首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: To evaluate sensitivities at the herd level of test strategies used in the Voluntary Johne's Disease Herd Status Program (VJDHSP) and alternative test strategies for detecting dairy cattle herds infected with Mycobacterium paratuberculosis. DESIGN: Nonrandom cross-sectional study. SAMPLE POPULATION: 64 dairy herds from Pennsylvania, Minnesota, Colorado, Ohio, and Wisconsin. Fifty-six herds had at least 1 cow shedding M. paratuberculosis in feces; the other 8 herds were free from paratuberculosis. PROCEDURE: For all adult cows in each herd, serum samples were tested for antibodies to M. paratuberculosis with an ELISA, and fecal samples were submitted for bacterial culture for M. paratuberculosis. Sensitivities at the herd level (probability of detecting infected herd) of various testing strategies were then evaluated. RESULTS: Sensitivity at the herd level of the testing strategy used in level 1 of the VJDHSP (use of the ELISA to test samples from 30 cows followed by confirmatory bacterial culture of feces from cows with positive ELISA result) ranged from 33 to 84% for infected herds, depending on percentage of cows in the herd with positive bacterial culture results. If follow-up bacterial culture was not used to confirm positive ELISA results, sensitivity ranged from 70 to 93%, but probability of identifying uninfected herds as infected was 89%. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that the testing strategy used in the VJDHSP will fail to identify as infected most dairy herds with a low prevalence of paratuberculosis. A higher percentage of infected herds was detected if follow-up bacterial culture was not used, but this test strategy was associated with a high probability of misclassifying uninfected herds.  相似文献   

2.
OBJECTIVE: To investigate the epidemiologic and financial impacts of targeted sampling of subpopulations of cows, compared with random sampling of all cows, for classification of dairy herd infection status for paratuberculosis. ANIMALS: All cows from 4 infected herds with a low-to-moderate prevalence of paratuberculosis and from 1 noninfected herd in California. PROCEDURE: The infection status of each cow was classified on the basis of results of an ELISA or combined ELISA and fecal culture results. Thirteen sampling schemes designed to randomly sample cows on the basis of lactation number, stage of lactation, and milk production were evaluated. Sampling without replacement was used to obtain a probability of herd detection of paratuberculosis for each evaluated sampling method and for simulated sample sizes between 30 and 150 cows. Marginal cost-effectiveness analysis was used to determine the cost increase relative to the increase in detection probability. RESULTS: Sampling cows in the third or higher lactation and > or = 200 days into lactation yielded the highest detection probability in most instances, resulting in a detection probability that was 1.4 to 2.5 times that obtained by sampling 30 cows in the second or higher lactation. Costs of testing via the alternative method with a 95% detection probability were approximately dollar 300 lower in a high-prevalence herd (31%) and dollar 800 lower in a low-prevalence herd (9%), compared with use of the reference method. CONCLUSIONS AND CLINICAL RELEVANCE: Detection of herds with paratuberculosis could be improved, and costs of testing substantially reduced by sampling targeted groups of cows.  相似文献   

3.
We developed a stochastic simulation model to compare the herd sensitivity (HSe) of five testing strategies for detection of Mycobacterium avium subsp. paratuberculosis (Map) in Midwestern US dairies. Testing strategies were ELISA serologic testing by two commercial assays (EA and EB), ELISA testing with follow-up of positive samples with individual fecal culture (EAIFC and EBIFC), individual fecal culture (IFC), pooled fecal culture (PFC), and culture of fecal slurry samples from the environment (ENV). We assumed that these dairies had no prior paratuberculosis-related testing and culling. We used cost-effectiveness (CE) analysis to compare the cost to HSe of testing strategies for different within-herd prevalences. HSe was strongly associated with within-herd prevalence, number of Map organisms shed in feces by infected cows, and number of samples tested. Among evaluated testing methods with 100% herd specificity (HSp), ENV was the most cost-effective method for herds with a low (5%), moderate (16%) or high (35%) Map prevalence. The PFC, IFC, EAIFC and EBIFC were increasingly more costly detection methods. Culture of six environmental samples per herd yielded >or=99% HSe in herds with >or=16% within-herd prevalence, but was not sufficient to achieve 95% HSe in low-prevalence herds (5%). Testing all cows using EAIFC or EBIFC, as is commonly done in paratuberculosis-screening programs, was less likely to achieve a HSe of 95% in low than in high prevalence herds. ELISA alone was a sensitive and low-cost testing method; however, without confirmatory fecal culture, testing 30 cows in non-infected herds yielded HSp of 21% and 91% for EA and EB, respectively.  相似文献   

