首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
复合NP阻燃剂处理杨木的热解特性与动力学分析   总被引:1,自引:0,他引:1  
为研究复合NP阻燃剂处理杨木的热解特性与阻燃机理,利用热分析法对蒸馏水、聚硅酸磷酸二氢铝(Al-Si)、NP阻燃剂(N-P)、聚硅酸磷酸二氢铝复合NP阻燃剂(N-P-Al-Si)处理杨木(编号为A、B、C、D)的燃烧性能进行探讨,分别运用Ozawa-Flynn-Wall法和修正Coats-Redfern法计算阻燃杨木活化能。结果表明:A仅有1个热解阶段,此阶段的活化能值为65~70 kJ/mol。阻燃处理材的热解大致分为2个阶段,D的主要热解阶段介于B、C之间,其热释放速率缓慢,失重速率和失重量最小。并且在不同的升温速率下D的失重趋势一致,随着升温速率的增大,失重曲线向高温方向移动。D第1、2阶段的活化能分别为120、240 kJ/mol,均显著大于C(115 kJ/mol),表明Al-Si与N-P复配后的阻燃效率得到提高。   相似文献   

2.
含脲醛树脂胶黏剂的杨木刨花板的热解特性   总被引:3,自引:0,他引:3  
为探明胶黏剂对废弃刨花板热解的影响,采用热重分析技术,以20℃/min的恒定升温速率对杨木、杨木刨花板和脲醛树脂的热解特性进行了分析。结果表明:3种材料的热解基本都可分为干燥失水、快速热解和缓慢分解3个阶段。采用一级反应动力学模型对快速热解阶段进行计算,得出杨木的活化能为70.21kJ/mol,杨木刨花板的活化能为46...  相似文献   

3.
阻燃剂硼酸-硼砂对杨木定向刨花板热解特性的影响   总被引:1,自引:0,他引:1  
为探究阻燃剂硼酸-- 硼砂对杨木定向刨花板热解特性的影响,用同步热分析仪研究了硼酸-- 硼砂阻燃杨木定向刨花板升温速率为10 ℃/min、终温700 ℃的热分解反应。结果表明:硼酸-- 硼砂对阻燃杨木定向刨花板快速热解阶段的反应起到抑制作用,使得最大失重速率对应的特征温度后移,残炭率显著增加。阻燃杨木定向刨花板的最概然机理为球形对称的3维扩散,满足Ginstling-Broushtein方程。未经阻燃处理及添加9%、12%硼酸-- 硼砂的杨木定向刨花板在快速热解阶段的反应活化能分别为101.690、116.635、129.225 kJ/mol,硼酸-- 硼砂使杨木定向刨花板在快速热解阶段所需的能量增加。   相似文献   

4.
杨木热分析   总被引:8,自引:0,他引:8  
为对使用木材及预测和扑灭火灾提供理论依据,文章通过对杨木进行热重分析(TG)及差示扫描量热分析(DSC),得知杨木热解的初始温度约为200℃,热解速率最大的温度为309℃,整个热解的温度范围为200~520℃。杨木热解分三个阶段进行,首先在200~320℃区间,为热分解阶段,此阶段失重速度快,失重率高,达60%;在320~435℃期间为失重仍较明显的阶段,此阶段失重20%左右;在435℃之后,失重不再明显,为灰化阶段。在整个热解过程中,杨木的热效应值为127kJ·g-1。利用不同升温速度下的三条TG曲线,根据三处不同类型的动力学近似方程,求解得出杨木热解的平均活化能约为150kJ·mol-1。  相似文献   

