首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 96 毫秒
1.
The Bacillus thuringiensis vegetative insecticidal protein, Vip3 A, represents a new family of Bt toxin and is currently applied to commercial transgenic cotton. To determine whether the Cry1Ac-resistant Helicoverpa armigera is cross-resistant to Vip3 Aa protein, insecticidal activities, proteolytic activations and binding properties of Vip3 Aa toxin were investigated using Cry1Ac-susceptible(96S) and Cry1Ac-resistant H. armigera strain(Cry1Ac-R). The toxicity of Vip3 Aa in Cry1Ac-R slightly reduced compared with 96 S, the resistance ratio was only 1.7-fold. The digestion rate of full-length Vip3 Aa by gut juice extracts from 96 S was little faster than that from Cry1Ac-R. Surface plasmon resonance(SPR) showed there was no significant difference between the binding affinity of Vip3 Aa and BBMVs between 96 S and Cry1Ac-R strains, and there was no significant competitive binding between Vip3 Aa and Cry1 Ac in susceptible or resistant strains. So there had little cross-resistance between Vip3 Aa and Cry1 Ac,Vip3A+Cry proteins maybe the suitable pyramid strategy to control H. armigera in China in the future.  相似文献   

2.
Receptor proteins on the brush border membrane of the insect midgut epithelium are involved in the mode of action of insecticidal Cry proteins from Bacillus thuringiensis(Bt). Polycalin has been identified as a binding protein of the Bt Cry1 Ac toxin in several Lepidoptera including Helicoverpa armigera, but its role in the action mechanism of Cry2 Aa is still unclear. In this study, we investigated the binding characteristics of polycalin from the midgut of H. armigera with Cry2 Aa and its role in the toxicity of Cry2 Aa. The results demonstrated that heterologously expressed H. armigera polycalin peptide could bind with Cry2 Aa with high affinity(K_d=32 nmol L~(–1)). The toxicity of Cry2 Aa decreased by 27% after H. armigera larvae ingested polycalin antisera. These results suggested that polycalin could be a potential functional receptor for Cry2 Aa, and it plays an important role in the susceptibility of H. armigera to Cry2 Aa.  相似文献   

3.
Carbohydrate chains are the principal antigens by which Bacillus thuringiensis(Bt) identify receptor proteins. The interaction between the antigen and Bt causes a pore in the membrane of midgut epithelial cells of insects. Receptor proteins, such as aminopeptidase N and alkaline phosphatase, are glycoproteins. Cadherin is another cell surface receptor protein which has potential glycosylation sites. Glycosyltransferase is very important for the synthesis and modification of receptor proteins. It can indirectly influence the function of Bt. The 1 950 bp full-length c DNA encoding β-1,3-galactosyltransferase was cloned from the the midgut of Helicoverpa armigera by degenerative PCR combined with RACE techniques(GAL-Harm, Gen Bank accession no.: GQ904195.1) with two potential N-glycosylation sites(157NNTI160 and 272NKTL275). Protein sequence alignments revealed that H. armigera β-1,3-galactosyltransferase shared high identity with β-1,3-galactosyltransferase in other insect species. The expression level of the β-1,3-galactosyltransferase gene in Cry1Ac-resistant H. armigera larvae was 9.2-fold higher than that in susceptible strain. The function of β-1,3-galactosyltransferase was investigated using RNAi technique. The result showed Cry1 Ac enhanced the toxicity against the si RNA-treated larvae compared with non-si RNA-treated ones, which indicated β-1,3-galactosyltransferase played an important role for the insecticidal toxicity of Cry1 Ac in H. armigera.  相似文献   

4.
Carbohydrate chains are the principal antigens by which Bacillus thuringiensis(Bt) identify receptor proteins. The interaction between the antigen and Bt causes a pore in the membrane of midgut epithelial cells of insects. Receptor proteins, such as aminopeptidase N and alkaline phosphatase, are glycoproteins. Cadherin is another cell surface receptor protein which has potential glycosylation sites. Glycosyltransferase is very important for the synthesis and modification of receptor proteins. It can indirectly influence the function of Bt. The 1 950 bp full-length c DNA encoding β-1,3-galactosyltransferase was cloned from the the midgut of Helicoverpa armigera by degenerative PCR combined with RACE techniques(GAL-Harm, Gen Bank accession no.: GQ904195.1) with two potential N-glycosylation sites(157NNTI160 and 272NKTL275). Protein sequence alignments revealed that H. armigera β-1,3-galactosyltransferase shared high identity with β-1,3-galactosyltransferase in other insect species. The expression level of the β-1,3-galactosyltransferase gene in Cry1Ac-resistant H. armigera larvae was 9.2-fold higher than that in susceptible strain. The function of β-1,3-galactosyltransferase was investigated using RNAi technique. The result showed Cry1 Ac enhanced the toxicity against the si RNA-treated larvae compared with non-si RNA-treated ones, which indicated β-1,3-galactosyltransferase played an important role for the insecticidal toxicity of Cry1 Ac in H. armigera.  相似文献   