4.
The sensitivity and specificity of the ELISA and fecal culture tests for paratuberculosis in dairy cattle are examined. ELISA and fecal culture data from seven dairy herds where both fecal cultures and ELISA testing was done concurrently are included. A cohort of 954 cattle including 697 parturient adults, cultured every 6 months from 10 herds followed over 4 years served as the basis to determine fecal culture sensitivity. The fecal culture technique utilized a 2g sample with centrifugation and double incubation. Of the 954 cattle cohort of all ages (calf to adult) that were fecal sampled on the first herd visit, 79 were culture positive. An additional 131 animals were detected as culture positive over the next seven tests at 6-month intervals. The sensitivity of fecal culture to detect infected cattle on the first sampling was 38%. Of the 697 parturient cattle cohort, 67 were positive on the first fecal culture, while an additional 91 adult cattle were culture positive over the next seven tests, resulting in a sensitivity of 42% on the first culture of the total animals identified as culture positive. Animals culled from the herds prior to being detected as infected and animals always fecal culture negative with culture positive tissues at slaughter are not included in the calculations. Both groups of infected cattle will lower the apparent sensitivity of fecal culture. Infected dairy herds tested concurrently with both fecal culture and ELISA usually resulted in more than twofold positive animals by culture compared to ELISA.The classification of infected cattle by the extent of shedding of Mycobacterium paratuberculosis in the feces helps define the relative proportion of cattle in each group and therefore the likelihood of detection by the ELISA test. ELISA has a higher sensitivity in animals with a heavier bacterial load, i.e. high shedders (75%) compared to low shedders (15%). Repeated testing of infected herds identifies a higher proportion of low shedders which are more likely to be ELISA negative. Thus, the sensitivity of the ELISA test decreases with repeated herd testing over time, since heavy shedders will be culled first from the herds.  相似文献   

5.
Fecal samples from 733 cows in 11 dairy herds with a low prevalence of paratuberculosis were cultured for the presence of Mycobacterium avium subsp. paratuberculosis both individually and after combining (pooling) in groups of 5. The culture procedure was the modified Jorgensen method, which uses NaOH and oxalic acid for decontamination and modified Lowenstein-Jensen agar slants for cultivation. Pooling was performed by mixing fecal samples from 5 animals ordered by age, herein referred to as strategic pooling. Culture of individual fecal samples detected M. a. paratuberculosis infections in 43 of the 733 cows and 7 of 11 infected herds (herd sensitivity = 64%). Culture of pooled fecal samples detected M. a. paratuberculosis in 28 of 151 pooled samples representing 8 of the infected 11 herds (herd sensitivity = 73%). Feces of the 43 culture-positive cows was included in 32 pools: of these 32 pools, 26 were culture positive and 6 were culture negative. In addition to the 26 positive pools containing feces from cows that were found culture positive on individual fecal samples, another 2 pools were culture positive, although comprised of feces from cows with negative results after culture of individual fecal samples. From the total of 45 infected cows that were found (43 by individual fecal culture and an additional 2 by pooled fecal culture), individual fecal culture detected 43 of these 45 (96%), while pooled fecal culture detected 39 (87%). Culture of strategically pooled fecal samples using the modified Jorgensen method was equivalent in herd sensitivity to the culture of individual fecal samples and is significantly less expensive.  相似文献   

