleoprotein NP antibodies. Those initially screened positive samples were subsequently tested for antibodies to N1 neuraminidase followed by a virus neutralization test using A/Bayern/74/2009 strain. A prevalence of A(H1N1)pdm09‐specific antibodies of 0.13% and 1.93% was estimated among dogs and cats, respectively. Evidence of exposure to other influenza A virus subtypes was also observed.  相似文献   

16.
European H1N2 swine influenza viruses (EU H1N2SIVs) arose from multiple reassortment events among human H1N1, human H3N2, and avian influenza viruses. We investigated the evolutionary dynamics of 53 Italian H1N2 strains by comparing them with EU H1N2 SIVs. Hemagglutinin (HA) phylogeny revealed Italian strains fell into four groups: Group A and B (41 strains) had a human H1 similar to EU H1N2SIVs, which probably originated in 1986. However Group B (38 strains) formed a subgroup that had a two-amino acid deletion at positions 146/147 in HA. Group C (11 strains) contained an avian H1 that probably originated in 1996, and Group D (1 strain) had an H1 characteristic of the 2009 pandemic strain. Neuraminidase (NA) phylogeny suggested a series of genomic reassortments had occurred. Group A had an N2 that originated from human H3N2 in the late 1970s. Group B had different human N2 that most likely arose from a reassortment with the more recent human H3N2 virus, which probably occurred in 2000. Group C had an avian-like H1 combined with an N2 gene from one of EU H1N2SIVs, EU H3N2SIVs or Human H3N2. Group D was part of the EU H3N2SIVs clade. Although selection pressure for HA and NA was low, several positively selected sites were identified in both proteins, some of which were antigenic, suggesting selection influenced the evolution of SIV. The data highlight different evolutionary trends between European viruses and currently circulating Italian B strains and show the establishment of reassortant strains involving human viruses in Italian pigs.  相似文献   

17.
As pigs are susceptible to infection with both avian and human influenza A viruses, they have been proposed to be an intermediate host for the adaptation of avian influenza viruses to humans. In April 2006, a disease caused by highly pathogenic porcine reproductive and respiratory syndrome virus (PRRSV) occurred in several pig farms and subsequently overwhelmed almost half of China with more than 2,000,000 cases of pig infection. Here we report a case in which four swine H9N2 influenza viruses were isolated from pigs infected by highly pathogenic PRRSVs in Guangxi province in China. All the eight gene segments of the four swine H9N2 viruses are highly homologous to A/Pigeon/Nanchang/2-0461/00 (H9N2) or A/Wild Duck/Nanchang/2-0480/00 (H9N2). Phylogenetic analyses of eight genes show that the swine H9N2 influenza viruses are of avian origin and may be the descendants of A/Duck/Hong Kong/Y280/97-like viruses. Molecular analysis of the HA gene indicates that our H9N2 isolates might have high-affinity binding to the alpha2,6-NeuAcGal receptor found in human cells. In conclusion, our finding provides further evidence about the interspecies transmission of avian influenza viruses to pigs and emphasizes the importance of reinforcing swine influenza virus (SIV) surveillance, especially after the emergence of highly pathogenic PRRSVs in pigs in China.  相似文献   

18.
To investigate whether the 2009 pandemic H1N1 influenza A virus was still being transmitted in swine, a total of 1029 nasal swab samples from healthy swine were collected from January to May 2010 in Jiangsu province of China. Eight H1N1 influenza viruses were isolated and identified, and their full length genomes were sequenced. We found that all eight of the H1N1 viruses shared higher than 98.0% sequence identity with the 2009 pandemic virus A/Jiangsu/1/2009 (JS1). In addition, some of these viruses had D225G (3/8) mutations in the receptor binding sites of the hemagglutinin (HA) protein, indicating enhancement of their binding affinity to the sialic α2, 3Gal receptor. In conclusion, the 2009 pandemic H1N1 influenza A virus has retro-infected swine from humans in mainland China, and significant viral evolution is still ongoing in this species.  相似文献   

19.
Three subtypes (H1N1, H1N2, and H3N2) are currently diffused worldwide in pigs. The H1N2 subtype was detected for the first time in Italian pigs in 1998. To investigate the genetic characteristics and the molecular evolution of this subtype in Italy, we conducted a phylogenetic analysis of whole genome sequences of 26 strains isolated from 1998 to 2010. Phylogenetic analysis of HA and NA genes showed differences between the older (1998-2003) and the more recent strains (2003-2010). The older isolates were closely related to the established European H1N2 lineage, whereas the more recent isolates possessed a different NA deriving from recent human H3N2 viruses. Two other reassortant H1N2 strains have been detected: A/sw/It/22530/02 has the HA gene that is closely related to H1N1 viruses; A/sw/It/58769/10 is an uncommon strain with an HA that is closely related to H1N1 and an NA similar to H3N2 SIVs. Amino acid analysis revealed interesting features: a deletion of two amino acids (146-147) in the HA gene of the recent isolates and two strains isolated in 1998; the presence of the uncommon aa change (N66S), in the PB1-F2 protein in strains isolated from 2009 to 2010, which is said to have contributed to the increased virulence. These results demonstrate the importance of pigs as mixing vessels for animal and human influenza and show the presence and establishment of reassortant strains involving human viruses in pigs in Italy. These findings also highlighted different genomic characteristics of the NA gene the recent Italian strains compared to circulating European viruses.  相似文献   

20.
Quail has been proposed to be an intermediate host of influenza A viruses. However, information on the susceptibility and pathogenicity of pandemic H1N1 2009 (pH1N1) and swine influenza viruses in quails is limited. In this study, the pathogenicity, virus shedding, and transmission characteristics of pH1N1, swine H1N1 (swH1N1), and avian H3N2 (dkH3N2) influenza viruses in quails was examined. Three groups of 15 quails were inoculated with each virus and evaluated for clinical signs, virus shedding and transmission, pathological changes, and serological responses. None of the 75 inoculated (n = 45), contact exposed (n = 15), or negative control (n = 15) quails developed any clinical signs. In contrast to the low virus shedding titers observed from the swH1N1-inoculated quails, birds inoculated with dkH3N2 and pH1N1 shed relatively high titers of virus predominantly from the respiratory tract until 5 and 7 DPI, respectively, that were rarely transmitted to the contact quails. Gross and histopathological lesions were observed in the respiratory and intestinal tracts of quail inoculated with either pH1N1 or dkH3N2, indicating that these viruses were more pathogenic than swH1N1. Sero-conversions were detected 7 DPI in two out of five pH1N1-inoculated quails, three out of five quails inoculated with swH1N1, and four out of five swH1N1-infected contact birds. Taken together, this study demonstrated that quails were more susceptible to infection with pH1N1 and dkH3N2 than swH1N1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号