首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pharmacokinetics and the influence of food on the kinetic profile and bioavailability of doxycycline was studied after a single intravenous (i.v.) and oral dose of 10.0 mg/kg body weight in 7-week-old broiler chickens. Following i.v. administration the drug was rapidly distributed in the body with a distribution half-life of 0.21 +/- 0.01 h. The elimination half-life of 6.78 +/- 0.06 h was relatively long and resulted from both a low total body clearance of 0.139 +/- 0.007 L/h.kg and a large volume of distribution of 1.36 +/- 0.06 L/kg. After oral administration to fasted chickens, the absorption of doxycycline was quite fast and substantial as shown by the absorption half-life of 0.39 +/- 0.03 h, the maximal plasma concentration of 4.47 +/- 0.16 micrograms/mL and the time to reach the Cmax of 1.73 +/- 0.06 h. The distribution and the final elimination of the drug were slower than after i.v. administration. The absolute bioavailability was 73.4 +/- 2.5%. The presence of food in the intestinal tract reduced and extended the absorption (t1/2a = 1.23 +/- 0.21 h; Cmax = 3.07 +/- 0.23 micrograms/mL; tmax = 3.34 +/- 0.21 h). The absolute bioavailability was reduced to 61.1% +/- 4.4%.  相似文献   

2.
A bioavailability and pharmacokinetics study of doxycycline was carried out on 30 healthy ostriches after a single intravenous (IV), intramuscular (IM) and oral dose of 15 mg/kg body weight. The plasma doxycycline concentration was determined by HPLC/UV at 0 (pretreatment), 0.08, 0.25, 0.5 1, 2, 4, 6, 8, 12, 24 and 48 h after administration. The plasma concentration-time curves were examined using non-compartmental methods based on the statistical moment theory for only the higher dose. After IV administration, the elimination half-life (t1/2β), mean residence time (MRT), volume of distribution at the steady-state (Vss), volume of distribution (Vdarea) and total body clearance (ClB) were 7.67 ± 0.62 h, 6.68 ± 0.86 h, 0.86 ± 0.16 l/kg, 1.67 ± 0.52 l/kg and 2.51 ± 0.63 ml/min/kg, respectively. After IM and oral dosing, the mean peak plasma concentrations (Cmax) were 1.34 ± 0.33 and 0.30 ± 0.04 µg/ml, respectively, which were achieved at a post-administration time (tmax) of 0.75 ± 0.18, 3.03 ± 0.48 h, respectively. The t1/2β, Vdarea and ClB after IM administration were 25.02 ± 3.98 h, 23.99 ± 3.4 l/kg and 12.14 ± 1.71 ml/min/kg, respectively and 19.25 ± 2.53 h, 61.49 ± 7 l/kg and 40.19 ± 3.79 ml/min/kg after oral administration, respectively. The absolute bioavailability (F) of doxycycline was 5.03 and 17.52% after oral and IM administration, respectively. These results show that the dose data from other animals particularly mammals cannot be extrapolated to ostriches. Therefore, based on these results along with those reported in the literature, further studies on the pharmacokinetic/pharmacodynamic, in vitro minimum inhibitory concentration values and clinical applications of doxycycline in ostriches are required.  相似文献   

3.
The pharmacokinetics of enrofloxacin (EFL) and its active metabolite ciprofloxacin (CIP) was investigated in 7-8 month old turkeys (6 birds per sex). EFL was administered intravenously (i.v.) and orally (p.o.) at a dose 10 mg kg(-1) body weight. Blood was taken prior to and at 0.17, 0.33, 0.5, 1, 2, 3, 4, 6, 8, 10 and 24 h following drug administration. The concentrations of EFL and CIP in blood serum were determined by high-performance liquid chromatography (HPLC). Serum concentrations versus time were analysed by a noncompartmental analysis. The elimination half-live and the mean residence time of EFL after i.v. injection for the serum were after oral administration 6.64+/-0.90 h, 8.96+/-1.18 h and 6.92+/-0.97 h, 11.91+/-1.87 h, respectively. After single p.o. administration, EFL was absorbed slowly (MAT=2.76+/-0.48 h) with time to reach maximum serum concentrations of 6.33+/-2.54 h. Maximum serum concentrations was 1.23+/-0.30 microg mL(-1). Oral bioavailability for for EFL after oral administration was found to be 69.20+/-1.49%. The ratios C(max)/MIC and AUC(0 --> 24)/MIC were respectively from 161.23+/-5.9 h to 12.90+/-0.5 h for the pharmacodynamic predictor C(max)/MIC, and from 2153.44+/-66.6 h to 137.82+/-4.27 h for AUC(0 --> 24)/MIC, for the different clinically significant microorganisms, whose values for MIC varies from 0.008 microg L(-1) to 0.125 microg mL(-1).  相似文献   