6.
In herds with known prevalence (P) use of environmental sampling (ES) to detect Mycobacterium avium ssp. paratuberculosis (MAP) infected cattle herds was proofed in relation to P. In 31 MAP-infected free stall dairy herds and 15 non-infected herds P was defined by annually repeated whole herd testing by fecal culture (34 877 individual samples). Eight infected herds had a very low (> 0-2%), 14 a low (> 2-5%), four a medium (> 5-10%), and five a high P (> 10%). A mean number of nine environmental samples per herd were collected from the floor of lactating cows, milking, calving and sick cow areas and the crossover to the calf area. After twelve weeks cultivation on HEYM-medium with and without mycobactin positive samples were further characterized by PCR. All non-infected herds (100%) showed negative and 22 (71%) of the infected herds positive results in ES. Nine infected herds with negative ES results had a low P (0.04-4,04%). Proportion of positive ES depended on P and on sampling areas with 53.3% positive results in lactating cow areas and 45.2% in milking areas. For P > 5%, ES in these two areas caused a positive herd status; herds with P < 5% required sampling in the other areas too. The ES method has a herd sensitivity of 87% for dairy herds with P > 2% and provides an efficient tool to determine MAP infection status or herd prevalence.  相似文献   

7.
OBJECTIVE: To estimate seroprevalence of Mycobacterium avium subsp paratuberculosis (MAP) infection among adult dairy cows in Colorado and determine herd-level factors associated with the risk that individual cows would be seropositive. DESIGN: Cross-sectional observational study. ANIMALS: 10,280 adult (> or = 2 years old) dairy cows in 15 herds in Colorado. PROCEDURE: Serum samples were tested with a commercial ELISA. A herd was considered to be infected with MAP if results of mycobacterial culture of > or = 1 individual cow fecal sample were positive or if > or = 1 culled cow had histologic evidence of MAP infection. RESULTS: 424 of the 10,280 (4.12%) cows were seropositive. Within-herd prevalence of seropositive cows ranged from 0% to 7.82% (mean, 2.6%). Infection was confirmed in 11 dairies. Cows in herds that had imported > or = 8% of their current herd size annually during the preceding 5 years were 3.28 times as likely to be seropositive as were cows in herds that imported < 8%. Cows in herds with > or = 600 lactating cows were 3.12 times as likely to be seropositive as were cows in herds with < 600 lactating cows. Cows in herds with a history of clinical signs of MAP infection were 2.27 times as likely to be seropositive as were cows in herds without clinical signs. CONCLUSIONS AND CLINICAL RELEVANCE: Annual importation rate, herd size, and whether cows in the herd had clinical signs typical of MAP infection were associated with the risk that individual cows would be seropositive for MAP infection.  相似文献   

8.
Radiometric (RCM) and conventional fecal culture (HEY) and a commercial polymerase chain reaction/DNA probe were evaluated as diagnostic tests for subclinical paratuberculosis in dairy cattle using fecal specimens from a repository of paratuberculosis specimens. The case definition of subclinical bovine paratuberculosis was isolation of Mycobacterium paratuberculosis, by conventional or radiometric culture, from fecal samples or internal organs of dairy cattle without diarrhea or chronic weight loss. Animals designated as free of the disease originated exclusively from certified paratuberculosis-free herds in Wisconsin. Among 182 infected cattle, RCM and HEY fecal culture and the DNA probe had test sensitivities of 54.4%, 45.1% and 33.5%, respectively. Fecal samples from only 111 of the M. paratuberculosis-infected cows tested positive by at least one of the three tests and these cows were designated as fecal shedders; the remaining 71 were considered to have prepatent infections. Among the 111 M. paratuberculosis fecal shedders, RCM, HEY and the probe detected the organism in 89.2%, 73.8% and 55.0% of the fecal specimens, respectively. Herd prevalence significantly affected the sensitivity of all three diagnostic tests (p less than 0.05) but only affected the fecal shedder detection efficiency of the DNA probe (p less than 0.01). No positive DNA probe results were found on 100 randomly selected fecal samples from cows in four certified paratuberculosis-free herds, thus the DNA probe was 100% specific. Probe analyses could be performed in 24 h or less. Time to complete the culture-based tests was 12 wk for HEY and 7 wk for RCM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
OBJECTIVE: To evaluate sensitivity of microbial culture of pooled fecal samples for detection of Mycobacterium avium subsp paratuberculosis (MAP) in large dairy herds and assess the use of the method for estimation of MAP prevalence. ANIMALS: 1,740 lactating cows from 29 dairy herds in California. PROCEDURE: Serum from each cow was tested by use of a commercial ELISA kit. Individual fecal samples were cultured and used to create pooled fecal samples (10 randomly selected fecal samples/pool; 6 pooled samples/herd). Sensitivity of MAP detection was compared between Herrold's egg yolk (HEY) agar and a new liquid culture method. Bayesian methods were used to estimate true prevalence of MAP-infected cows and herd sensitivity. RESULTS: Estimated sensitivity for pooled fecal samples among all herds was 0.69 (25 culture-positive pools/36 pools that were MAP positive). Sensitivity increased as the number of culture-positive samples in a pool increased. The HEY agar method detected more infected cows than the liquid culture method but had lower sensitivity for pooled fecal samples. Prevalence of MAP-infected cows was estimated to be 4% (95% probability interval, 2% to 6%) on the basis of culture of pooled fecal samples. Herd-level sensitivity estimate ranged from 90% to 100% and was dependent on prevalence in the population and the sensitivity for culture of pooled fecal samples. CONCLUSIONS AND CLINICAL RELEVANCE: Use of pooled fecal samples from 10 cows was a cost-effective tool for herd screening and may provide a good estimate of the percentage of MAP-infected cows in dairy herds with a low prevalence of MAP.  相似文献   