5.
【目的】研究滤泥的热解特性、动力学和热力学性质,为滤泥热解提供科学依据。【方法】采用定量法进行工业分析和元素分析;采用热重分析法,以5、10、15、20、25和30℃/min加热速率从室温加热至800℃,运用Kissinger、Flynn-Wall-Ozawa(FWO)和Kissinger-Akahira-Sunose(KAS)3种方法处理热重试验数据。【结果】滤泥灰分含量为44.34%,挥发分含量为52.88%,C、H、N、S和O的重量百分比含量分别为24.96%、4.04%、1.98%、5.82%和18.86%,高位发热值(HHV)为11.39 MJ/kg。由TG(热重分析)曲线可知热解主要分为3个阶段进行,分别为微失重阶段(110℃左右)、快速热解阶段(150~510℃)和炭化阶段(510~800℃),不同加热速率下DTG(热重分析一阶微分)曲线峰值差别明显。运用FWO和KAS方法计算得出的平均活化能(Eα)分别为322.28和321.93 kJ/mol,平均焓变(ΔH)为289.04和288.24 kJ/mol,平均吉布斯自由能变(ΔG)为207.87和208.01 kJ/mol,熵变(ΔS)由负值持续增加为正值。【结论】较低的加热速率有利于滤泥的热解反应;FWO和KAS模型均能较好地描述滤泥热解过程,整个热解过程符合热力学第二定律,是一个复杂多步的吸热过程。  相似文献   

6.
测定加热卷烟常用香料糠醛和香兰素在不同升温速率(10、20、40 ℃/min)由30 ℃升至350 ℃的热重数据,运用3种非等温热分析方法(Coats-Redfern法(CR)、Kissinger-Akahira-Sunose法(KAS)、Flynn-Wall-Ozawa法(FWO)拟合糠醛和香兰素的热释放过程,采用管式炉和气相色谱质谱联用仪确定糠醛和香兰素的热释放产物。结果表明:糠醛有2个失重阶段,香兰素有1个失重阶段;随着加热温度从30 ℃提高至350 ℃,糠醛的热释放特性指数由2.54×10–3增加至3.19×10–2,香兰素的热释放特性指数由3.21×10–4增加至5.63×10–3;基于多升温速率KAS和FWO的动力学分析显示,转化率为0.7时,糠醛的活化能最高,转化率为0.8时,香兰素活化能最高,KAS法所得糠醛和香兰素的平均活化能分别为86.26 kJ/mol和84.89 kJ/mol,FWO法所得糠醛和香兰素的平均活化能分别为88.72 kJ/mol和89.09 kJ/mol;基于CR法的动力学分析表明,三维扩散模型D3可较好地描述糠醛和香兰素的热释放过程。  相似文献   

7.
黑龙江地区10种常见树叶的热重分析   总被引:1,自引:0,他引:1  
应用热重分析方法研究了黑龙江地区10种常见的树叶的热解行为。随后利用TG-DTG曲线分析它们的热解特性,了解到木质素、半纤维素及纤维素的热解特性和温度、失重量以及失重速率之间的关系。结果表明:在空气气氛下10种树叶的热解均经历水分析出、快速热解、炭化3个主要阶段;可以利用所学的Arrhenius反应方程和Coats-Red fem模型求出样品在主要的快速热解期间的热解动力学参数,计算得出樟子松、黑皮油松具有较好的防火性能,着火温度、活化能分别是:274.69℃、39.420kJ/mol,274.90℃、42.9110kJ/mol。  相似文献   

8.
【目的】研究不同升温速率下成型生物质的热解炭化规律。【方法】采用自行设计的热解试验装置,测定不同升温速率(5,7,10,15℃/min)条件下成型生物质热解过程中失重(TG)、失重速率(DTG)、工业成分(挥发分、灰分、固定碳含量)的变化及所需的活化能。【结果】通过动力学拟合,得到描述成型生物质热解过程的最合理机理函数,据此推测成型生物质热解反应机理为内扩散控制过程。当升温速率为10℃/min时,热解过程活化能最小,为195.52kJ/mol。在不同升温速率下,成型生物质热解过程中的TG曲线逐渐向高温区移动,且失重速率呈先增大后减小的趋势,在升温速率为5,7,10,15℃/min时,成型生物质的失重速率分别在322,427,448,554℃时达到最大,其值分别为0.804,0.649,0.512,0.466%/℃,可知在成型生物质热解炭化过程中,随着温度的增加失重速率呈先增大后减小的趋势,达到最大失重速率时的温度随升温速率的增大而升高,热解后成型生物质固定碳含量随着升温速率的增大而降低。【结论】较低升温速率热解有利于成型生物质热解成炭。  相似文献   

