首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 171 毫秒
1.
从6种植物多酚纯化常用的树脂中筛选适宜无梗五加果多酚分离纯化的树脂,研究了影响树脂吸附的上样浓度、上样液pH、上样体积、上样流速和影响多酚解吸的解吸液浓度、p H、洗脱体积、解吸流速,并确定了适宜的工艺参数。结果表明,HPD700型大孔树脂是分离纯化无梗五加果中多酚较理想的树脂;动态吸附时最适上样浓度1.5 mg/m L,上样液pH 4.0,最大上样体积6 BV,上样流速为1.0 m L/min,此时平均吸附率为(92.04±0.35)%;动态解吸时最适解吸剂为pH 4.0的浓度70%的乙醇溶液,洗脱体积1.5 BV,解吸流速1.0 m L/min,该条件下的平均解吸率为(93.72±0.62)%。纯化后的无梗五加果多酚类化合物纯度达到(54.38±1.02)%。  相似文献   

2.
通过研究大孔树脂对印尼姜黄色素的吸附和解吸作用,探讨其对姜黄色素的纯化效果。结果表明,从吸附和解吸效果综合考虑,选择H-1020型大孔吸附树脂对姜黄色素进行纯化最合适,H-1020型树脂对姜黄色素的最佳静态吸附时间为9 h,吸附温度为室温,以无水乙醇作为洗脱剂,解吸时间为150 min;动态吸附试验结果为进样流速1 BV/h树脂吸附效果最佳;树脂洗脱效果的试验结果为洗脱剂流速1 BV/h树脂的解吸效果最好,经H-1020型大孔树脂对姜黄色素进行纯化处理,可使其纯度达89.3%。  相似文献   

3.
以马尾松花粉为材料,筛选对马尾松花粉总黄酮吸附和解吸性能好的大孔树脂,并对大孔树脂纯化马尾松花粉总黄酮的工艺条件进行优化。结果表明,弱极性的DM-130大孔树脂对马尾松花粉总黄酮具有较好的吸附与解吸性能,其吸附率和解吸率分别达到84.24%和93.32%。DM-130大孔树脂纯化马尾松花粉总黄酮的最佳工艺参数为:上样质量浓度0.68 mg/m L,上样流速0.67 m L/min,上样体积为5倍柱床体积,洗脱溶剂为75%乙醇,洗脱流速0.67 m L/min,洗脱剂用量为6倍柱床体积。纯化后马尾松花粉总黄酮的纯度可达到50.4%。  相似文献   

4.
采用AB-8,S-8,X-5,聚酰胺4种树脂,探讨对杨桃多酚的吸附和解吸条件。结果表明,AB-8树脂是适宜杨桃多酚分离纯化的吸附剂。AB-8树脂对杨桃多酚的动态吸附量随上柱样液浓度的降低、上柱流速的增加而减少,适宜的上柱流速为2 BV/h流速。按照2 BV/h流速对杨桃多酚进行洗脱,在乙醇体积分数为54%时出现洗脱高峰。  相似文献   

5.
为充分利用香椿老叶,用D-101大孔吸附树脂对香椿叶中黄酮类成分进行分离纯化。以黄酮类成分的吸附率、洗脱率及黄酮纯度为指标,研究D-101大孔树脂对香椿中黄酮类成分的吸附能力及其稳定性。同时用清除1,1-二苯基苦基苯肼(DPPH)自由基的能力对香椿叶中黄酮类成分的抗氧化能力进行评价。结果表明,D-101大孔树脂的最佳上样条件为香椿浸提液上样量5 BV,黄酮类成分浓度0.69 mg/mL,流速3 BV/h。最适洗脱条件为70%乙醇洗脱剂,洗脱剂用量5 BV,流速3 BV/h。树脂使用1次时,可将香椿中黄酮类成分的纯度由6.0%提升到45.14%,且树脂稳定性良好,可重复使用6次后再生。经大孔树脂分离纯化后的黄酮类成分具有很强的抗氧化能力,为抗坏血酸的1.33倍。  相似文献   