10.
The objectives of this study were to estimate the prevalence of Mycobacterium avium subsp. paratuberculosis (MAP) among deer and rabbits surrounding infected and noninfected Minnesota dairy farms using fecal culture, and to describe the frequency that farm management practices were used that could potentially lead to transmission of infection between these species. Fecal samples from cows and the cow environment were collected from 108 Minnesota dairy herds, and fecal pellets from free-ranging white-tailed deer and eastern cottontail rabbits were collected from locations surrounding 114 farms; all samples were tested using bacterial culture. In addition, a questionnaire was administered to 114 herd owners. Sixty-two percent of the dairy herds had at least 1 positive fecal pool or environmental sample. A total of 218 rabbit samples were collected from 90% of the herds, and 309 deer samples were collected from 47% of the herds. On 2 (4%) of the farms sampled, 1 deer fecal sample was MAP positive. Both farms had samples from the cow fecal pool and cow environment that were positive by culture. On 2 (2%) other farms, 1 rabbit fecal sample was positive by culture to MAP, with one of these farms having positive cow fecal pools and cow environmental samples. Pasture was used on 79% of the study farms as a grazing area for cattle, mainly for dry cows (75%) and bred or prebred heifers (87%). Of the 114 farms, 88 (77%) provided access to drylot for their cattle, mainly for milking cows (77/88; 88%) and bred heifers (87%). Of all study farms, 90 (79%) used some solid manure broadcasting on their crop fields. Of all 114 farms, the estimated probability of daily physical contact between cattle manure and deer or rabbits was 20% and 25%, respectively. Possible contact between cattle manure and deer or rabbits was estimated to occur primarily from March through December. The frequency of pasture or drylot use and manure spreading on crop fields may be important risk factors for transmission of MAP among dairy cattle, deer, and rabbits. Although the MAP prevalence among rabbits and deer is low, their role as MAP reservoirs should be considered.  相似文献   

11.
Fifty dairy herds in Alberta were tested for the presence of Mycobacterium paratuberculosis by fecal culture and serum enzyme linked immunosorbent assay (ELISA). Individual sera (1500) were tested for antibodies to M. paratuberculosis by ELISA. Fecal samples were combined in pools of 3 (10 pools/herd) for a total of 500 pools that were cultured for M. paratuberculosis. Thirty cultures, including all 10 pools from 1 herd, were not readable due to fungal contamination. The remaining 470 cultures, representing 49 herds, yielded 16 positive pools (3.4% +/- 2.1%) from 10 herds (20.4% +/- 11.3%). The ELISA of each of the 1500 sera detected 105 (7.0% +/- 2.4%) positive sera and 20 (40.0% +/- 13.6%) positive herds, based on 2 or more individual positive sera in the herd. The true herd-level prevalence, as determined by ELISA, was 26.8% +/- 9.6%. The true herd-level prevalence, as determined by M. paratuberculosis fecal culture, ranged from 27.6% +/- 6.5% to 57.1% +/- 8.3%, depending on whether 1, 2, or all 3 individual fecal samples in the positive fecal pool were culture positive.  相似文献   

