首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
光强对玉米幼苗不同叶位叶片叶绿素荧光参数的影响   总被引:1,自引:1,他引:0  
以不同光强下的玉米幼苗刚好完全展开的1~5叶位叶片为试验材料,通过检测叶绿素荧光参数特性,研究玉米不同叶位叶片的光化学活性。结果表明:不同光强下玉米幼苗不同叶位叶片的荧光参数变化趋势不同:各个叶位叶片Fo在光强为200μmol/(m2.s)时均较高,在光强为600μmol/(m2.s)时均较低;200μmol/(m2.s)光强下第1叶位叶片Fv/Fm最高,600μmol/(m2.s)和1 000μmol/(m2.s)时第4和5叶Fv/Fm均高于前3叶;2、3叶在1 000μmol/(m2.s)时吸收和捕获的能量用于热耗散的比例增加,4、5叶则在1 300μmol/(m2.s)时热耗散比例增加。即600μmol/(m2.s)和1 000μmol/(m2.s)光强下玉米幼苗4、5叶光化学活性高于前3叶。  相似文献   

2.
田间和温室环境中玉米幼苗叶片显微结构变化规律研究   总被引:1,自引:0,他引:1  
以玉米为材料,通过观察田间和温室生长的玉米幼苗叶片不同部位的显微结构,探讨不同环境和不同发育阶段玉米叶片花环结构变化规律。结果表明:玉米幼苗不同叶位叶片的不同部位都拥有"花环结构"。但"花环结构",从第2叶位到第3叶位、从叶基到叶尖逐渐完善。而温室玉米幼苗叶片各部位花环结构的发育程度均高于田间玉米幼苗的各相应部位。  相似文献   

3.
[目的]比较环草石斛和铁皮石斛试管苗叶片的气孔特征和光合特性。[方法]对环草石斛和铁皮石斛不同生长发育时期试管苗叶片的气孔进行扫描电镜观察,并用调制式荧光仪测定荧光诱导光响应曲线。[结果]在各个生长发育时期,环草石斛试管苗叶片的气孔密度均明显高于铁皮石斛,而气孔开放率则较低。随着生长时间的延长,环草石斛和铁皮石斛试管苗叶片气孔的大小变化不大,而气孔的数量则逐渐增加,气孔密度分别增加了83%和17.6%,两者均以播种生长240d时叶片的气孔开放率最高。在设定的3种光照强度下,环草石斛试管苗叶片气孔开放程度随光强的增加而增大,光强为54μmol/(m2.s)时气孔的开放度最大。在相同的培养条件下,环草石斛试管苗的最大电子传递速率14μmol/(m2.s)和光饱和点318μmol/(m2.s)均低于铁皮石斛20μmol/(m2.s),483μmol/(m2.s),其潜在的光合作用能力较差。[结论]不同种类石斛试管苗的气孔特性不同,因而光合速率也不同。通常组培室内的光强为27μmol/(m2.s),这样的条件下,两种石斛试管苗叶片气孔的开度都未达到最佳状态。若能遵循试管苗对光照强度的需求规律,选择合适的培养条件,增大气孔开度,提高光合速率,将更有利于试管苗的生长发育。  相似文献   

4.
为太湖地区凤眼莲高产栽培技术提供技术支持,以江苏地区人工围养生长的凤眼莲群落为研究对象,在8月份其旺盛生长季节,采用LI-6400光合作用测定系统,以开放式气路测定了其不同叶位的净光合速率,以及功能叶片在不同光照度和温度时的光合曲线。结果发现,倒3~倒6叶都是成熟的光合功能叶片,其中倒4叶的最大光合速率(Pmax)、光补偿点(LCP)和表观量子效率(AQE)分别为(34.50±0.72)μmol/(m2.s)、(20.25±3.6)μmol/(m2.s)和0.053 2±0.001 4,均显著高于水稻和玉米;凤眼莲光饱和点为(2 458±69)μmol/(m2.s),也明显高于水稻,与玉米接近。认为江苏地区光合有效辐射和大气温度是限制凤眼莲生物量的重要环境因子。  相似文献   

