首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究液化产物树脂化合成工艺,表征液化木基酚醛树脂的物化性质,评价树脂的胶合强度和木破率.结果表明,采用一次缩聚的投料方式能简化操作工艺,缩短合成时间.木材液化产物中残渣的过滤与否,对树脂性能有一定程度的影响:残渣含量高时,影响较大;残渣含量低时,影响较小.当甲醛与苯酚的量比为1.5和1.8时,利用含11.0%残渣的杉木液化产物和含16.5%残渣的杨木液化产物,制备了性能优良的酚醛树脂.  相似文献   

2.
以脱脂大豆粉为原料制备大豆蛋白基胶黏剂(豆胶,S),以普通甲醛制备的酚醛树脂(PF_1)和高浓度甲醛制备的酚醛树脂(PF_2)为交联剂,使用前将两者直接混合得酚醛树脂改性豆胶(PF_1/S、PF_2/S)。利用差示扫描量热(DSC)、红外光谱(FT-IR)、动态热机械性能(DMA)和核磁共振碳谱(~(13) C NMR)分析对产品性能进行了测试与表征。结果表明:等物质的量之比条件下,高浓度甲醛较之普通甲醛制备的酚醛树脂改性豆胶胶合板干、湿剪切强度分别提高4.3%和11.6%,并且强度稳定性好;动态DSC分析表明,PF_2可以降低豆胶体系的固化温度和活化能,与豆胶的交联反应较容易;~(13) C NMR分析表明,PF_2体系羟甲基达88.73%,明显高于PF_1的80.91%;FT-IR分析证实酚醛树脂与豆胶中的氨基发生反应,并且PF_2反应效率更高;DMA分析表明,PF_2/S能够改善胶合产品的力学性能和热稳定性,降低豆胶的固化反应起始温度,提高固化反应速率。  相似文献   

3.
Wood of Chinese fir and poplar were liquefied in phenol at 150℃ and atmospheric pressure. The liquefied wood were reacted with formaldehyde to synthesize the liquefied wood-based resin. The factors affecting the resinification and the properties of new resin were investigated. The results show that the formaldehyde/liquefied wood molar ratio, reaction temperature, reaction time and sodium hydroxide/liquefied wood molar ratio have important influence on the resin characteristics. With the increase of formaldehyde/liquefied wood molar ratio, the yield of resin increases, and the flee phenol content of resins decreases, showing that the resinification of liquefied wood is more complete at higher formaldehyde/liquefied wood molar ratios. The reaction temperature on the viscosity of the liquefied resin has considerable effect; the viscosity of resin increased with increasing reaction temperature, and the amount of liquefied poplar resin increased more quickly than that of liquefied Chinese fir resin. The resinification time also has obvious influence on the viscosity of resin; the viscosity of liquefied poplar resin is more sensitive to resinification time compared with that of liquefied Chinese fir. The amount of sodium hydroxide can improve the water miscibility of liquefied wood resin. The optimum sodium hydroxide/liquefied wood molar ratio for preparation of liquefied wood-based resins exceeds 0.4.  相似文献   

4.
Scots pine (Pinus sylvestris L.) sapwood was impregnated with aqueous solutions of phenol formaldehyde and methylated melamine formaldehyde resins and subsequently cured in an oven. One set of specimens was cured in plastic bags to avoid drying (wet curing) while another set of samples was heated and water was allowed to freely evaporate (dry curing). Macroscopic resin distribution was investigated using X-ray densitometry and infrared spectroscopy (FTIR-ATR). During dry curing, the resins migrated to the wood surface resulting in a gradient. Wet curing resulted in even distribution of the resins because it was immobilized due to condensation and precipitation in the wood. Neither densitometry nor FTIR-ATR was found to be generally applicable for investigating resin distribution in modified wood. Wet curing resulted in low cell wall bulking as compared to dry curing, probably because resin precipitated before drying. Storing impregnated wood prior to curing under non-drying conditions (“diffusion phase”) also reduced cell wall penetration and bulking.  相似文献   