12.
OBJECTIVE: To determine prevalence of paratuberculosis among dairy cattle herds and to identify associated soil-related risk factors. SAMPLE POPULATION: Serum and soil samples for 121 Michigan dairy herds. PROCEDURE: Blood samples were collected from cows at each farm and tested for Mycobacterium paratuberculosis, using an antibody ELISA. Soil samples were collected from pastures and exercise lots; pH and available iron content were determined. A questionnaire was administered to collect data regarding farm management practices and productivity. RESULTS: 55% of the herds tested had > or = 2 M paratuberculosis-positive cattle. Adjusting sample prevalence for distribution of herd size strata yielded a statewide herd prevalence of 54%. Of 3,886 cattle tested, 267 had positive results. Prevalence of test-positive cattle was 6.9%. For every part per million (ppm) increase in soil iron content, there was a 1.4% increase in the risk of a herd being test-positive. An increase in soil pH of 0.1 was associated with a 5% decrease and an increase in soil iron content of 10 ppm was associated with a 4% increase in the number of test-positive cattle. Application of lime to pasture areas was associated with a herd being only 10% as likely to be paratuberculosis positive and with a 72% reduction in number of test-positive cattle. CONCLUSIONS AND CLINICAL RELEVANCE: Prevalence of paratuberculosis-positive dairy herds in Michigan (54%) was greater than expected, but prevalence of paratuberculosis-positive cattle (6.9%) was within anticipated values. These prevalences were associated positively with acidic soil and increased soil iron content. Application of lime to pasture areas was associated with reduced risk of paratuberculosis.  相似文献   

13.
In three New South Wales dairy cattle herds with endemic Johne's disease, prevalence rates by faecal culture were determined to be 12, 18 and 22%, respectively. Whole herd faecal culture was shown to detect markedly more infected cattle than whole herd testing by the EMAI absorbed ELISA, particularly in the two herds with greatest prevalence. In the three study herds, five methods for whole herd faecal culture were compared in each. These included two methods based on primary culture on Herrold's egg yolk medium with mycobactin J (HEYM): (1) conventional decontamination with sedimentation and primary culture on HEYM; (2) Whitlock decontamination and culture on HEYM. The remaining three methods were based on radiometric (BACTEC) culture: (3) decontamination and filtration to BACTEC medium; (4) modified Whitlock decontamination to BACTEC medium and (5) Whitlock decontamination to BACTEC medium. For BACTEC cultures, two methods were compared as confirmatory tests for Mycobacterium paratuberculosis: mycobactin dependence on conventional subculture to HEYM and IS900 PCR analysis of radiometric media.Among 179 cattle tested simultaneously by all five culture methods, 38 cattle were confirmed to be shedding M. paratuberculosis. In identifying shedder cattle, method 5 was the most sensitive, followed by methods 2, 4, 1, and 3 was the least sensitive. The number of BACTEC cultures confirmed by mycobactin dependence or PCR was similar.  相似文献   

14.
The purpose of this study was to survey the seroprevalence of infection with the agents of production-limiting diseases in dairy cattle in New Brunswick, Nova Scotia, and Prince Edward Island. In 30 randomly selected herds per province, 30 cattle per herd were randomly selected and tested for antibodies to bovine leukemia virus (BLV) and Mycobacterium avium subspecies paratuberculosis (M. paratuberculosis), while 5 unvaccinated cattle over 6 months of age were tested for antibodies to bovine viral diarrhea virus (BVDV). For BLV, 20.8% (15.8% to 27.0%) of cows were positive, and 70.0% (60.3% to 79.7%) of herds had at least one positive cow. In BLV-positive herds, the average BLV prevalence was 30.9% (24.8% to 37.2%). For M. paratuberculosis, 2.6% (1.8% to 3.9%) of cows were positive, and 16.7% (8.8% to 24.5%) of herds had at least 2 M. paratuberculosis-positive cows. In M. paratuberculosis-positive herds, the average M. paratuberculosis prevalence was 8.5% (6.9% to 10.1%). For BVDV, 46.1% (35.5% to 56.7%) of herds had at least 1 BVDV-positive animal with a titer greater than or equal to 1:64.  相似文献   

