首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
利用淮河流域171个站点1971-2010年的气象资料,采用FAO Penman-Monteith公式计算该区近40a的参考作物蒸散量(ET0),并对ET0的时空分布特征和影响因子进行定量分析。结果表明:淮河流域年ET0为898mm,近40a总体以17.5mm/10a的速率减小(P〈0.05);空间分布显示西北部大部站点ET0呈显著下降趋势(P〈0.05),仅东南部个别站点呈显著上升趋势(P〈0.05)。各气象因子对ET0变化的贡献表现为两方面,即ET0对气象因子的敏感性和气象因子的多年相对变化率,在4个主要因子中(平均温度、相对湿度、日照时数和风速),ET0对相对湿度的变化最敏感(敏感系数最大),而风速的多年平均变化率最大。从各因子的贡献率看,对ET0贡献最大的是风速,平均温度的贡献最小,4个因子对ET0变化的总贡献率为-4.96%,总贡献率为负在很大程度上解释了ET0呈下降趋势的原因。  相似文献   

2.
根据海南岛18个气象站1971–2010年逐日气象资料和Penman–Monteith模型计算各站ET0,利用线性回归和ArcGIS空间插值技术分析年和四季ET0的时空变化特征,并采用敏感系数和气象因子的相对变化率相结合的方法对年和四季ET0变化成因进行分析。结果表明:海南岛18个市(县)年ET0均值为1191.4mm,其空间分布,除夏季外,年和其余各季ET0大致呈由东北向西南递增的趋势。近40a海南岛18个市(县)年ET0的气候倾向率均值为-5.0mm×10a-1,其中13市(县)为负值,5市(县)为正值。春、夏、秋、冬四季ET0的气候倾向率分别为-3.1、1.8、-0.7和-2.8mm×10a-1。总体来看,年ET0减少的区域主要是由于春季ET0减少所致,年ET0增加的区域主要是因夏季ET0增加之故。引起海南岛大部分地区年和春、夏、秋季ET0减少的主要原因是平均风速减小和日照时数的减少,冬季ET0减少除与平均风速减小、日照时数减少有关外,水汽压增加也是主要成因之一。年和四季ET0增加的区域主要是平均最高和平均最低气温升高。  相似文献   

3.
参考作物蒸散量是灌溉设计、灌溉计划等的基础数据,利用滇中地区19个气象台站的观测数据,计算了滇中地区的参考作物蒸散量(ET0),分析了ET0时间和空间的变化特征及气象要素对其的影响。结果表明:研究区的ET0于1982年发生突变,1960—1982年变化趋势不明显,1982—2002年呈现下降的趋势,2003—2012年ET0呈现增加的趋势,多年平均ET0约为1 223.7 mm。ET0的空间特征表现为中部高,东西低,春季最大,夏季高于秋季,冬季最小,高值区出现在元谋地区。ET0与风速、气温和日照时数呈现显著的正相关关系,与相对湿度呈现极显著的负相关关系。偏相关分析和逐步回归分析显示在年尺度上,风速、相对湿度和日照时数的组合可以预测ET0的年际变化。  相似文献   

4.
甘肃地区参考作物蒸散量时空变化研究   总被引:25,自引:6,他引:25       下载免费PDF全文
区域水土平衡模型的建立通常需要确定计算参考作物蒸散量的模型,这一模型的精确与否,直接影响整体预测模型的最终预报精度.运用FAO-24 Blaney-Criddle法、FAO-24 Radiation法、FAO PPP-17 Penman法及FAO Penman-Monteith(98) 4种方法,对甘肃省1981~2000年33个站点的月参考作物蒸散量进行了计算.对比分析结果表明,AO Penman-Monteith(98)模型的精度与灵敏度均显示了较强的优越性.运用该模型对甘肃省参考作物蒸散量的时空分布特征进行研究表明:甘肃省参考作物蒸散量年内逐月演变曲线呈单峰状;年际蒸散量变化与夏季年际波动变化存在较高一致性;全年参考作物蒸散量分布具有从东南向西北递增的趋势.  相似文献   

5.
基于北疆地区20个气象站点1966-2012年逐日气象数据,采用Penman-Monteith公式计算各站生长季逐日参考作物蒸散量(ET0),利用线性趋势分析、M-K突变检验、因子贡献率、敏感系数等方法,对该地区ET0的时空变化规律及其对气象要素的敏感性进行分析。结果表明,北疆地区生长季ET0多年平均值为939.43mm,47a间以16.30mm×10a-1的速率呈极显著下降趋势(P水汽压>风速>日照时数。水汽压升高、风速减小、日照时数减少对ET0的减小作用超过温度上升对ET0的增大作用,是导致近47a北疆地区ET0总体呈下降趋势的根本原因。  相似文献   

