首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Femtosecond laser irradiation is used to excite adsorbed CO molecules on a Cu110 surface; the ensuing motion of individual molecules across the surface is characterized on a site-to-site basis by in situ scanning tunneling microscopy. Adsorbate motion both along and perpendicular to the rows of the Cu110 surface occurs readily, in marked contrast to the behavior seen for equilibrium diffusion processes. The experimental findings for the probability and direction of the molecular motion can be understood as a manifestation of strong coupling between the adsorbates' lateral degrees of freedom and the substrate electronic excitation produced by the femtosecond laser radiation.  相似文献   

2.
Inelastic electron tunneling spectroscopy at low temperatures was used to investigate vibrations of Au(111) and Cu(111). The low-energy peaks at 9 millielectron volts (meV) on Au(111) and 21 meV on Cu(111) are attributed to phonons at surfaces. On Au(111), the phonon energy is not influenced by the different stacking of the surface atoms, but it is considerably influenced by different atomic distances within the surface layer. The spatial variation of the phonon excitation is measured in inelastic electron tunneling maps on Au(111), which display atomic resolution. This atomic resolution is explained in terms of site-specific phonon excitation probabilities.  相似文献   

3.
Diffusion of oxygen molecules on transition metal oxide surfaces plays a vital role for the understanding of catalysis and photocatalysis on these materials. By means of time-resolved scanning tunneling microscopy, we provide evidence for a charge transfer-induced diffusion mechanism for O2 molecules adsorbed on a rutile TiO2(110) surface. The O2 hopping rate depended on the number of surface donors (oxygen vacancies), which determines the density of conduction band electrons. These results may have implications for the understanding of oxidation processes on metal oxides in general.  相似文献   

4.
Facile dissociation of reactants and weak binding of intermediates are key requirements for efficient and selective catalysis. However, these two variables are intimately linked in a way that does not generally allow the optimization of both properties simultaneously. By using desorption measurements in combination with high-resolution scanning tunneling microscopy, we show that individual, isolated Pd atoms in a Cu surface substantially lower the energy barrier to both hydrogen uptake on and subsequent desorption from the Cu metal surface. This facile hydrogen dissociation at Pd atom sites and weak binding to Cu allow for very selective hydrogenation of styrene and acetylene as compared with pure Cu or Pd metal alone.  相似文献   

5.
The adsorption, diffusion, and clustering of water molecules on a Pd(111) surface were studied by scanning tunneling microscopy. At 40 kelvin, low-coverage water adsorbs in the form of isolated molecules, which diffuse by hopping to nearest neighbor sites. Upon collision, they form first dimers, then trimers, tetramers, and so on. The mobility of these species increased by several orders of magnitude when dimers, trimers, and tetramers formed, and decreased again when the cluster contained five or more molecules. Cyclic hexamers were found to be particularly stable. They grow with further exposure to form a commensurate hexagonal honeycomb structure relative to the Pd(111) substrate. These observations illustrate the change in relative strength between intermolecular hydrogen bonds and molecule-substrate bonds as a function of water cluster size, the key property that determines the wetting properties of materials.  相似文献   

6.
The laser-induced movement of CO molecules over a platinum surface was followed in real time by means of ultrafast vibrational spectroscopy. Because the CO molecules bound on different surface sites exhibit different C-O stretch vibrational frequencies, the site-to-site hopping, triggered by excitation with a laser pulse, can be determined from subpicosecond changes in the vibrational spectra. The unexpectedly fast motion--characterized by a 500-femtosecond time constant--reveals that a rotational motion of the CO molecules, rather than pure translation, is required for this diffusion process. This conclusion is corroborated by density functional theory calculations.  相似文献   

7.
Lee HJ  Ho W 《Science (New York, N.Y.)》1999,286(5445):1719-1722
A scanning tunneling microscope (STM) was used to manipulate the bonding of a carbon monoxide (CO) molecule and to analyze the structure and vibrational properties of individual products. Individual iron (Fe) atoms were evaporated and coadsorbed with CO molecules on a silver (110) surface at 13 kelvin. A CO molecule was transferred from the surface to the STM tip and bonded with an Fe atom to form Fe(CO). A second CO molecule was similarly transferred and bonded with Fe(CO) to form Fe(CO)(2). Controlled bond formation and characterization at the single-bond level probe chemistry at the spatial limit.  相似文献   