15.
A prerequisite for the success of any eradication programme is the accurate determination of the initial herd prevalence as well as a herd-specific prediction of prevalence development. This prerequisite is not currently given for the eradication of paratuberculosis in infected herds. In the work presented a method to predict the initial paratuberculosis prevalence in infected herds is presented; it is based on the formation of two groups (ELISA-positive and negative) and the determination of generally applicable factors (positive predictive value [ppvn] of the ELISA and sensitivity of fecal culture in the ELISA-negative group [senF]). The ppvn of the ELISA was determined to be 0.6 based on the cultural examination of the ileocaecal lymph node of 64 ELISA-positive animals; the value for senF was set to be 0.64 based on the cultural examination of feces and ileocaecal lymph nodes of 40 ELISA-negative animals. To calculate the initial herd prevalence the number of animals in each of the groups was multiplied with the ppvn of the ELISA or with the reciprocal value of senF (1.5). The values were added and divided by the size of the herd. The practicability of this model was examined on nine herds with a total of 708 animals. The development of herd prevalence was modelled based on the examination scheme given in the paratuberculosis control programme of the "Nieders?chsische Tierseuchenkasse" (local board for infectious disease control in food animals in the state of Lower Saxony, Germany). For the calculation a yearly turnover-rate of 33% with restocking from within the herd and a possibility of paratuberculosis diagnosis only in animals two years and older were assumed. The development of herd prevalence is exemplarily presented for four herds with different initial prevalences.  相似文献   

16.
A stochastic spreadsheet model was developed to obtain estimates of the costs of whole herd testing on dairy farms for Mycobacterium avium subsp. paratuberculosis (Map) with pooled fecal samples. The optimal pool size was investigated for 2 scenarios, prevalence (a low-prevalence herd [< or = 5%] and a high-prevalence herd [> 5%]) and for different herd sizes (100-, 250-, 500- and 1,000-cow herds). All adult animals in the herd were sampled, and the samples of the individuals were divided into equal sized pools. When a pool tested positive, the manure samples of the animals in the pool were tested individually. The individual samples from a negative pool were assumed negative and not tested individually. Distributions were used to model the uncertainty about the sensitivity of the fecal culture at farm level and Map prevalence. The model randomly allocated a disease status to the cows (not shedding, low Map shedder, moderate Map shedder, and heavy Map shedder) on the basis of the expected prevalence in the herd. Pooling was not efficient in 100-cow and 250-cow herds with low prevalence because the probability to detect a map infection in these herds became poor (53% and 88%) when samples were pooled. When samples were pooled in larger herds, the probability to detect at least 1 (moderate to heavy) shedder was > 90%. The cost reduction as a result of pooling varied from 43% in a 100-cow herd with a high prevalence to 71% in a 1,000-cow herd with a low prevalence. The optimal pool size increased with increasing herd size and varied from 3 for a 500-cow herd with a low prevalence to 5 for a 1,000-cow herd with a high prevalence.  相似文献   

17.
The objective of this study was to estimate the overall prevalence of animals that were infected with Mycobacterium avium ssp. paratuberculosis in a subpopulation of Alabama beef cattle. This was determined using a commercial enzyme-linked immunosorbent assay (ELISA) for the detection of M. avium ssp. paratuberculosis-specific antibodies in serum. Serum was collected from 79 herds that were participating in the Alabama Brucellosis Certification program. A total of 2,073 beef cattle were randomly tested by selecting 30 animals per herd in herds greater than 30 and selecting all animals in herds 30 and less for testing. It has been estimated that the commercial ELISA test used has a 60% sensitivity and a 97% specificity. Of the 79 herds tested, 29 herds were seronegative, 24 herds had 1-2 positive animals, and 26 herds had 3 or more seropositive animals. The average number of infected animals per positive herd was 3.3. In addition, a calculated minimum of 53.5% of the herds were identified as Johne's positive herds with a 95% confidence level. Of the total number of animals tested, 8.0% (166/2,073) of them were positive by the ELISA. After adjustments for test sensitivity and specificity and the proportion of animals sampled per herd, the true prevalence was calculated to be 8.75%. These data suggest that approximately 50% of the herds are infected with M. avium ssp. Paratuberculosis, and the overall prevalence of infection in Alabama beef cattle is approximately 8%, which correlates with other previously published regional estimates.  相似文献   