6.
基于阿勒泰地区7个气象站1961—2012年逐日气象资料,采用Penman-Monteith模型计算了逐日参考作物蒸散量,运用Mann-Kendall非参数检验法、小波分析法,并结合ArcGIS软件对作物参考蒸散量的时空变化特征进行了研究。结果表明:阿勒泰年和春季作物参考蒸散量呈增加趋势,而夏季、秋季和冬季作物参考蒸散量呈减少趋势。年和夏季的作物参考蒸散量分别在1994年、1992年发生突变,而春季、秋季和冬季的作物参考蒸散量则没有发生突变。年和四季的作物参考蒸散量都存在27 a的周期。空间分布上,年、春季、夏季和秋季的平均作物参考蒸散量呈自阿勒泰市南部和福海县西北部向东部、南部和西部逐渐递减的变化趋势。而冬季作物潜在蒸散量大致呈现自西向东逐渐递减。变化趋势上,春季潜在蒸散量在空间上都呈增加趋势,而年、夏季、秋季和冬季的潜在蒸散量在阿勒泰的东部呈增加趋势,在西部则呈减少趋势。  相似文献   

7.
基于石河子地区1961—2012年4个气象站数据,采用FAO推荐的Penman-Monteith模型计算了参考作物蒸散量(ET0),分析了ET0时间变化特征及其对气象因子的敏感性,并结合各气象要素的多年相对变化定量分析了气象因子对ET0的贡献。结果表明:近52年来,石河子地区平均ET0以1.19 mm/a的趋势增加,2004年为突变年,并存在27 a左右的周期。ET0变化对各气象要素的敏感性以及气象因子对ET0变化的贡献有所不同,其中,平均气温的贡献率较小,但其敏感系数最高,对ET0变化的贡献是最大,使平均气温成为ET0变化贡献最大的气象因素。突变后最高气温和最低气温的贡献率较大,但其敏感系数较低,平均气温为主导因子明显上升。  相似文献   

8.
为预测气候因子变化引起的区域参考作物蒸散量(ETo)的变化,以黄土高原地区为研究区,运用FAOPenman-Montieth方程计算了68个站点1961-2010年生长季参考作物蒸散量,并计算其对平均气温、太阳辐射、风速和实际水汽压的敏感系数,最后分析了敏感系数的时空变化特征.结果表明,黄土高原地区生长季ETo对实际水汽压最敏感,其次是太阳辐射和平均气温,对风速的敏感性最低;平均气温的敏感系数和实际水汽压敏感系数绝对值呈单峰型分布,二者分别在7月、9月达到最大值,太阳辐射敏感系数表现为持续上升趋势,风速敏感系数波动幅度最小,其值在4月最大;生长季气候因子敏感系数的空间差异性显著,平均气温敏感系数西部明显大于东部,太阳辐射敏感系数在高海拔地区形成高值区,风速敏感系数在西风带Ⅳ区形成高值区,实际水汽压敏感系数在黄土高原湿润地带最大.  相似文献   

9.
石羊河流域近53 a参考作物蒸散量的敏感性分析   总被引:1,自引:0,他引:1  
利用国家气象信息中心提供的地面气候资料日值数据集,基于FAO Penman-Monteith公式计算了石羊河流域4个测站1959-2011年的逐日参考作物蒸散量(ET0)。利用敏感系数法计算了其对平均最高气温、平均最低气温、风速、平均相对湿度和日照时数的敏感系数,并分析了敏感系数的时空变化特征。结果表明,石羊河流域ET0对相对湿度最敏感,其次为风速和气温,而对日照时数的敏感性最低。由于气象要素分布不均,敏感系数的空间差异显著,相对湿度的敏感系数在上游祁连山区形成高值区,同时,气温在该区的敏感系数也相对较大,而风速的敏感系数在下游民勤盆地较大,日照时数的敏感系数在全区无明显差异。各气象因子的敏感系数均存在一定程度的波动,风速的敏感系数冬高夏低,气温和日照时数的敏感系数均为夏季最高,相对湿度敏感系数的绝对值持续上升在秋季达到最大。53 a来,相对湿度敏感系数波动变化,近20 a来其绝对值上升趋势显著,而风速、日照时数和气温的敏感系数无明显变化趋势。  相似文献   