5.
木质纤维素及其组分转化木材胶粘剂的发展趋势   总被引:1,自引:0,他引:1  
木质素是造纸工业废液中的主要成分。其具有和酚醛树脂相似的结构, 因此可以部分替代苯酚用于酚醛树脂的生产。但是由于木质素化学结构复杂, 具有化学反应活性的位点少、反应官能团所收到的空间位阻大, 一般添加量不超过10%~20%。有机溶剂法制浆分离的木质素分子量大, 纯度高, 酚醛树脂允许的添加量可达20%~30%, 但是要求提高固化温度、延长固化时间来克服木质素反应活性低的限制。对木质素进行化学改性如羟甲基化、酚解、醇解、还原等, 可以降低分子量, 增加活性基团如酚羟基的含量、并使苯环上更多的活性位点暴露出来, 从而提高木质素的化学反应活性。酚醛树脂经过改性木质素的允许的添加量可达30%~40%。部分木质素含量高的木质纤维素类原料如核桃壳粉等, 经过研磨和化学活化处理后可以直接添加到酚醛树脂中, 部分替代苯酚而不对胶接性能产生影响。环碳酸酯类和多元醇混合物被用来作为全新的液化剂来把木质纤维素快速液化为有用的化学原料。所得到的液化产物具有较高的反应活性, 是今后利用木质纤维素开发绿色木材胶粘剂的一条可资利用的途径。  相似文献   

6.
研究了硫酸催化条件下,将恩茅松在苯酚中液化用于制备酚醛树脂的技术工艺,分析了各工艺参数对思茅松液化效率的影响,测定了由液化产物制备的液化木基酚醛树脂的物理化学性质和胶合强度。结论如下:1).液比、反应温度、时间和木粉目数是影响液化反应效率的重要因素,液化产物的残渣率均随上述工艺参数值的升高而降低。2).残渣含量对树脂物化性质和胶合强度均有影响,残渣含量降低,树脂粘度减小,聚合时间缩短,游离酚含量降低,胶合强度升高。3).甲醛/苯酚摩尔比对树脂的物化性质和胶合强度也有影响,甲醛/苯酚摩尔比增加,树脂粘度增加,聚合时间减少,游离酚含量减低,胶合强度升高。  相似文献   

7.
以油茶饼粕苯酚液化物为原料制备酚醛树脂,测定树脂的理化性能,评价树脂的胶合性能.考察了甲醛与苯酚的摩尔比(F/P)、氢氧化钠与苯酚的摩尔比(NaOH/P)和树脂化时间对树脂理化性能和胶合性能的影响.结果显示,在F/P 1.8、NaOH/P 0.6、树脂化时间70 min的条件下合成的酚醛树脂压制的胶合板能满足Ⅰ类胶合板强度要求.FTIR分析显示液化物树脂具有常规酚醛树脂典型的官能团特征,树脂中含有较多的羟甲基等活性官能团.  相似文献   

8.
The technology of liquefying processed-waste bamboo with phenol is investigated by single factor trials and an orthogonal design. We studied the preparation technology and properties of adhesives from this phenol-liquefied bamboo with formaldehyde (BPF). The results show that temperature has a significant effect on liquefaction. The effect of the mass ratio of phenol to bamboo comes second and the catalyst dosage within the range of 2%–4% is the least effective. The optimum conditions of liquefaction are as follows: a mass ratio of phenol to bamboo 3.5, a catalyst dosage of 4%, liquefying temperature 145°C and liquefying time 60 min. The liquefaction rate of bamboo reached 99.1%. For the preparation of the adhesive, a mass ratio of liquefied bamboo products to formaldehyde (37%) is 100 to 164.8–199.5, while the ratio 100 to 108.2 is the best. This adhesive has a lower curing temperature than that of normal PF resin. At a hot-press temperature of 130 or 140°C, this new adhesive provides excellent bonding strength of plywood. The most favorable temperature for hot-pressing is 140°C. __________ Translated from Chemistry and Industry of Forest Products, 2007, 27(6): 65–70 [译自: 林产化学与工业]  相似文献   

9.
反射荧光显微镜可观察水溶性酚醛树脂胶(PF)在杨木大片刨花中的渗透情况。通过显微观察及板内结合强度测试,结果表明,蒸汽冷凝水对水溶性PF树脂胶有稀释作用,改变胶的流动和渗透性能。采用喷蒸真空热压工艺时,须对水溶性PF胶进行改性,PF的分子量要大于传统工艺所要求的分子量,而且有必要采用适当的喷蒸保持时间  相似文献   