6.
筛选大孔树脂分离纯化朝鲜蓟茎叶中绿原酸及洋蓟素的最佳工艺,为后续研究及工业化大生产提供指导。以大孔树脂对绿原酸及洋蓟素的吸附率和解吸附率为指标筛选树脂种类,以上样速度、上样液中绿原酸与洋蓟素的质量浓度为指标,考察不同条件下AB-8大孔树脂对洋蓟茎叶提取液中绿原酸及洋蓟素分离纯化;以固体物中绿原酸及洋蓟素的质量浓度为指标,确立洗脱用乙醇的浓度及洗脱方式;采用HPLC法测定绿原酸及洋蓟素的含量。试验结果表明,选择AB-8大孔树脂,最佳纯化工艺为上样液绿原酸与洋蓟素的质量浓度分别为0.62,0.42 mg/mL,上样速度为1 BV/h;最佳洗脱方式是:用3倍柱体积的水洗涤除杂,再分别用2倍柱体积10%和75%的乙醇依次洗脱,最后用1倍柱体积的纯水冲洗,收集洗脱液与水洗液。HPLC法测定绿原酸及洋蓟素的质量分数分别为5.5%,4.6%。AB-8大孔树脂对洋蓟茎叶中绿原酸及洋蓟素分离纯化的综合性能较好,适合于工业化大生产,并符合市售产品要求。  相似文献   

7.
AB-8大孔吸附树脂分离纯化香鳞毛蕨总黄酮的研究   总被引:1,自引:1,他引:0  
刘广淼  常缨 《中国农学通报》2014,30(16):170-174
为提高香鳞毛蕨提取液中黄酮类化合物的纯度,利用AB-8大孔吸附树脂对香鳞毛蕨总黄酮的纯化条件进行系统的研究。以总黄酮吸附率、洗脱率以及总黄酮纯度为考察指标,考查AB-8树脂对香鳞毛蕨总黄酮的吸附能力。确定最佳上样条件为:香鳞毛蕨上样液中总黄酮的浓度为1.5 mg/mL,上样流速为1.5 mL/min。最合适的洗脱条件为:70%的乙醇,流速为1.0 mL/min(2 BV/h)。AB-8大孔吸附树脂对香鳞毛蕨黄酮有较好的吸附和解吸性能,纯化后香鳞毛蕨总黄酮纯度为38.4%。  相似文献   

8.
以柠条花为原料,采用大孔树脂分离纯化柠条花中总生物碱。通过对比6种不同型号大孔树脂对总生物碱吸附-解吸效果及静态动力学研究,确定AB-8大孔树脂为柠条花中总生物碱最佳纯化材料。通过单因素试验确定其对柠条花中总生物碱动态吸附-解吸最佳工艺条件为:上样液浓度为 2 mg/mL,上样pH为6.0,上样流速为2 BV/h;解吸剂为90%乙醇,解吸流速1.5 BV/h,解吸剂用量3 BV。在此条件下,柠条花中总生物碱分离纯化效果最佳,纯度为12.57%,表明AB-8大孔树脂对柠条花总生物碱具有较好的纯化效果。  相似文献   

9.
为优化筛选最优树脂分离纯化根皮苷的工艺技术参数,以多穗石柯根皮苷提取液为原料,比较研究D101、X-5、ADS-7、S-8、AB-8、NKA-9、HPD-100及HPD-400 8种大孔吸附树脂对多穗石柯根皮苷的静态吸附与解吸效果。结果表明:S-8树脂对根皮苷有较好的吸附与解吸效果,静态吸附量与解吸量分别达到14.70 mg/g和8.395 mg/g。当主要考虑根皮苷得率时,最优工艺条件为根皮苷上样浓度 0.9 mg/mL、上样流速3 BV/h、上样体积7 BV,洗脱剂乙醇体积分数60%、洗脱流速为4 BV/h、洗脱体积为3 BV,其根皮苷得率为89.89%,纯度为10.50%,根皮苷分离富集倍数为2.76倍;当主要考虑根皮苷纯度时,最优工艺参数为根皮苷上样浓度0.9 mg/mL、上样流速3 BV/h、上样体积7 BV,洗脱剂乙醇体积分数70%、洗脱流速为3 BV/h、洗脱体积为3.5 BV,其根皮苷纯度为13.51%,得率为83.26%,根皮苷分离富集倍数为3.56倍。  相似文献   

10.
大孔吸附树脂纯化瓦松总三萜成分的工艺   总被引:1,自引:0,他引:1  
本研究以吸附率、解吸率为考察指标,采用静态吸附方法筛选出纯化效果最佳的LSA-21型树脂。考察各种因素对树脂吸附、解吸效果的影响,优化得到动态吸附最佳工艺条件为:上柱液浓度3.12 mg/m L,上样量203 m L,吸附速率3 BV/h,上柱液pH为6,解吸剂乙醇浓度70%,解吸剂用量180 m L。在此工艺条件下,吸附率及解吸率平均值分别为91.83%和91.41%,瓦松干浸膏中总三萜成分纯度从9.36%提高到40.56%,因此该工艺可以有效地纯化瓦松总三萜成分。  相似文献   