10.
衡水市参考作物蒸散量的时空变化特征及其气候成因   总被引:2,自引:0,他引:2  
参考作物蒸散量是计算作物需水量的关键,是进行实时灌溉预报和农田水分管理的主要参数.本文基于1981-2010年衡水市11个站点的地面气象观测资料,利用FAO推荐的Penman-Monteith公式计算参考作物蒸散量(ET0),通过小波分析、突变检验等方法分析其时空变化特征,并采用相关分析法初步探讨其气候成因.结果表明,(1)近30a衡水市年参考作物蒸散量呈显著下降趋势(P<0.05),除2、3月外,其它月份的参考作物蒸散量均有下降趋势;衡水东北部年参考作物蒸散量较大,西南部及安平较小,年参考作物蒸散量较大的地区其下降速率也较大,较小的地区其下降速率也较小.(2)衡水市年参考作物蒸散量存在准6a的主要振荡周期,周期显著;6、8和12月以及全年参考作物蒸散量均发生了气候突变;全区一致型是衡水市年及月参考作物蒸散量变化的最主要的空间模态,且其空间分布均具有很好的收敛性.(3)气温日较差、最高气温、日照时数和相对湿度是影响参考作物蒸散量变化的关键气候因子,其影响程度因季节而异,ET0与气温日较差、最高气温和日照时数呈显著正相关(P<0.05),与相对湿度呈显著负相关(P<0.05),风速变化对ET0影响较小;其中5-9月ET0受日照时数影响最大,受气温日较差、相对湿度和最高气温的影响依次减小.  相似文献   

11.
基于甘肃省29个气象站点1984-2019年逐日气象资料,分析ET0时空变化规律,结合主成分分析、聚类分析、灰色关联度、通径分析、敏感性分析等多种定性与定量分析方法,揭示ET0与气候因子间的内在关系,并探明甘肃省ET0对各气候因子敏感性及贡献大小。结果表明:近36a甘肃省ET0整体呈现显著(α=0.05)上升趋势,并于1998年发生突变。研究期内ET0空间分布呈现由东南向西北递增的趋势,甘南高原小,河西平原大,高值区ET0在1049.3~1260.9mm区间变化。主成分分析表明温度、湿度和辐射对ET0的影响较大,风速影响相对较小,聚类分析及灰色关联度分析结果显示,日最高温度Tmax、相对湿度RH、风速u、降水量P、日照时数n为5个关键气候因子,Tmax是最主要因素,P作用最小。ET0对气候因子敏感性存在差异,对RH最为敏感,且Tmax、n、u起正向作用,RH起反向作用,RH、Tmax、n、u贡献率分别为3.79%、7.22%、-0.42%和3.70%。近36a甘肃省ET0呈现增大趋势是由于RH、n减少和T升高、u增大共同作用的结果,T升高是造成ET0增加的主要原因。研究成果为该地区科学配置灌溉用水,高效开发利用水资源,揭示气候变化条件下水文循环−蒸散发环节的响应机理提供科学依据,同时,多种方法探索性结合运用为ET0变化驱动因子分析提供了新的思路。  相似文献   

12.
西北旱区参考作物蒸散量空间格局演变特征分析   总被引:1,自引:0,他引:1  
利用西北旱区124个站点10a逐日气温、相对湿度、日照时数和风速资料,采用FAO的Penman-Monteith和Kriging方法对参考作物蒸散量进行估算和空间化,分析2000-2009年作物生长季(4-9月)参考作物蒸散量年际变化≥0.4mm区域质心的空间迁移规律。结果表明,作物生长季(4-9月)年际日均蒸散量变化≥0.4mm地区的质心整体经历从西到东两次波动,最后定位在中东部,质心迁移路径空间变化表现为由较发散变为较集中,然后到较发散;从各月年际变化上看,4月质心迁移平面距离最长,其次为7、9、6、8月,5月最短;迁移方向没有明显变化规律,各月质心最后到达位置各不相同,但是都处于内蒙古地区。近10a(2000-2009年)来,4-9月参考作物年际日均蒸散量变化≥0.4mm区域的面积呈现一定的增加趋势,其中4、6、9月的波动较大,年际变化趋势不明显,而5、7、8月面积变化曲线呈稳定增加趋势(P<0.05)。8月蒸散量对平均温度正向敏感的站点最多,敏感性较高的站点主要分布在中部和南部地区,其次是日照时数,蒸散量对相对湿度敏感的站点最少。研究结果对农业旱情监测、水资源管理和评价具有重要意义。  相似文献   

13.
北京市参考作物蒸散量的时空分布特征   总被引:22,自引:9,他引:22  
利用北京市各气象站点的长期观测资料,使用FAO推荐的Penman-Monteith法,计算了各站点逐月参考作物蒸散量ET0。在此基础上使用插值生成ET0的灰度分布图与等值线图,分析了ET0的时空分布特征。研究结果发现,北京市ET0分布具有2个常年稳定的低蒸发中心及多个随季节变化的高蒸发中心。区域内海拔高度与地形变化造成地表温度和热量平衡变化是导致ET0时空变化特征的主导因素;风速、日照时数和相对湿度等气象因素及其综合作用对ET0也有较大的影响。  相似文献   