4.
5.
Pharmacokinetics of doxycycline in dogs.   总被引:1,自引:0,他引:1       下载免费PDF全文
Six adult dogs were given doxycycline hyclate at a dosage of 5 mg/kg of body weight intravenously so that pharmacokinetic parameters could be evaluated. Serum doxycycline concentrations were determined over a 48 h period using a modified agar well bioassay. Compartmental pharmacokinetic evaluation of the serum concentration time data indicated that doxycycline has a half-life of 10.36 h, a body clearance of 1.68 +/- 0.44 mL/min/kg, and a volume of distribution at steady state of 1.468 +/- 0.237 L/kg. Doxycycline pharmacokinetics are favorable for therapeutic use in the dog.  相似文献   

6.
7.
盐酸多西环素在猪体内的药物动力学及其残留   总被引:5,自引:0,他引:5  
试验建立了反相高效液相色谱(RT-HPLC)法测定盐酸多西环素的浓度,探讨了盐酸多西环素在猪体内的药物动力学和残留特征。结果表明,盐酸多西环素以2.5mg/kg单剂量肌内注射给猪(n=6),药物动力学模型符合有吸收一室模型,药物动力学参数:吸收半衰期(t1/2ka)、消除半衰期(t1/2ke)为(0.400±0.312)h、(9.530±0.956)h,药时曲线下面积(AUC)为(44.414±4.123)mg·h·L-1,最大血药浓度(Cmax)为(2.811±0.136)mg/L,达峰时间(Tp)为(1.910±0.213)h。另外,以相同剂量肌内注射给猪(n=6),每天1次,连续给药4d后,在不同时间测定盐酸多西环素在猪的肌肉、肝脏、肾脏、皮肤和脂肪中的残留量。在给药后16d,盐酸多西环素在各组织均能检测到,且残留均低于残留限量。盐酸多西环素注射液在猪体内消除缓慢,残留期较长,建议休药期不低于16d。  相似文献   

8.
9.
Pharmacokinetics and metabolic inertness of doxycycline in young pigs   总被引:5,自引:0,他引:5  
The disposition of doxycycline hyclate after IV administration of 20 mg/kg of body weight was studied in 6 pigs. Median elimination half-life, estimated in 4 pigs, was 3.92 hours. Mean (+/- SEM) total body clearance was 1.67 +/- 0.18 ml/min/kg, and mean apparent volume of distribution at steady state was 0.53 +/- 0.04 L/kg. In 2 pigs, secondary peaks in the logarithmic serum concentration-time profile suggested discontinuous enterohepatic cycling, and precluded using these pigs in the pharmacokinetic analysis. The extent of doxycycline binding to serum protein was 93.1 +/- 0.2%. Serum or urine from 3 of the pigs was analyzed by use of photodiode array detection and mass spectrometry of a high-performance liquid chromatographic column effluent. These procedures documented lack of doxycycline biotransformation in pigs. It is concluded that, despite an elimination half-life shorter than that reported in other species, doxycycline may be a valuable antimicrobial drug for use in swine practice, pending the development of appropriate formulations.  相似文献   

10.
Pharmacokinetics and bioavailability of cefazolin in horses   总被引:1,自引:0,他引:1  
The pharmacokinetics and bioavailability of cefazolin given (IV, IM) to horses at the dosage of 11 mg/kg were investigated. The disposition of cefazolin given by IV route was characterized by a rapid disposition phase with a half-life of 5 to 10 minutes and a subsequent slower elimination phase with a half-life of 35 to 46 minutes. The total plasma clearance of cefazolin averaged 5.51 ml/min/kg and was due mainly to renal clearance (5.39 ml/min/kg) of unchanged drug. The volume of distribution at steady-state averaged 188 ml/kg. Plasma protein binding of cefazolin at a concentration of 10 micrograms/ml averaged 8.1 +/- 1.9%. Given by the IM route, cefazolin was rapidly absorbed; the extent of bioavailability was 78.4 +/- 18.8%, and the terminal half-life ranged from 49 to 99 minutes. Thus, cefazolin was extensively absorbed, but was eliminated more slowly than after IV administration.  相似文献   