5.
【目的】研究LED蓝光不同光强对滇重楼生长、叶片光合荧光特性和解剖结构的影响,为阐明滇重楼LED光质生物学特性提供理论依据。【方法】采用波峰为460 nm的LED蓝光光源,设置200、150、100和50μmol/(m~2·s)4个光强梯度,研究不同光强下滇重楼生长、光合荧光特性和解剖结构特征。【结果】随着蓝光光照强度的增加,滇重楼植株鲜重、叶片净光合速率、气孔导度、蒸腾速率、PSⅡ、q_P、栅栏组织厚度呈先增后降的趋势,F_v/F_m、上表皮厚度呈下降趋势。150μmol/(m~2·s)光强下,滇重楼植株鲜重、叶片叶绿素含量、净光合速率、F_v'/F_m'、PSⅡ、q_P值均为最大;200μmol/(m~2·s)光强对滇重楼叶片光合荧光指标产生一定的抑制作用,植株鲜重下降。【结论】综合考虑不同LED蓝光光强下滇重楼生长、叶片光合荧光特性、解剖结构、光合素含量的变化规律,建议在滇重楼栽培中,将蓝光光强控制在150μmol/(m~2·s)为宜。  相似文献   

6.
在晴天条件下,研究了菊苣、类玉米、木豆3种牧草在岩溶区和红壤区的净光合速率、蒸腾速率、水分利用效率,结果表明:菊苣在岩溶区和红壤区的日均净光合速率分别为12.40μmol/(m2.s)和11.60μmol/(m2.s),类玉米为27.98μmol/(m2.s)和18.99μmol/(m2.s),木豆为17.01μmol/(m2.s)和13.98μmol/(m2.s);岩溶区和红壤区,类玉米的日均蒸腾速率都小于菊苣和木豆,类玉米属于高光合、低蒸腾型,相比较而言,菊苣和木豆则属于低光合、高蒸腾型,就水分利用效率来说,岩溶区和红壤区的类玉米都显著高于菊苣、木豆;岩溶区3种牧草的日均光合速率为19.13μmol/(m2.s),红壤区为14.86μmol/(m2.s);岩溶区的日均蒸腾速率为7.45 mol/(m2.s),红壤区为5.65 mol/(m2.s);岩溶区日均水分利用效率低于红壤区。  相似文献   

7.
为了指导百合反季节栽培,以3个百合品种(多安娜、布朗尼诺和精粹)为研究对象,利用Li-6400便携式光合测定系统测定了寡日多雨地区大棚条件下11月开花期植株不同叶位的叶绿素含量和比值、气孔交换参数、以及中位叶片的光合有效辐射-Pn响应曲线和胞间CO2浓度-Pn响应曲线。结果表明:3个品种不同叶位的Chla+b含量变化趋势不一致,多安娜以下位叶片最高,布朗尼诺以中、下位叶片较高,精粹则以中、上位叶片较高,而Chla/b均以上位叶片高;多安娜和精粹的Pn以中位叶片最高,上位叶片次之,下位叶片最小,布朗尼诺则以上位叶片高于中位叶片,下位叶片最小。Pn变化趋势与气孔导度、胞间CO2浓度、蒸腾速率和水分利用率变化趋势大体一致,却与饱和蒸汽压亏缺变化相反;3种百合均有较低的光补偿点(2.36~18.92μmol·(m2·s)-1)、暗呼吸速率(0.496~0.651μmol·(m2·s)-1)和表观量子效率(0.0365~0.0419),较高的光饱和点(1 163~1 236μmol·(m2·s)-1)和最大净光合速率(10.11~13.94μmol·(m2·s)-1),对低光照有较强的利用能力和对光强适应幅度较宽。3种百合均具有较低的CO2补偿点(12.19~63.71μmol·(m2·s)-1),较高的CO2饱和点(1 257~1 313μmol·(m2·s)-1)和光合能力(18.74~20.50μmol·(m2·s)-1),具有较高的碳源同化能力。  相似文献   

8.
玉米幼苗不同叶位花环结构及叶绿素含量研究   总被引:3,自引:1,他引:3  
以玉米幼苗叶片第1-5叶位叶片为材料,观察其叶片解剖结构和叶绿素含量的变化,以确定玉米幼苗不同叶位叶片的光合碳同化途径.结果表明,玉米幼苗第1-5叶住叶片都具有典型C<,4>植物的花环结构,第3-5叶发育更好,其维管束鞘细胞(BSC)中含有大量的叶绿体;随着叶位的上升,叶绿素含量逐渐升高,不同叶位叶绿素a/b保持恒定....  相似文献   