14.
基于塔里木盆地19个气象站2000−2019年生长季逐日气象数据,采用FAO−56PM公式计算各站逐日ET0,运用敏感系数、ArcGIS反距离权重插值、气候倾向率和Mann-Kendall非参数检验等方法,对该地区ET0的时空变化规律及ET0对关键气象因子的敏感性进行分析。结果表明:(1)近20a来,塔里木盆地生长季ET0日均值在空间上呈北低南高的趋势,多年ET0日均值从大到小依次为6、7、5、8、4、9和10月,其值分别为5.84、5.73、5.29、4.95、4.23、3.65和2.17mm⋅d−1,气候倾向率分别为−0.09、0.24、0.11、−0.07、0.16、0.07和0.08mm⋅10a−1,ET0日均值在盆地中、西部以负倾向率为主,盆地东部则以正倾向率为主。(2)整个生长季,塔里木盆地的相对湿度逐月增加,2m处风速逐月减小,日照时数则呈先增加后降低的趋势,最低气温和最高气温均呈倒U形分布,且均在7月达到最大值。相对湿度的变化以负倾向率为主,2m处风速和最低气温的变化以正倾向率为主,日照时数和最高气温变化的倾向率无明显规律。(3)在生长季(4−10月),塔里木盆地ET0对关键气象因子的敏感性表现为最高气温>相对湿度>日照时数>2m处风速>最低气温,ET0对最低气温的敏感性以较低敏感性为主,对其余气象因子均以高敏感性为主。ET0对最低气温和最高气温最敏感的月份是7月,而对相对湿度、2m处风速和日照时数最敏感的月份分别是10月、4月和8月。ET0对相对湿度的敏感系数绝对值的空间分布呈由北向南递减的趋势,对2m处风速和最高气温的敏感系数均以塔克拉玛干沙漠为高值中心,对日照时数无明显规律,对最低气温则呈由西向东递减的趋势。  相似文献   

15.
利用辽宁省凌河流域10个气象站1965-2006年的逐日气象资料,采用FAO推荐的P-M公式计算各站逐日参考作物腾发量(ET0),在分析生长季(4-9月)各气象要素及ET0变化趋势的基础上,用基于敏感系数的贡献值法探讨各气象要素变化对ET0变化的贡献。结果表明:近42a来,凌河流域生长季ET0以21.46mm·10a-1的速率极显著降低(P<0.01),平均值为706.73mm,其中最大值发生在5月,最小值发生在9月;ET0高值区集中在朝阳和北票等地,低值区位于义县一带。研究区生长季太阳辐射以0.293MJ·m-2·d-1·10a-1的速率递减;除阜新外其余各站风速均呈极显著下降趋势(P<0.01);在全球气候变暖的背景下,过去42a凌河流域生长季平均气温以0.289℃·10a-1的速度上升,其中4月和9月变化显著(P<0.05),7月相对稳定。研究区生长季相对湿度变化不大。敏感性分析结果表明,流域内生长季平均ET0对各气象要素变化的敏感性大小依次为太阳辐射>相对湿度>风速>温度,但在研究时段内,显著变化的风速对ET0变化贡献最大,其次为太阳辐射,温度对ET0变化的贡献最小。太阳辐射和风速变化对ET0变化的贡献在流域西部较大,而在东部较小;温度变化对ET0变化的贡献总体上表现为由流域中部向东西两端递减;相对湿度变化对ET0变化的贡献在空间分布上较分散。  相似文献   

16.
四川地区参考作物蒸散量的变化特征及气候影响因素分析   总被引:10,自引:0,他引:10  
参考作物蒸散量是估算作物需水量的关键因子,对指导农田灌溉具有重要的现实意义。本文利用1961-2009年四川地区5个盆地站点和5个高原站点的逐日气候资料,采用FAO推荐的Penman-Monteith公式计算参考作物蒸散量(ET0),分析了当地ET0的日值、月值、季值和年值的变化特征,并采用偏相关分析方法,对影响ET0变化的主要气候因子进行了探讨。结果表明:(1)四川盆地与高原地区参考作物蒸散量的日均值、月均值呈单峰或双峰型曲线变化,有明显的季节特点,最小值出现在冬季,最大值出现在夏季。(2)盆地地区各站点的年ET0呈波动递减趋势,且下降趋势通过了显著性检验;高原地区木里、松潘两站点的ET0呈上升趋势,其他站点呈减少的趋势。(3)四川地区的年、季参考作物蒸散量与日照时数、风速、相对湿度、平均温度、最高温度、最低温度、气压等要素关系密切,但近50a来日照时数的显著下降是导致盆地地区参考作物蒸散量减少的主要原因,风速的变化是导致高原地区参考作物蒸散量变化的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号