18.
OBJECTIVE: To estimate prevalence of Salmonella spp in Ohio dairy farms and to identify potential risk factors for fecal shedding of salmonellae. DESIGN: Cross-sectional study. SAMPLE POPULATION: 105 Ohio dairy farms. PROCEDURE: Individual fecal samples from all mature cows in study herds were tested for Salmonella spp by use of standard bacteriologic culture procedures. Herds were identified as infected if at least 1 cow was shedding Salmonella spp. Information regarding herd characteristics, management practices, and health history were collected. Potential risk factors for herd-level Salmonella infection were identified. RESULTS: In 31% of the study herds (95% confidence interval, 22 to 40%), at least 1 cow was shedding Salmonella spp. Six percent of 7,776 fecal samples contained Salmonella organisms; prevalence within infected herds ranged from < 1 to 97%. Herd size, use of free stalls for lactating and nonlactating cows, and use of straw bedding in nonlactating cows were significantly associated with fecal shedding of Salmonella spp, as determined by use of univariate analysis. By use of multivariate analysis, large herds were more likely to be infected than smaller herds; however, no other factors were associated with Salmonella infection after adjustment for herd size. CONCLUSIONS AND CLINICAL RELEVANCE: Subclinical shedding of Salmonella spp is common in Ohio dairy herds, although we could not identify specific interventions that may influence the prevalence of Salmonella spp on dairy farms. It appears that large herd size and intensive management may provide an environment conducive to Salmonella shedding and chronic dairy herd infection.  相似文献   

19.
OBJECTIVES: To determine the sensitivity of bacteriologic culture of pooled fecal samples in detecting Mycobacterium paratuberculosis, compared with bacteriologic culture of individual fecal samples in dairy cattle herds. STUDY DESIGN: Cross-sectional study. ANIMALS: 24 dairy cattle herds. PROCEDURE: Individual and pooled fecal samples were submitted for bacteriologic culture, and results were compared between these groups. RESULTS: Ninety-four and 88% of pooled fecal samples that contained feces from at least 1 animal with high (mean, > or = 50 colonies/tube) and moderate (mean, 10 to 49 colonies/tube) concentrations of M paratuberculosis, respectively, were identified by use of bacteriologic culture of pooled fecal samples. Prevalences of paratuberculosis determined by bacteriologic culture of pooled and individual fecal samples were highly correlated. CONCLUSIONS AND CLINICAL RELEVANCE: Bacteriologic culture of pooled fecal samples provided a valid and cost-effective method for the detection of M paratuberculosis infection in dairy cattle herds and can be used to estimate prevalence of infection within a herd.  相似文献   

20.
The objective of this study was to describe the estimated within-herd prevalence (WHP) of Mycobacterium avium subsp. paratuberculosis (Map) in a sample of infected dairy herds in Minnesota (N = 66) using test results from bacterial culture of pooled fecal samples. Fecal samples were collected from up to 100 cows in each herd and were tested using bacterial culture in pools of 5 cows based on age order. The mean herd size was 222 (44 to 1500) milking cows; the cows were predominantly Holstein. Using a frequentist approach, the within-herd mean individual fecal prevalence was 10% [95% confidence interval (CI) = 4% to 16%] assuming 70% test sensitivity and 99.5% test specificity. Using Bayesian methods, the estimated true within-herd individual cow prevalence was 14% (95% CI = 7% to 27%). Within-herd prevalence was higher in larger dairy herds than in herds with fewer cows. As Map is the causative agent of Johne's disease (JD), the results of this study could contribute to the success of a nationwide control program for this disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号