9.
宋扬  张潆心  郭娜  孙广玉 《安徽农业科学》2013,41(10):4421-4423
[目的]研究低温胁迫后不同光强对小黑杨幼苗叶片叶绿素荧光和能量分配的影响,提高幼苗移栽成活率。[方法]以小黑杨幼苗为试验材料,利用叶绿素荧光技术研究了低温(4~6℃)胁迫3 h后不同光强(200、1 200μmol/(m2.s)对小黑杨幼苗叶片光合特性的影响。[结果]200μmol/(m2.s)的弱光下,低温胁迫后小黑杨幼苗叶片的各叶绿素荧光参数与常温处理之间差异较小,但1 200μmol/(m2.s)的强光下,低温胁迫后小黑杨幼苗叶片的实际光化学效率(ФPSⅡ)和电子传递速率性(ETR)明显低于常温处理,并且叶片的最大荧光(Fm)、PSⅡ最大光化学效率(Fv/Fm)和潜在光化学活性(Fv/Fo)也明显降低。另外,低温胁迫后弱光处理对小黑杨幼苗叶片的光能分配参数影响不大,但强光引起了低温胁迫后小黑杨幼苗叶片光能分配的紊乱,PSⅡ反应中心吸收光能用于光化学反应的比例明显降低,失活反应中心耗散的光能比例明显增加,说明强光是引起低温胁迫后小黑杨幼苗叶片发生光抑制的重要原因之一。[结论]春季小黑杨幼苗移栽时,低温逆境发生后要注意采取措施进行遮阴处理,降低叶片的光抑制程度,以提高幼苗移栽的成活率。  相似文献   

10.
为了揭示转C4光合基因水稻响应不同环境条件的生理机制,以转PEPC基因水稻(PEPC)、未转基因原种(WT)及杂种F1花培株系H45和H137为研究材料,研究了不同测定环境条件下其功能叶片的光合特性.结果表明:在室外[温度25~30 ℃,相对湿度67%~79%,光强(1 200±50) μmol/(m2·s),CO2浓度(390.0±10.5) μmol/mol]和室内[温度25 ℃,相对湿度60%~72%,光强(25.0±5.0) μmol/(m2·s),CO2浓度(420.0±5.5)μmol/mol]的测定环境下,同一水稻品种的净光合速率没有明显差别,只是测定叶片净光合速率所需的光诱导时间不同.多元逐步线性回归分析结果表明,在不同测定环境条件下,不同环境因子对水稻叶片净光合速率的贡献力不同,在室外蒸腾作用对叶片净光合速率的影响最大,其次是相对湿度,而室内条件下气孔导度对水稻叶片净光合速率的影响最大.结果还表明,转PEPC基因水稻的净光合速率和气孔导度均最高,明显高于未转基因野生型(WT)的,这与转PEPC基因水稻具有较高的气孔导度和较强的胞间CO2利用能力(胞间CO2浓度较低)有关.  相似文献   

11.
[目的]研究黄花蒿生殖期光合特性。[方法]采用Li-6400便携式光合作用系统测定生殖期黄花蒿叶片的有关光合参数。[结果]黄花蒿生殖期的光合日变化曲线呈双峰型,峰谷之间差别不大。生殖期黄花蒿叶片仍有较强的光合作用,一天中最大净光合速率为22.60μmol/(m2.s)。生殖期黄花蒿叶片的光饱和点为800μmol/(m2.s)左右,光补偿点为21.98μmol/(m2.s),表观光量子效率为0.046;其CO2饱和点应不低于1600μmol/mol,CO2补偿点为70.37μmol/mol,羧化效率为0.053。[结论]生殖期黄花蒿叶片存在较缓和的"午休"现象,此期较强光合作用的绿叶仍能为黄花蒿花的发育及种子生长提供一定的物质和能量。生殖期黄花蒿叶片适应一定的荫蔽环境。  相似文献   