5.
The 7-ethoxycoumarin O-deethylase (ECOD) activities of cytochrome P450s and differential expression of six cytochrome P450 genes induced by the volatiles from both damaged and undamaged maize plants were investigated in the cotton bollworm, Helicoverpa armigera (Hübner). The ECOD activity changed with time of exposure to maize volatiles. At 36 h after cotton bollworm larvae exposure to maize volatiles, the ECOD activities in cotton bollworm damaged and artificially damaged groups were 2.36 and 4.53 times higher than the control group respectively. The relative expression levels of CYP4S1, CYP6B2 and CYP6B7 in the cotton bollworm were significantly increased in artificially damaged plant group, which was 2.93, 5.09 and 10.66 times higher than that in the control group, respectively. The expression levels of CYP6B2, CYP6B6, CYP9A12, and CYP9A14 were much lower in the larvae exposure to volatiles from both healthy and pest damaged maize seedlings than in the control group at 12 h after larvae exposure to maize volatiles. For the cotton bollworm damaged maize group, the expression of CYP4S1 and CYP9A14 increased.  相似文献   

6.
A chemosensory protein named HarmCSP5 in cotton bollworm Helicoverpa armigera (Hübner) was obtained from antennal cDNA libraries and expressed in Escherichia coli. The real time quantitative PCR (RT-qPCR) results indicated that HarmCSP5 gene was mainly expressed in male and female antennae but also expressed in female legs and wings. Competitive binding assays were performed to test the binding affinity of recombinant HarmCSP5 to 60 odor molecules including some cotton volatiles. The resules showed that HarmCSP5 showed strong binding abilities to 4-ehtylbenzaldehyde and 3,4-dimethlbenz aldehyde, whereas methyl phenylacetate, 2-decanone, 1-pentanol, carvenol, isoborneol, nerolidol, 2-nonanone and ethyl heptanoate have relatively weak binding affinity. Moreover, the predicted 3D model of HarmCSP5 consists of six α-helices located among residues 33–38 (α1), 40–48 (α2), 62–72 (α3), 80–96 (α4), 98–108 (α5), and 116–119 (α6), two pairs of disulfide bridges Cys49-Cys55, Cys75-Cys78. The two amino acid residues, Ile94 and Trp101, may play crucial roles in HarmCSP5 binding with ligands and need further study for confirmation.  相似文献   

7.
采用实时荧光定量PCR,测定棉铃虫Helicoverpa armigera (Hübner)细胞色素P450 CYP9A14基因在氯氰菊酯抗性棉铃虫中肠里的表达量,结果表明抗性棉铃虫是敏感棉铃虫中肠表达量的17倍.将棉铃虫中肠P450 CYP9A14基因的一个490bp反向重复片段以双链RNA干扰(double-stranded RNA interference,dsRNAD的方法重组到棉铃虫核型多角体病毒(helicoverpa nuclear polyhedrosis virus,HaNPV)中,结果表明以该重组病毒注射氯氰菊酯抗性棉铃虫体内后,幼虫中肠CYP9A14基因的转录水平显著下降.  相似文献   

8.
Cry toxins produced by Bacillus thuringiensis (Bt) are effective biological insecticides against certain insect species.In this study,bioassay results indicated that CrylB and Cry1C were toxic to Spodo...  相似文献   