11.
The pharmacokinetics and bioavailability of trimethoprim-sulfamethoxazole (TMP-SMX) were studied in six healthy male-castrate alpacas (Lama pacos) after intravenous (i.v.) or oral (p.o.) drug administration of 15 mg/kg TMP-SMX using a crossover design with a 2-week washout period. After 90 days one group (n = 3) was given a p.o. dose of 30 mg/kg TMP-SMX and the other group (n = 3) was given a p.o. dose of 60 mg/kg TMP-SMX. After i.v. administration of 15 mg/kg of TMP-SMX the mean initial plasma concentration (C0) was 10.75 +/- 2.12 microg/mL for trimethoprim (TMP) and 158.3 +/- 189.3 microg/mL for sulfamethoxazole (SMX). Elimination half-lives were 0.74 +/- 0.1 h for TMP and 2.2 +/- 0.6 h for SMX. The mean residence times were 1.45 +/- 0.72 h for TMP and 2.8 +/- 0.6 h for SMX. The areas under the respective concentration vs. time curves (AUC) were 2.49 +/- 1.62 microg h/mL for TMP and 124 +/- 60 microg h/mL for SMX. Total clearance (Clt) for TMP was 21.63 +/- 9.85 and 1.90 +/- 0.77 mL/min kg for SMX. The volume of distribution at steady state was 2.32 +/- 1.15 L/kg for TMP and 0.35 +/- 0.09 L/kg for SMX. After intragastric administration of 15, 30 and 60 mg/kg the peak concentration (Cmax) of SMX were 1.9 +/- 0.8, 2.6 +/- 0.4 and 2.8 +/- 0.7 microg/mL, respectively. The AUC was 9.1 +/- 5, 25.9 +/- 3.3 and 39.1 +/- 4.1 microg h/mL, respectively. Based upon these AUC values and correcting for dose, the respective bioavailabilities were 7.7, 10.5 and 7.94%. Trimethoprim was not detected in plasma after intragastric administration. These data demonstrate that therapeutic concentrations of TMP-SMX are not achieved after p.o. administration to alpacas.  相似文献   

12.
The pharmacokinetic properties and bioavailability of cyclooxygenase (COX)-2 selective nonsteroidal anti-inflammatory drug nimesulide were investigated in female goats following intravenous (i.v.) and intramuscular (i.m.) administration at a dose of 4 mg/kg BW. Blood samples were collected by jugular venipuncture at predetermined times after drug administration. Plasma concentrations of nimesulide were determined by a validated high-performance liquid chromatography method. Plasma concentration-time data were subjected to compartmental analysis and pharmacokinetic parameters for nimesulide after i.v. and i.m. administration were calculated according to two- and one-compartment open models respectively. Following i.v. administration, a rapid distribution phase was followed by the slower elimination phase. The half-lives during the distribution phase (t1/2alpha) and terminal elimination phase (t1/2beta) were 0.11+/-0.10 and 7.99+/-2.23 h respectively. The steady-state volume of distribution (Vd(ss)), total body clearance (ClB) and mean residence time (MRT) of nimesulide were 0.64+/-0.13 L/kg, 0.06+/-0.02 L/h/kg and 11.72+/-3.42 h respectively. After i.m. administration, maximum plasma concentration (Cmax) of nimesulide was 2.83+/-1.11 microg/mL attained at 3.6+/-0.89 h (tmax). Plasma drug levels were detectable up to 72 h. Following i.m. injection, the t1/2beta and MRT of nimesulide were 1.63 and 1.73 times longer, respectively, than the i.v. administration. The bioavailability of nimesulide was 68.25% after i.m. administration at 4 mg/kg BW. These pharmacokinetic data suggest that nimesulide given intramuscularly may be useful in the treatment of inflammatory disease conditions in goats.  相似文献   

13.
头孢喹肟在猪体内的药动学及生物利用度   总被引:1,自引:0,他引:1  
10头健康杂种猪,随机交叉设计试验,头孢喹肟按1 mg/kg的剂量分别进行耳缘静脉和颈部肌肉单点注射给药,给药间隔时间为1周.采用反相高效液相色谱法测定血清中头孢喹肟的药物浓度,用药代动力学程序软件3P97处理血清中药物浓度-时间数据.结果表明,静脉注射给药后,猪血清中头孢喹肟的药时数据符合二室开放模型,其主要药动学参数为:t1,2α为0.16 h,t1/2β为1.34 h,V(c)为0.24 L·kg1,cl‘.)为0.26 L·kg-1·h-1,AUC为3.97 mg·L-1·h;颈部肌肉单点注射给药后,猪血清中头孢喹肟的药时数据符合一级吸收二室模型,其主要药动学参数为:t1/2ka为0.08 h,t1/2α为0.84 h,t1/2β日为2.76 h,t(max)为0.32 h,C(max)为1.80 mg·L-1Cl(s)为0.25 L·kg-1·h-1,AUC为4.12 mg·L-1·h,F为102.37%.  相似文献   