12.
以盆栽3年生美国黑莓(Rubussubgenusrubuswatson)植株为试材,对25%、40%、55%、70%、85%、100%6种水分胁迫条件下的光合特性进行研究。结果表明:土壤相对含水量(SRWC)为100%时,叶片的光合速率日变化呈单峰曲线;随着水分胁迫的加剧,其光合速率日变化呈双峰曲线。美国黑莓的光补偿点为50μmol/(m2.s)左右;当SRWC为25%时,其光饱和点仅为330μmol/(m2.s);当SRWC为70%以上时,光饱和点均为1 280μmol/(m2.s)左右,属喜光树种。叶片的光合速率及蒸腾速率随SRWC的升高而增加,气孔阻力随SRWC的升高而降低。光合速率与蒸腾速率呈正相关、与气孔阻力呈极显著负相关;蒸腾速率与气孔阻力呈负相关;水分利用率随着水分胁迫的增强而提高;美国黑莓的光合作用适宜SRWC为70%以上;灌溉的临界SRWC为40%。  相似文献   

13.
[目的]研究黄瓜幼苗弱光耐受性相关指标。[方法]以M22、M19-1、M14等18份弱光适应性不同的黄瓜品系为试材,利用光照培养箱控制光照强度,对照光强约为300μmol/(m2·s),弱光处理光强约为40μmol/(m2·s),研究黄瓜幼苗耐弱光指数、生长发育指标、光合特性及光合色素变化,并对黄瓜耐弱光相关指标进行相关分析。[结果]弱光处理后,黄瓜耐弱光品系如M22、M67的各指标变化不显著,弱光敏感品系M19-1的Chla/Chlb指标和不耐弱光品系M14的光合速率、蒸腾速率、叶面积及真叶鲜重指标明显低于对照。黄瓜幼苗的耐弱光指数与各性状的相关分析结果表明,除叶面积、真叶鲜重与耐弱光指数未达到显著相关外,其他均达到了显著相关或极显著相关。[结论]该研究可为黄瓜耐弱光品系选育提供理论依据。  相似文献   

14.
张琰 《安徽农业科学》2011,39(27):16676-16679
[目的]研究血红鸡瓜槭(Acer palmatum‘Bloodgood’)的光合特性,为提高其光能利用率和转化效率,进而提高其园林观赏价值提供参考。[方法]选取天病虫害、长势基本一致的血红鸡爪槭1年生苗为供试材料,利用Li-6400便携式光合作用测定系统测定其光合特性。[结果]血红鸡爪槭光补偿点、光饱和点和CO2补偿点、CO2饱和点分别为1 260、32.66μmol/(m2.s)和49.34、991.67μmol/mol,且最适宜在25~27℃温度范围内生长;叶片净光合速率(Pn)在夏季呈典型的双峰曲线,有明显的"光合午休"现象,且光合有效辐射(PAR)、气孔导度(Gs)、蒸腾速率(Tr)分别是影响叶片净光合速率最重要的环境因子和生理因子;高温胁迫下叶片PSⅡ的活性受到了抑制,光化学反应的份额减少,非光化学反应的份额增加。[结论]该研究揭示了血红鸡爪槭光合特性的基本变化规律及限制其光合作用的内外因子,可为今后其更好的应用提供指导。  相似文献   

15.
罗兰  刘光德  李名扬 《安徽农业科学》2011,39(23):13998-13999
[目的]为制定完善的彩叶草栽培养护管理措施提供科学的依据。[方法]以5个彩叶草品种为试材,利用CB-1102便携式光合蒸腾仪对光合特性进行比较。[结果]彩叶草净光合速率(Pn)日变化为典型的双峰曲线,Pn日变化受气孔限制因素的影响较小,主要取决于非气孔因素。彩叶草光合作用对光照强度(PAR)水平变化的响应均可以用二次方程来描述。彩叶草光补偿点(LCP)为28~164μmol/(m2.s),光饱和点(LSP)为1 707~1 920μmol/(m2.s)。[结论]在栽培生产中,应选择光照充足的地方种植彩叶草。  相似文献   

16.
扁穗牛鞭草光合特性研究   总被引:1,自引:0,他引:1  
利用Li-6400型光合作用测定系统测定了扁穗牛鞭草的光合特性。试验结果显示:扁穗牛鞭草叶片的光合日进程呈"单峰型",光饱和点较高,在2200μmol/(m2.s)以上仍然未达到饱和,光补偿点为4.53μmol/(m2.s),表观量子效率为0.038,CO2饱和点为1200μmol/mol,补偿点8.29μmol/mol,羧化效率(CE)为0.273。通过对净光合速率和其他相关因素的日变化分析得知:光量子通量密度是影响扁穗牛鞭草净光合速率的主要环境因子。  相似文献   