9.
In order to explore the response dynamics of the activities of defense related enzymes in cotton leaves towards the interactive stress of Helicoverpa armigera herbivory and omethoate application, the activities of phenylalanine ammonia-lyase(PAL), lipoxygenase(LOX), and polyphenol oxidase(PPO) were examined from 6 to 126 h after cotton leaves were treated 12 h of H. armigera herbivory, and then sprayed with 800 mg L–1 omethoate. The results showed that the changes in the activities of PAL, LOX and PPO that occured under the interactive stress of H. armigera herbivory and omethoate application reflected the interactive effects of the two stresses on cotton defense. The similarity between the response dynamics of PAL, LOX, and PPO activities in cotton leaves under the interactive stress and that under H. armigera herbivory treatment alone showed that the induction of H. armigera herbivory on the activities of PAL, LOX and PPO in cotton leaves played a leading role in the interactive effects, and the effect of omethoate application played only a minor role. A joint factor analysis was performed according to a method which has been used to analyze the joint toxicity of pesticides; this analysis sought to clarify if there was a synergistic, antagonistic, or additive effect on PAL, LOX, and PPO activity in cotton leaves resulting from the interactive H. armigera herbivory and omethoate treatment. In the interactive effect on the response of PAL activity in cotton leaves, antagonistic effects of the omethoate application towards H. armigera herbivory were observed at 6 and 12 h. Synergistic effects were then observed at 18 and 30 h. Antagonistic effects were observed from 54 to 78 h and synergistic effects were finally observed at 126 h. The correlation between H. armigera herbivory and omethoate application in the interactive effect on cotton defense responses of LOX activity also fluctuated from synergism to antagonism during the time course. In the interactive effect on PPO activity, only antagonism was observed between H. armigera herbivory and omethoate application. In the interactive stress of H. armigera herbivory and omethoate application on cotton defense responses, omethoate affected the defense responses of cotton to H. armigera herbivory by producing antagonistic and synergistic effects. These results will be useful to understand the relationship between host plant and herbivorous pest.  相似文献   

10.
The brush border membrane vesicles (BBMVs) in midgut of Helicoverpa armigera were successfully separated, and most of the Aminopeptidase N (APN) activities in BBMV were preserved. The 3-[(3-chlor-amidopropyl) dimethylammonio]-l-propane-sulphonate (CHAPS) can enhance the dissolution of BBMV, and phosphatidylinositol-specific phosopholipase C (PI-PLC) can cleave the APN from midgut membrane. The APN was primarily purified using a Mono-Q column. The results of immunoblotting showed that the 120 and 170 kDa proteins in the BBMV could bind CrylAc, and 120 kDa APN was a glycosylphosphalidylinositol(GPI)-anchored protein. Two Bt-resistant strains (Bt-P, Bt-M) were obtained after being selected for more than five years in laboratory using Bt insecticides and Bt transgenic cotton incorporated into diet separately. The resistance of Bt-P and Bt-M were 1 083.3 and 48.7 times that of susceptible strain. The genes encoding APNI in midgut of susceptible and resistant H.armigera were cloned by PCR and RACE techniques. The inferred amino acid sequences of APNI possessed the common character of APN family in insects. In comparison with APNI in susceptible strain, three nucleotide mutations were observed in the APNI of Bt-M strain and resulted in two amino acid replace in the putative protein sequences, and eight nucleotide mutations were observed in Bt-P strain and resulted in five amino acid replace.  相似文献   

11.
经室内10代筛选,棉铃虫对苏云金芽胞杆菌菌株YBT-1520和HD-73伴胞晶体产生了一定水平的抗性,F10代的抗性指数分别为1.30和2.07。从中可以看出棉铃虫对苏云金芽胞杆菌抗性发展的初步规律,即棉铃虫对多基因毒素(YBT-1520ICPs)的抗性发展比对单基因毒素(HD-73ICPs)的抗性发展速度要慢得多。  相似文献   

12.
Bacillus thuringiensis (Bt) exhibits strong insecticidal activity and is harmless to non-target organisms such as human and animals. Bt becomes the most commonly used environment-friendly insecticidal microorganism. However, the insecticidal activities of different Bt strains variy significantly. Therefore, it is particularly important to compare the insecticidal activities of different strains and explore their insecticidal effector mechanisms to expand Bt insecticidal spectrum and enrich transgenic resources. Here, the insecticidal activities of Vip3Aa57 and Vip3Aa62 strains, carrying vegetative insecticidal protein-encoding genes that were inserted into the expression vector pET-21b and transformed into Escherichia coli Rosetta (DE3) strain, expressing 88 ku protein, were compared. Vip3Aa57 protein reportedly displayed body weight inhibition effect on Spodoptera exigua without affecting Heliothis armigera while Vip3Aa62 protein was known to have strong insecticidal activity against S. exigua (LC50=5.124 ng ? mg-1). A low H. armigera activity (LC50=870.1 ng ? mg-1) was observed. The paraffin sectioning results showed that Vip3Aa57 protein affected S. exigua midgut cell morphology. The laser confocal microscopic imaging results showed that Vip3Aa57 bound to receptors in the midgut without damaging the midgut tissue morphology. This study would be conducive for making full use of Bt strains in the soil to compare the insecticidal activities of different Vip insecticidal genes. It could thus provide significant help in revealing the underlying insecticidal mechanisms of Vip3Aa insecticidal genes, developing new insecticidal proteins and delaying pest resistance problems.  相似文献   