11.
紫苏籽壳原花青素纯化及抗氧化性研究   总被引:1,自引:0,他引:1  
旨在研究紫苏籽壳原花青素的纯化工艺及其体外抗氧化活性。采用大孔吸附树脂法,通过静态、动态实验,确定最佳纯化参数;采用分光光度法检测原花青素清除DPPH、ABTS自由基的能力,评价其抗氧化活性。结果表明,XDA-8是纯化紫苏籽壳原花青素的最优树脂,吸附率为63.41%,解吸率为78.98%。其最佳工艺为:上样流速4 BV/h、上样浓度4 mg/mL、洗脱剂乙醇体积分数70%、洗脱流速4 BV/h。在此条件下,原花青素纯度由5.25%提高到12.10%。紫苏籽壳原花青素纯化物对DPPH、ABTS自由基的半数抑制浓度IC50分别为2.138、0.3699 μg/mL,清除能力强于Vc。因此,XDA-8树脂纯化法简单、高效,可用于紫苏籽壳原花青素的纯化,且紫苏籽壳原花青素具有较强的体外抗氧化活性。  相似文献   

12.
大孔吸附树脂对虎杖中白藜芦醇的分离纯化研究   总被引:3,自引:1,他引:2  
旨在筛选出分离纯化虎杖中白藜芦醇的最佳大孔吸附树脂以及工艺条件。静态吸附与解吸、动态吸附与解吸通相结合的方法,以树脂的最大吸附量、解析率为考察指标,确定最佳的纯化工艺。H103树脂对白藜芦醇有较好的吸附与解吸效果,其最佳的工艺条件为粗提液中白藜芦醇的质量浓度为0.72 mg/mL、上样流速2 BV/h,吸附饱和后先用4 BV的蒸馏水进行洗涤,然后用8 BV、75%的乙醇溶液以1.5 BV/h的流速进行洗脱,白藜芦醇的含量可由纯化前的12.8%提升至53.5%。应用H103树脂对虎杖中的白藜芦醇进行纯化,其工艺稳定可行,具有吸附快、解吸容易、解吸液安全低毒且回收容易,具有较高的应用价值。  相似文献   

13.
为研究大孔吸附树脂分离枇杷叶科罗索酸的工艺条件及参数,以枇杷叶为原料,通过高效液相色谱法测定枇杷叶科罗索酸浓度,采用乙醇浸提法提取枇杷叶科罗索酸,并用活性炭进行脱色和大孔吸附树脂分离提取液中的科罗索酸。试验结果枇杷叶中科罗索酸提取得量为7.76 mg/g 干粉;枇杷叶提取液脱色条件为:氢氧化钠用量0.2%,活性炭用量1.5%,脱色温度为70℃,脱色时间20 min,枇杷叶提取液的色素去除率达90%,科罗索酸回收率为91.2%;大孔树脂分离静态试验结果表明,NKA9 大孔吸附树脂较适合枇杷叶科罗索酸的分离纯化,静态吸附率为96.3%,解吸率为80.9%。动态试验结果表明,枇杷叶科罗索酸的分离工艺参数为:上样流速为3 BV/h,洗脱剂体积分数为90%乙醇,用量为7 BV,洗脱流速为3 BV/h,获得科罗索酸的纯度为43.12%。  相似文献   

14.
利用大孔吸附树脂分离纯化葡萄皮渣中的白藜芦醇。实验结果表明,选取上样液流速为1.5BV/h,上样液质量浓度为10mg/mL,上样液pH值为4,解吸液体积分数为80%的乙醇和解吸流速0.75BV/h,以及树脂的再生等众多因素直接影响到层析的效果,经高效液相色谱测定,纯化所得白藜芦醇的得率为0.81%。  相似文献   

15.
李奕 《保鲜与加工》2021,21(7):64-70
采用大孔树脂纯化襄荷黄酮提取物,比较树脂之间静态吸附与洗脱性能的差异,确定最佳型号树脂的吸附机理后,采取动态吸附与洗脱试验确定最佳纯化工艺,另通过动物实验考查纯化后的襄荷黄酮抗疲劳活性.结果 表明,AB-8型大孔树脂为纯化襄荷黄酮的最佳树脂,饱和吸附量随上样浓度的升高逐渐增大,但随温度升高而逐渐减小,等温吸附线符合Langmuir模型特征,最佳纯化工艺条件为:60 mL上样浓度为6 mg/mL襄荷黄酮(pH 6.0),上样流速3 mL/min,洗脱流速2 mL/min,洗脱液乙醇浓度60%,洗脱液体积150 mL,产物的黄酮纯度由11.25%提高至47.52%.动物实验结果显示,中、高剂量的纯化产物可明显延长小鼠的负重游泳时间,降低运动后体内乳酸与尿素氮浓度,并提高乳酸脱氢酶的活力,因此可较好地缓解运动性疲劳.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号