14.
The pharmacokinetics and bioavailability of theophylline in horses were investigated following both intravenous and intragastric administration of aminophylline solutions at doses corresponding to 15 and 10 mg/kg theophylline base. A rapid distributive phase with a half-life of approximately 15-30 min was followed by a slower elimination half-life averaging 15-17 h. The apparent volume of distribution averaged 850-900 ml/kg. Theophylline, administered as aminophylline solution, was both rapidly and completely absorbed from the equine digestive tract. Based on the bioavailability and disposition kinetics of theophylline, an intragastric dosage regimen for aminophylline consisting of the administration of 5 mg/kg at 12 h intervals would be expected to maintain plasma theophylline concentrations within the therapeutic range.  相似文献   

15.
盐酸多西环素缓释注射液在猪体内的药物动力学   总被引:2,自引:0,他引:2  
健康猪6头,体质量(17.85±1.3)kg,按拉丁方设计进行单剂量静注、肌注盐酸多西环素注射液(普通制剂)和肌注盐酸多西环素缓释注射液,注射剂量按多西环素计均为20 mg/kg,比较盐酸多西环素缓释注射液和盐酸多西环素注射液在猪体内的药动学特征和生物利用度.用高效液相色谱法测定其血药浓度,试验所得的血药浓度-时间数据采用非房室模型统计矩原理分析处理.猪静注盐酸多西环素注射液的主要药物动力学参数为AUC(108.15±13,25)mg·h·L-1,MRT(5.56±1.08)h,CI(0.19±0.02)L·h-1·kg-1,Vd(ss)(1.04±0.09)L·kg-1,t1/2(4.07±0.65)h.猪肌注盐酸多西环素注射液和盐酸多西环素缓释注射液的主要药物动力学参数分别为MRT(15.18±2.13)h和(22.25±3.49)h;Tmax(1.135±0.44)h和(2.0±0.63)h;Cmax(3.32±0.33)mg·L-1和(3.10±0.29)mg·L-1;AUC(38.91±4.35)mg·h·L-1和(61.72±10.16)mg·h·L-1;F(36.66±7.88)%和(57.66±10.75)%.比较盐酸多西环素注射液和盐酸多西环素缓释注射液的主要药动学参数,除了Cmax以外,MRT、Tmax、AUC、F等主要参数均有显著的统计学意义(P<0.05).这表明盐酸多西环素缓释注射液肌注后吸收缓慢.消除半衰期延长,临床用药48 h给药1次仍能维持对常见病原菌的有效血药浓度.  相似文献   

16.
17.
The pharmacokinetics of doxycycline were investigated in sheep after oral (PO) and intravenous (IV) administration. The IV data were best described using a 2- (n = 5) or 3- (n = 6) compartmental open model. Mean pharmacokinetic parameters obtained using a 2-compartmental model included a volume of distribution at steady-state (Vss) of 1.759 ± 0.3149 L/kg, a total clearance (Cl) of 3.045 ± 0.5264 mL/kg/min and an elimination half-life (t1/2β) of 7.027 ± 1.128 h. Comparative values obtained from the 3-compartmental mean values were: Vss of 1.801 ± 0.3429 L/kg, a Cl of 2.634 ± 0.6376 mL/kg/min and a t1/2β of 12.11 ± 2.060 h. Mean residence time (MRT0−∞) was 11.18 ± 3.152 h. After PO administration, the data were best described by a 2-compartment open model. The pharmacokinetic parameter mean values were: maximum plasma concentration (Cmax), 2.130 ± 0.950 μg/mL; time to reach Cmax (tmax), 3.595 ± 3.348 h, and absorption half-life (t1/2k01), 36.28 ± 14.57 h. Non-compartmental parameter values were: Cmax, 2.182 ± 0.9117 μg/mL; tmax, 3.432 ± 3.307 h; F, 35.77 ± 10.20%, and mean absorption time (MAT0–∞), 25.55 ± 15.27 h. These results suggest that PO administration of doxycycline could be useful as an antimicrobial drug in sheep.  相似文献   