13.
14.
【目的】 研究棉铃虫(Helicoverpa armigera)中肠蛋白ABCC1(HaABCC1)与Cry1Ac的结合特性及对Cry1Ac毒力的影响,明确HaABCC1在Cry1Ac杀虫机制中的作用。【方法】 分析HaABCC1基因序列,设计引物,通过原核表达得到HaABCC1两个跨膜区片段的蛋白,与Cry1Ac进行Ligand blot试验,验证其与Cry1Ac的体外结合特性;利用RNAi技术干扰棉铃虫幼虫的HaABCC1,在3龄幼虫腹部注射siABCC1,比较HaABCC1的表达量及Cry1Ac处理后棉铃虫死亡率的变化;通过细胞转染将ABCC1导入Sf9细胞系中,确定pAc-ABCC1重组质粒转入Sf9细胞后,用细胞生物测定的方法比较Cry1Ac处理后细胞死亡率的变化;比较敏感品系(96S)和Cry1Ac抗性品系(BtR)棉铃虫的HaABCC1基因全长序列,并通过荧光定量RT-PCR检测HaABCC1在抗、感棉铃虫中的表达量。【结果】 HaABCC1跨膜区TMD1和TMD2在Escherichia coli BL21(DE3)感受态细胞中成功表达,两个HaABCC1跨膜区片段蛋白均能与活化的Cry1Ac在体外结合;棉铃虫注射siABCC1后,HaABCC1的表达量显著下降,与未注射的棉铃虫、注射DEPC水和siEGFP的棉铃虫相比,用活化的Cry1Ac蛋白处理HaABCC1被干扰的棉铃虫,其幼虫死亡率显著降低,表明棉铃虫幼虫的HaABCC1被干扰后,能显著降低Cry1Ac对棉铃虫的毒力;用活化的Cry1Ac蛋白处理成功转入HaABCC1的Sf9细胞,与对照Sf9细胞相比,细胞的死亡率明显上升,表明将HaABCC1导入Sf9后能显著提高Cry1Ac处理后的细胞死亡率;抗性品系(BtR)与敏感品系(96S)棉铃虫的HaABCC1氨基酸序列没有差别,但抗性品系BtR棉铃虫HaABCC1的表达量显著降低。【结论】 HaABCC1是Cry1Ac的特异性结合蛋白,可能是Cry1Ac的功能受体蛋白,并可能参与对Cry1Ac的抗性机制。  相似文献   

15.
【目的】通过比较Cry1Ac抗、感棉铃虫昆虫中肠碱性磷酸酶(ALP1)表达量的差异及抗性棉铃虫取食Cry1Ac蛋白对ALP1表达量的影响,分析ALP1表达量变化与抗性的关系,为进一步明确Bt抗性机制、制定抗性治理策略提供理论依据。【方法】利用实时荧光定量PCR技术,比较敏感棉铃虫、Cry1Ac抗性棉铃虫取食含Cry1Ac蛋白的饲料和正常饲料后ALP1表达量的差异。【结果】ALP1在棉铃虫整个发育期都表达,幼虫的表达量最高,蛹期表达量最低,在成虫体内也有较高的表达;ALP1在幼虫中肠表达量最高,其次是后肠、前肠、马氏管,表皮中的表达量最低;与敏感品系相比,对Cry1Ac具有中等水平抗性的棉铃虫ALP1表达量明显增加,尤其是取食含Cry1Ac蛋白饲料的抗性棉铃虫幼虫的ALP1的表达量显著升高,但抗性棉铃虫取食正常饲料后,2、3龄幼虫的ALP1的表达量与敏感棉铃虫差异不显著;所有的抗性品系4龄棉铃虫幼虫中肠ALP1的表达量都显著高于敏感品系,而且随着棉铃虫抗性倍数的升高,ALP1的表达量呈逐渐降低的趋势。【结论】抗性棉铃虫中肠ALP1表达量的改变可能与Cry1Ac抗性、Cry1Ac代谢有一定的关系。  相似文献   