10.
To investigate value in use of liquefied wood-based resin applications in molding material, Chinese fir (Cunninghamia lanceolata) and poplar (Populus tomentosa) wood meal were liquefied in phenol. The reactant was co-condensed with formaldehyde to obtain liquefied wood-based resin. For this paper, we investigated the characterization of the resin and its application in molding material. The result shows that the basic properties of liquefied wood-based resin were satisfactory; the bonding strength of plywood prepared with liquefied Chinese fir and liquefied poplar resin can reach 1.54 and 1.00 MPa, respectively. The compression strengths of the molding material prepared with two kinds of liquefied wood resin were 73.01 and 73.58 MPa, almost the same as that of PF resin molding material. The limiting volume swelling of molding material made with liquefied Chinese resin and liquefied poplar resin were 8.5% and 8.3%, thickness swelling rates of water absorption were 3.3% and 4.2%, and the maximum weight ratios of water absorption were 25.9% and 26.2%, respectively. The soil burial test result shows that the weight loss rate of the molding materials made with liquefied Chinese resin and liquefied poplar resin were 8.3% and 9.1% and that of the PF resin molding material was 7.9%. After the soil internment test, the reduction ratio of compression strength of the two kinds of molding material achieved 16.9% and 17.7%, while that of the PF resin molding material was 15.4%. The test results of wood fungi inoculation on the three surfaces of the molding material indicate the breeding rate of molding material prepared with liquefied Chinese resin and liquefied poplar resin were at level 4 and that of PF resin molding material was at level 1 of the ISO standard.  相似文献   

11.
This study investigated the liquefaction of bamboo in phenol, which involved the effects of weight ratios of phenol to bamboo, amount of catalyst, temperature, etc. The study showed that liquefaction could be accomplished with a phenol to bamboo weight ratio of 2–1: 1, a 5% catalyst of HCl or BF3, and a temperature of 115°C. Liquefied bamboo formaldehyde (BLF) resin adhesive for exterior use could be obtained with a phenol to formaldehyde molar ratio of 1:1.6–2.0. The curing behavior of BLF resin adhesive, studied by TG-DSC and IR analyses, showed that BLF resin adhesives had a lower curing temperature than PF adhesives but had the same characteristic trough in IR spectra as PF adhesives. __________ Translated from Chemistry and Industry of Forest Products, 2004, 24(3) [译自: 林产化学与工业, 2004, 24(3)]  相似文献   

12.
To produce a highly stable wood-based product with increased mechanical properties, phenol formaldehyde (PF) resin impregnation was combined with the viscoelastic thermal compression (VTC) process. Dimensional stability and bending stiffness were evaluated. Two PF resins with weight average molecular weights of 172 and 780 were studied at three different concentrations, 5, 10 and 20%. After 24-h room temperature water soak and 2-h boil, both PF treatments at all concentration levels showed high levels of dimensional stability compared to non-impregnated VTC processed controls. The higher molecular weight PF provided greater stability with an average thickness swell value of 12% compared to 20 and 37% for the lower molecular weight PF resin treatment and control, respectively. High anti-swelling efficiency values were recorded for both low and high molecular weight resins, implying these modifications were effective at reducing the volumetric swelling which occurred in the unmodified control. PF treatments were also extremely effective at reducing irreversible swelling. The low and high molecular weight resin treatments had 1/5th and 1/7th the irreversible swelling than the unmodified VTC processed controls, respectively. All dimensional stability values improved as resin concentrations increased. Both resin types at all concentration levels reduced Young’s modulus.  相似文献   