8.
BC Stipe  MA Rezaei  W Ho 《Science (New York, N.Y.)》1998,280(5370):1732-1735
Vibrational spectra for a single molecule adsorbed on a solid surface have been obtained with a scanning tunneling microscope (STM). Inelastic electron tunneling spectra for an isolated acetylene (C2H2) molecule adsorbed on the copper (100) surface showed an increase in the tunneling conductance at 358 millivolts, resulting from excitation of the C-H stretch mode. An isotopic shift to 266 millivolts was observed for deuterated acetylene (C2D2). Vibrational microscopy from spatial imaging of the inelastic tunneling channels yielded additional data to further distinguish and characterize the two isotopes. Single-molecule vibrational analysis should lead to better understanding and control of surface chemistry at the atomic level.  相似文献   

9.
The structure of model silica-supported copper catalysts has been investigated with scanning tunneling microscopy (STM) and infrared reflection-absorption spectroscopy (IRAS). The IRAS studies of CO on the model silica-supported copper catalysts indicate that there are several types of copper clusters with surface structures similar to (111), (110), and other high-index planes of single-crystal copper. The STM studies show several types of copper clusters on silica and reveal images of metal clusters on an amorphous oxide support with atomic resolution.  相似文献   

10.
We have measured the quantum yield for exciting the motion of a single Co atom in CoCu(n) linear molecules constructed on a Cu(111) surface. The Co atom switched between two lattice positions during electron excitation from the tip of a scanning tunneling microscope. The tip location with highest probability for inducing motion was consistent with the position of an active state identified through electronic structure calculations. Atom motion within the molecule decreased with increased molecular length and reflected the corresponding variation in electronic structure.  相似文献   

11.
Carbon monoxide molecules were arranged in atomically precise configurations, which we call "molecule cascades," where the motion of one molecule causes the subsequent motion of another, and so on in a cascade of motion similar to a row of toppling dominoes. Isotopically pure cascades were assembled on a copper (111) surface with a low-temperature scanning tunneling microscope. The hopping rate of carbon monoxide molecules in cascades was found to be independent of temperature below 6 kelvin and to exhibit a pronounced isotope effect, hallmarks of a quantum tunneling process. At higher temperatures, we observed a thermally activated hopping rate with an anomalously low Arrhenius prefactor that we interpret as tunneling from excited vibrational states. We present a cascade-based computation scheme that has all of the devices and interconnects required for the one-time computation of an arbitrary logic function. Logic gates and other devices were implemented by engineered arrangements of molecules at the intersections of cascades. We demonstrate a three-input sorter that uses several AND gates and OR gates, as well as the crossover and fan-out units needed to connect them.  相似文献   

12.
席磊  王永芬 《安徽农业科学》2008,36(2):636-637,643
[目的]研究CO2施肥对向日葵积累金属能力的影响。[方法]在温室内采用盆栽试验,对不同Cu浓度土壤中生长的向日葵进行了不同浓度CO2施肥处理,观察向日葵的生物学性状及其Cu积累能力的变化。[结果]在Cu对照时,向日葵根中Cu的含量随着CO2施肥浓度的增加而显著升高;在CO2对照时,植株中的Cu含量随着土壤中Cu的增加而增加;在Cu污染土壤中,向日葵根、茎、叶中Cu含量均是在CO2800μl/L最大,且茎、叶中的Cu含量在CO2800μl/L、Cu100mg/kg(烘干土)时最高,分别为1626、2539mg/kg(干重);CO2施肥显著增加向日葵积累Cu的叶根比。[结论]CO2施肥显著增加了向日葵体内Cu的含量,植株各器官中Cu含量均高于CO2对照组。  相似文献   

13.
The electronic connection of single molecules to nanoelectrodes on a surface is a basic, unsolved problem in the emerging field of molecular nanoelectronics. By means of variable temperature scanning tunneling microscopy, we show that an organic molecule (C90H98), known as the Lander, can cause the rearrangement of atoms on a Cu(110) surface. These molecules act as templates accommodating metal atoms at the step edges of the copper substrate, forming metallic nanostructures (0.75 nanometers wide and 1.85 nanometers long) that are adapted to the dimensions of the molecule.  相似文献   

14.
We found that anthraquinone diffuses along a straight line across a flat, highly symmetric Cu111 surface. It can also reversibly attach one or two CO2 molecules as "cargo" and act as a "molecule carrier," thereby transforming the diffusive behavior of the CO2 molecules from isotropic to linear. Density functional theory calculations indicated a substrate-mediated attraction of approximately 0.12 electron volt (eV). Scanning tunneling microscopy revealed individual steps of the molecular complex on its diffusion pathway, with increases of approximately 0.03 and approximately 0.02 eV in the diffusion barrier upon attachment of the first and second CO2 molecule, respectively.  相似文献   