9.
为比较不同种类生物质秸秆热解特性的差异,探讨地域对生物质秸秆热解特性的影响,以四川、湖北和云南产区的油菜、小麦、玉米和水稻秸秆为试材,采用SDT-Q600型同步热分析仪,通入高纯氮气后,对样品进行热解与测定(加热速率为20℃/min,终止温度为1 000℃),最终获得不同种类和不同产区生物质秸秆的TG曲线和DTG曲线,并对各曲线进行比较与分析。结果表明:4种生物质秸秆热解过程呈现相似的变化规律,但由于样品种类的组分不同,样品呈现出失重程度和失重速率上的差异;地域对同种生物质秸秆的失重程度有影响,对失重速率影响不明显。采用Coats-Redfern法,对不同种类和产区的生物质秸秆热解过程进行动力学计算,得出表观活化能和频率因子动力学参数。结果显示,在主要失重阶段生物质秸秆活化能为89~144kJ/mol。  相似文献   

10.
不同畜禽粪便的热解特性及反应动力学   总被引:1,自引:0,他引:1  
对猪、牛和鸡3种主要种类畜禽粪便在以高纯氮气为载气的条件下进行热重-差热(TG-DSC)分析,同时考察不同升温速率(10、20和50℃/min)对鸡粪样品热解过程热解特性和热焓的影响。热重试验样品粒度为0.5mm,所有样品均从室温加热至1 000℃。试验结果表明:畜禽粪便类生物质热解过程主要包括脱水、主要热裂解和炭化3个阶段,3种畜禽粪便样品失重主要集中在126~438℃;不同种类畜禽粪便样品和不同升温速率,鸡粪样品的DTG、DSC曲线差异明显,但各自的DTG和DSC曲线有很好的对应关系;基于Coats-Redfern法应用反应级数模型和扩散模型选择回归系数最高的值表示样品的反应级数和反应机理,得出鸡粪活化能的平均值为73.4kJ/mol,猪粪、牛粪活化能分别为114.2和88.5kJ/mol。  相似文献   

11.
毛竹催化热解动力学研究   总被引:1,自引:0,他引:1  
利用热重技术在不同升温速率和氮气气氛下对毛竹Phyllostachys edulis的氯化亚铜催化热解失重行为进行了研究。结果显示:毛竹主要热解温度区间为200.0~379.0℃,当温度为328.5℃时达到最大热解速率17.18%·Min-1;添加氯化亚铜后,毛竹的热解温度降低,热解速率增大,热解所需时间缩短。还通过Flynn-wall-Ozawa法求解了毛竹热解的动力学参数,纯毛竹的热解平均活化能为213.21kJ·mol-1,平均指前因子约为1017;氯化亚铜的加入使指前因子增大了10倍,其值约为1018,平均活化能变化不明显。图6表3参12  相似文献   

12.
为研究造纸污泥与煤/生物质混合原料的燃烧特性及其动力学行为,通过热分析试验和分布式活化能模型方法,研究20%O2/80%N2的燃烧气氛下,造纸污泥在10℃/min升温速率下与混煤、蔗渣在不同掺混比下的燃烧特性和动力学参数.研究结果显示:1)随着混煤掺混比的增加,燃烧过程的温度范围不断缩小,综合燃烧特性指数先增加后减小再...  相似文献   

13.
利用热重红外联用技术(TG-FTIR)研究了竹材综纤维素在不同升温速率下(5.0, 10.0, 15.0, 20.0和30.0℃·min-1)的热解特性和热解动力学。热重分析/热重一次微分曲线(TG/DTG)表明:竹材综纤维素热解可分为干燥、快速裂解和慢速裂解等3个阶段; 随着升温速率增加, TG/DTG曲线往高温一侧移动; 竹综纤维素热解过程发生复杂的化学反应, 包括多重、平行和连续反应; 热解挥发分主要由小分子CO, H2O, CH4和CO2, 以及一些醛类、酮类、酸类、烷烃、醇类和酚类等有机物组成。利用无模式函数积分法, 即Flynn-Wall-Ozawa(FWO)和Kissinger-Akahira-Sunose(KAS)积分法, 对其热解动力学进行研究。结果表明:竹材综纤维素的活化能随着转化率的升高先增大后减小再增大, 活化能数值的变化与纤维素/半纤维素不同的热解特性有紧密联系。  相似文献   