18.
The pharmacokinetics of moxifloxacin were investigated in buffalo calves following a single intravenous and intramuscular administration of moxifloxacin (5 mg kg−1 body wt.). Moxifloxacin concentrations in plasma and urine were determined by microbiological assay. Pharmacokinetic analysis of disposition data indicated that intravenous administration data were best described by a two compartment open model, whereas intramuscular administration data were best described by a one compartment open model. Following intravenous administration, the elimination half life (t1/2β), volume of distribution (Vd(area)) and total body clearance were 2.69 ± 0.14 h, 1.43 ± 0.08 L kg−1 and 371.2 ± 11.2 ml kg−1 h−1, respectively. Following intramuscular administration, the absorption half life (t1/2ka) was 0.83 ± 0.20 h. The systemic bioavailability (F) of moxifloxacin in buffalo calves was 80.0 ± 4.08%. Urinary excretion of moxifloxacin was less than 14% after 24 h of administration of drug. In vitro binding of moxifloxacin to plasma proteins of buffalo calves was 28.4 ± 3.77%. From the data of surrogate markers (AUC/MIC, Cmax/MIC), it was determined in the buffalo calves that when administered by intravenous or intramuscular route at 5 mg kg−1, moxifloxacin is likely to be effective against bacterial isolates with MIC ? 0.1 μg ml−1.  相似文献   

19.
Pharmacokinetics and bioavailability of cephalothin in horse mares   总被引:1,自引:0,他引:1  
The pharmacokinetics and bioavailability of cephalothin given to 6 horse mares at a dosage level of 11 mg/kg of body weight IV or IM were investigated. The disposition of cephalothin given IV was characterized by a rapid disposition phase with a mean half-life of 2.89 minutes and a subsequent slower elimination phase with a mean half-life of only 14.7 minutes. The mean residence time of cephalothin was 10.6 +/- 2.11 minutes. The total plasma clearance of cephalothin averaged 13.6 ml/min/kg and was caused by metabolism and renal elimination. Renal clearance of cephalothin averaged 1.32 ml/min/kg and accounted for elimination of about 10.1% of the administered dose. The volume of distribution at steady state averaged 151 mg/kg. Plasma protein binding of cephalothin at a concentration of 10 micrograms/ml averaged 17.9 +/- 2.5%. Cephalothin was rapidly metabolized to desacetylcephalothin. Maximum plasma desacetylcephalothin concentrations were observed in the blood samples collected 5 minutes after IV doses and averaged 22.9 micrograms/ml. The apparent half-life of desacetylcephalothin in plasma was 41.6 minutes and its renal clearance averaged 4.49 +/- 2.43 ml/min/kg. An average of 33.9% of the dose was recovered in the urine as desacetylcephalothin. The maximum plasma cephalothin concentration after IM administration was 11.3 +/- 3.71 micrograms/ml. The terminal half-life was 47.0 minutes and was longer than the half-life after IV administration. The bioavailability of cephalothin given IM ranged from 38.3% to 93.1% and averaged 65.0 +/- 20.5%.  相似文献   

20.
Pharmacokinetics and bioavailability of imidocarb dipropionate in swine   总被引:1,自引:0,他引:1  
A two-way crossover study was performed in eight healthy young pigs to determine the pharmacokinetics of imidocarb dipropionate (IMDP) following intravenous (2 mg/kg b.w.) and intramuscular (2 mg/kg b.w.) administrations. Each animal received one intravenous and one intramuscular injection with a 30-day washout period between the two-treatments. Plasma concentrations were measured by high-performance liquid chromatography (HPLC) assay with UV detector at regular intervals for up to 24 h post-injection. Intravenous plasma concentration profiles best fit a three-compartmental model yielding a mean system clearance (Cl((s))) of 558 mL/kg.h and a mean half-life of 13.91 h. Mean imidocarb AUC((0-infinity)) (microg.h/mL), V(c) (L/kg), V(d(area))(L/kg) and MRT((0-t)) (h) values were 3.58, 0.11, 14.36 and 1.46, respectively. Compartmental modeling of imidocarb, after intramuscular administration produced best fit for two-compartmental model yielding mean Kalpha (h(-1)), Cmax (microg/mL), tmax (h), and bioavailability (%) of 3.89, 2.02, 0.54, and 86.57 for the 2 mg/kg dose level. The present studies showed that IMDP was rapidly absorbed, widely distributed, and slowly eliminated. No adverse effects were observed in any of the pigs after i.v. and i.m. administrations of IMDP. The favorable PK behavior, such as the long half-life, acceptable bioavailability indicated that it is likely to be effective in pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号