16.
对久效磷抗性棉铃虫品系的选育及其乙酰胆碱酯酶的研究   总被引:4,自引:0,他引:4  
用久效磷对采集于山东聊城抗性地区的棉铃虫Helicoverpa armigera (Huebner)进行抗性品系选育,经过10代的室内选育,抗性倍数达211.88倍,为选育前的6.67倍,发现筛选后对氰戊菊酯,氯氰菊酯和灭多威的抗生分别下降了8.13,7.44和13.36倍,对甲基对硫磷和辛硫酸的抗性基本保持不变,这说明久效磷与其他5种被试药剂之间没有明显的交互抗性,还对抗,感棉铃虫体内AChE进行了研究,对久效磷抑制粗酶液的实验表明,抗性品系锦铃虫体内AChE的交互抗笥,还原抗,感棉铃虫体内AChE进行研究,对久效磷抑制粗酶液的实验表明,抗性品系棉铃虫体内AChE的I50是敏感品系的3.18倍,酶液纯化使抗,感品系AChE的I50分别下降6.69和3.49倍,说明粗提液中存在AChE保护因子,且这种保护因子在抗性品系中更有效,但纯化后,抗,感品系的AChE敏感性之间仍存在1.66倍的差异,此外,两品系AChE的动力学参数也存在显差异,由此认为AChE敏感性降低与其它因子共同组成了棉铃虫对久效磷的抗性机制。  相似文献   

17.
【目的】克隆及序列分析棉铃虫(Helicoverpa armigera)α-微管蛋白基因的cDNA序列,并检测棉铃虫α、β两种微管蛋白基因的表达情况。【方法】以棉铃虫3龄幼虫为试验材料,采用RT-PCR及RACE技术克隆棉铃虫α-微管蛋白基因(HeTubA),采用荧光定量PCR(QRT-PCR)技术分析棉铃虫α、β-微管蛋白基因在不同生长发育阶段及成虫器官中的表达模式。【结果】克隆得到棉铃虫α-微管蛋白基因(GenBank登录号为JQ069957)。序列分析表明,HeTubA开放阅读框1 353 bp,编码450个氨基酸组成的多肽,氨基酸序列包含多个α-微管蛋白保守区。与其它一些昆虫的一致性分析表明,HeTubA与八字地老虎(Xestia c-nigrum)、柑橘凤蝶(Papilio xuthus)及家蚕(Bombyx mori)的α-微管蛋白氨基酸序列同源性最高,α-微管蛋白基因在长期进化中非常保守。荧光定量PCR表明,棉铃虫α、β-微管蛋白基因不具有生长发育阶段及成虫器官特异性,且二者均在复眼表达高,腹部表达低;HeTubA在末龄幼虫期和蛹期高水平表达,HeTubB在末龄幼虫期和成虫期高水平表达。【结论】成功克隆了棉铃虫α-微管蛋白基因,对2种微管蛋白基因的表达模式进行了检测,进一步进行了蛋白质3D结构的构建,可用于深入研究2种微管蛋白基因的功能及开发新型杀虫剂。  相似文献   

18.
为获取高活性的野生Bt菌株,对从土壤中分离的99株Bt菌株进行了营养期杀虫蛋白的分子鉴定和生物活性测定。根据已知的vip3 A基因序列设计1对特异性引物,进行PCR鉴定,55株扩增得到1.2 kb的目的片段。对31株阳性菌株的营养期杀虫蛋白活性进行了初步测定,结果显示,Bt LS1和LS8菌株毒力最高,2菌株对2龄甜菜夜蛾的体重抑制率分别为91.14%和93.59%。选取Bt LS1和LS8菌株进行胞内外营养期蛋白杀虫活性测定,发现Bt LS1和LS8菌株对初孵甜菜夜蛾体重抑制率分别为45.1%和43.2%,对初孵棉铃虫的校正死亡率分别为(22.1±1.4)%和(55.3±3.7)%,对2龄棉铃虫的体重抑制率分别为(78.7±6.6)%和(50.4±2.4)%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号