15.
The charge transport mechanism of a wire can be revealed by how its electrical resistance varies with length. We have measured the resistance and current-voltage characteristics of conjugated molecular wires ranging in length from 1 to 7 nanometers, connected between metal electrodes. We observe the theoretically predicted change in direct-current transport from tunneling to hopping as a function of systematically controlled wire length. We also demonstrate that site-specific disruption of conjugation in the wires greatly increases resistance in the hopping regime but has only a small effect in the tunneling regime. These nanoscale transport measurements elucidate the role of molecular length and bond architecture on molecular conductivity and open opportunities for greater understanding of electrical transport in conjugated polymer films.  相似文献   

16.
Tunneling electrons from a low-temperature (5 kelvin) scanning tunneling microscope were used to control, through resonant electronic excitation, the molecular dynamics of an individual biphenyl molecule adsorbed on a silicon(100) surface. Different reversible molecular movements were selectively activated by tuning the electron energy and by selecting precise locations for the excitation inside the molecule. Both the spatial selectivity and energy dependence of the electronic control are supported by spectroscopic measurements with the scanning tunneling microscope. These experiments demonstrate the feasibility of controlling the molecular dynamics of a single molecule through the localization of the electronic excitation inside the molecule.  相似文献   

17.
目的:探讨P波离散度(Pd)能否预测糖尿病患者伴发的阵发性心房颤动的发生。方法:观察42例有阵发性心房颤动病史的糖尿病患者(A组)的最大P波时限(Pmax)、最小P波时限(Pmin)、P波离散度(Pd)及左房内径(LAD),并与43例无阵发性心房颤动病史的糖尿病患者(B组)比较。结果:A组的Pmax及Pd显著高于B组;Pmin、LAD差异无显著。Pmax>110 ms或Pd>40 ms时,预测心房颤动的敏感性较高;Pmax>110ms+Pd>40ms时,预测心房颤动的特异性明显增高。结论:Pd增高可预测糖尿病患者伴发的阵发性心房颤动的发生,Pmax>110ms+Pd>40ms联用时可提高预测心房颤动的特异性、阳性预测值。  相似文献   

18.
A comprehensive inelastic neutron scattering study of magnetic excitations in the near optimally doped high-temperature superconductor YBa(2)Cu(3)O(6.85) is presented. The spin correlations in the normal state are commensurate with the crystal lattice, and the intensity is peaked around the wave vector characterizing the antiferromagnetic state of the insulating precursor, YBa(2)Cu(3)O(6). Profound modifications of the spin excitation spectrum appear abruptly below the superconducting transition temperature T(c), where a commensurate resonant mode and a set of weaker incommensurate peaks develop. The data are consistent with models that are based on an underlying two-dimensional Fermi surface, predicting a continuous, downward dispersion relation connecting the resonant mode and the incommensurate excitations. The magnetic incommensurability in the YBa(2)Cu(3)O(6+)(x) system is thus not simply related to that of another high-temperature superconductor, La(2-)(x)Sr(x)CuO(4), where incommensurate peaks persist well above T(c). The temperature-dependent incommensurability is difficult to reconcile with interpretations based on charge stripe formation in YBa(2)Cu(3)O(6+x) near optimum doping.  相似文献   

19.
Scanning tunneling microscopy was used to characterize the growth of oxidized areas on galena (100) surfaces and the formation of gold islands by the reductive adsorption of AuCl(4)(-) from aqueous solution. The gold islands and galena substrate were distinguished by atomic resolution imaging and tunneling spectroscopy. Oxidized areas on galena have [110]-trending boundaries; gold islands elongate along [110] directions. However, there are no obvious structural registry considerations that would lead to elongation of gold islands in a [110] direction. Instead, it is probable that a direct coupling of gold reduction and sulfide surface oxidation controls the initial formation of gold islands. Gold islands grow less quickly on preoxidized galena surfaces and show no preferred direction of growth.  相似文献   

20.
Insertion of a thin nonmagnetic copper Cu(001) layer between the tunnel barrier and the ferromagnetic electrode of a magnetic tunnel junction is shown to result in the oscillation of the tunnel magnetoresistance as a function of the Cu layer thickness. The effect is interpreted in terms of the formation of spin-polarized resonant tunneling. The amplitude of the oscillation is so large that even the sign of the tunnel magnetoresistance alternates. The oscillation period depends on the applied bias voltage, reflecting the energy band structure of Cu. The results are encouraging for the development of spin-dependent resonant tunneling devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号