14.
热重法研究落叶松热解动力学特性   总被引:1,自引:0,他引:1  
采用热重分析仪,研究了氮气气氛下升温速率分别为20、30、40、50℃/min时落叶松木材的热解过程,并使用不同动力学分析方法对落叶松主要热解阶段进行了动力学研究,探讨了各方法之间的相似性.落叶松的热解过程可以分为预热、前热解、热解和后热解4个阶段.Freeman-Carroll法线性拟合结果表明,落叶松主要热解阶段可...  相似文献   

15.
帽儿山地区10种常见树叶的燃烧性能和热重分析   总被引:1,自引:0,他引:1  
张依夏  孙才英 《安徽农业科学》2014,(14):4298-4301,4313
使用热重分析法对黑龙江省帽儿山地区的10种代表性树种进行热解特性和动力学研究,利用TG-DTG曲线分析了可燃物热解的基本过程,通过热解参数对不同植物可燃物热解特性作定量比较,了解到木质素、半纤维素及纤维素的热解特性和温度、失重量以及失重速率之间的关系,采用分阶段一级反应动力学模型Coats-Redfem法求得相应的热解动力学参数活化能E和频率因子A.结果表明:在氮气气氛下10种树叶的热解均经历水分析出、快速热解、炭化3个主要阶段;计算得出樟子松、黑皮油松具有较好的防火性能,着火温度、活化能分别是:275.17℃、44.188 6 KJ/mol和274.38 ℃、42.864 3 KJ/mol.还利用极限氧指数技术,测得了可燃物的相对极限氧指数值,其数值可以反映可燃物可燃性的高低,得出榆树的氧指数是26.4%,属于难燃;黑皮油松的氧指数是20.2%,接近易燃.  相似文献   

16.
超声波辅助碱性双氧水法提取甘蔗渣纤维素最优工艺探讨   总被引:1,自引:0,他引:1  
【目的】探讨超声波对甘蔗渣纤维素提取工艺和纤维素含量的影响,并优化甘蔗渣纤维素处理工艺。【方法】以甘蔗渣为原料,通过对超声波辅助碱性双氧水法处理纤维素工艺的研究,确定超声波条件下甘蔗渣纤维素提取的最佳工艺条件,并用倒置显微镜研究超声波处理对甘蔗渣纤维形态结构的影响。【结果】最优工艺参数为:超声波处理时间70min、超声功率200W、反应温度80℃、0.7%H2O2和6%NaOH的混合溶液,甘蔗渣纤维素含量在87.54%以上;与无超声辅助相比,纤维素含量提高了8.69%。【结论】利用超声辅助碱性双氧水法预处理甘蔗渣,能够提高蔗渣纤维对试剂的可及度和反应性能,极大缩短反应时间,提高反应效率。  相似文献   

17.
秸秆是我国最主要的生物质资源,对其进行热解是将生物质能转换为高效高品位清洁能源的最有效措施之一。利用热重分析方法对水稻秸秆及木屑成型燃料热解特性及其动力学规律进行了研究,分析了试样以不同升温速率在氩气气氛下进行热解的试验结果。结果表明:水稻秸秆成型燃料热解过程划分为三个重要阶段,即预热解、快速热解和慢速热解阶段;热解最大速率会随着热解升温速率的升高而增大,有利于热解进行,但会造成反应不彻底等问题,因此温升速率不宜过高;通过对比两种成型燃料的热解性能得到,木屑成型燃料的热稳定性优于水稻秸秆成型燃料;对水稻秸秆成型燃料热解进行动力学参数计算得到:活化能和指前因子会随着升温速率的升高而增大,线性拟合系数均在0.99之上,说明主反应阶段符合一级反应模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号