17.
连翘光合特性研究   总被引:1,自引:0,他引:1  
用Li-6400光合作用测定系统对连翘的光合特性进行了测定。结果表明:连翘叶片的净光合速率Pn日变化呈"单峰型"曲线,无"午休"现象,12:00时Pn出现高峰,峰值为13.54μmol/(m2.s),叶片蒸腾速率Tr和气孔导度Gs的变化趋势与Pn一致,胞间CO2浓度Ci与之相反。Pn与Tr、Gs极显著正相关;影响连翘叶片光合作用的主导环境因子为光合有效辐射PAR和相对湿度RH。连翘光合作用的光饱和点LSP和光补偿点LCP分别为1 360μmol/(m2.s)和26.06μmol/(m2.s),表观量子效率为0.049 5;CO2饱和点较高,在2000μmol/mol范围内未达到饱和,CO2补偿点为81.79μmol/mol,羧化效率为0.036 3。以上结果表明,连翘是一种典型的阳性C3植物。  相似文献   

18.
为探索新疆内陆干旱区不同灌水量对长绒棉新海14号光合特性的影响,利用小区试验,在5种灌水量(W)条件下,对其光合特性进行研究。结果表明:灌水量为7650m3/hm2时,叶片净光合速率日变化呈单峰曲线;随着灌水量的降低,其净光合速率日变化呈双峰曲线。新海14号的光补偿点为50μmol/m2·s;灌水量为2850(m3/hm2)时,其光饱和点为310μmol/(m2·s),灌水量为5475m3/hm2以上时,其光饱和点为1280μmol/(m2·s)。叶片的净光合速率及蒸腾速率随灌水量的升高而增加,气孔阻力随灌水量的升高而降低。水分利用效率随着灌水量的降低而提高,呈极显著负相关;棉花产量对灌水量极为敏感。净光合速率与蒸腾速率呈显著正相关,与气孔阻力呈极显著负相关;蒸腾速率与气孔阻力呈显著负相关。新海14号的光合作用最适宜灌水量为6945m3/hm2;灌溉的临界值为5250m3/hm2。  相似文献   

19.
[目的]为保护和开发盐桦提供依据。[方法]以1年生盐桦为试验材料,研究了叶片光合参数的日变化。[结果]晴天时净光合速率日变化为不对称的双峰曲线,最大值出现在上午10:00前后,为11.1773μmol/(m^2·s),第2个峰值出现在16:00~17:00,为10.1551μmol/(m^2·s).盐桦蒸腾作用的最大值出现在16:00时前后,为7.3952μmol/(m^2·s),气孔导度与净光合速率日变化趋势相似。光合有效辐射达到1600μmol/(m^2·s)以后,盐桦幼树叶片光舍速率仍有增加:盐桦叶温与气温的日变化趋势一致,呈单峰曲线型,峰值出现在14:00,最高叶温达39℃,在11:00~13:00气孔导度与胞间CO2浓度也同步下降,15:00之后,气孔导度下降而胞间CO2浓度的上升。[结论]盐桦是比较喜光的树种。  相似文献   

20.
唐菖蒲光合特性的研究   总被引:1,自引:0,他引:1  
采用光合作用测定仪和植物效率分析仪对生长在冀西北坝上高原唐菖蒲的光合特性和荧光参数生理生态特点进行了研究,结果表明:①夏季在晴天、土壤水肥充足条件下,唐菖蒲叶片的光合速率呈双峰曲线,其光饱和点为2145μmol/(m2.s),光补偿点为174.8μmol/(m2.s),净光合速率的最大值为36.4μmol/(m2.s),唐菖蒲为典型的阳性植物。②晴天唐菖蒲叶片的AQY由10:00时的0.0878下降到了13时的0.0640,PSⅡ最大光化学效率Fv/Fm由10时的0.79下降到14时的0.69,比最大值下降约13%,唐菖蒲在中午发生了一定的光抑制。③由叶片能量流动模型分析,高辐射使PSⅡ部分反应中心失活或降解,叶片遭受高辐射胁迫后启动了相应的防御机制,使过剩激发能得以及时耗散。由类囊体膜能量流动模型分析,高辐射导致叶片单位面积部分反应中心失活或裂解后,启动了剩余的有活性反应中心的补偿机制,使其能量传递效率提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号