13.
为了降低木材胶黏剂中的甲醛含量,减小胶合板甲醛释放对人体健康和环境造成的危害,采用乙二醛与单羟甲基脲(MMU)反应,合成了MMU与乙二醛物质的量之比分别为0.7∶1.0,0.9∶1.0,1.1∶1.0和1.3∶1.0的乙二醛?尿素?甲醛(GUF)共缩聚树脂;采用傅里叶变换红外光谱(FT?IR)和X射线衍射(XRD)对树脂的结构进行了表征,对树脂的基本性能、固化性能、润湿性能及胶合性能进行测定,并进行对比分析。结果表明,合成制备的GUF树脂稳定性较好,均超过了10 d;外观均为酒红色均一液体。MMU与乙二醛的物质的量之比对树脂固体含量和黏度有较大影响,固体含量随着物质的量之比增大而增大,当MMU与乙二醛物质的量之比为1.3∶1.0时,树脂的固体含量为63.12%;当MMU与乙二醛物质的量之比为0.9∶1.0时,树脂黏度的最小值为23.91 mPa·s。树脂的主要官能团(N—H、O—H、C??O、C—O—C和C—N)的红外吸收峰基本不受物质的量之比的影响。树脂对杨木单板的润湿性能良好,接触角为50.8°~57.3°;MMU与乙二醛的物质的量之比为1.3∶1.0时合成的GUF树脂性能较优,胶合板干状胶合强度和湿强度分别为1.81和1.47 MPa;低物质的量之比的GUF树脂固化后会出现晶体结构。  相似文献   

14.
稻壳的外表面覆盖有二氧化硅膜,使用传统的脲醛树脂(UF)和酚醛树脂胶(PF)生产的100%的稻壳板难以达到木质刨花板的质量指标。本研究采用以异氰酸酯(ISO)改性的脲醛树脂和酚醛树脂胶制造稻壳-木材复合材料。稻壳与木片的混合比例为1:1,施胶量为7%,设计密度0.8g/cm3。试验结果表明,3:4的ISO/UF、2:5的ISO/PF、改性胶粘剂制备的板材的物理力学性能达到国标刨花板二等品的要求;用3:4的ISO/PF改性胶粘剂制备的板材达到优等品的要求。  相似文献   

15.
In order to understand the impact of formaldehyde/urea (F/U) mole ratio on penetration characteristics of urea–formaldehyde (UF) resin into softwood tissues, a quantitative measurement of UF resin penetration into radiata pine (Pinus radiata) tissues from the bond-line was undertaken. Four different F/U mole ratios (1.6, 1.4, 1.2, and 1.0) of UF resins with different viscosities and two levels of hardener (NH4Cl) for two extreme F/U mole ratios (1.6 and 1.0) were studied. Firstly, field emission scanning electron microscope and confocal laser scanning microscopy were used to localize UF resins in the bond-line for the qualitative evaluation of resin penetration. Then light microscopy was employed to quantitatively measure the resin penetration and bond-line thickness. A decrease in the F/U mole ratio of UF resin that proportionately decreased the resin viscosity resulted in an increase in the average resin penetration and a decrease in the bond-line thickness. Higher hardener level provided a greater resin penetration with all F/U mole ratio UF resins. These results demonstrated that F/U mole ratio had an impact on the penetration and bond-line thickness of UF resins, owing to differences in the reactivity of resins, with higher F/U mole ratio resins being more reactive.  相似文献   

16.
从改进酚醛树脂的配方和合成工艺、合成酚醛树脂时添加催化剂或改性剂、调胶时添加固化剂等几个方面,综合叙述了国内外有关提高酚醛树脂固化速度的研究进展,以期为酚醛树脂的应用和研究提供参考。  相似文献   

17.
The effects of silane coupling agents and extractives on the wettability of reed and wheat straws were investigated. The inherent wettability of these materials was low but could be significantly improved by treating with silane coupling agents. The degree of improvement achieved by each silane coupling agent was different: Vinyl silane had almost no effect on wettability, epoxide silane was found to be more effective for reed straw, and amino silane was better for wheat straw. The wettability of these materials could also be improved by ethanol-benzene extraction, which resulted in more improvement in wheat straw than reed straw. The analyses of untreated reed and wheat straws by electron spectroscopy for chemical analysis (ESCA) revealed that there was much silicon on both the outer and inner surfaces of the former but only on the outer surface of the latter. The influence of hot-water extractives and silane coupling agents on the gelation time and pH of urea formaldehyde (UF) resin was also examined. The addition of extractives was found to increase the gelation time. Amino silane greatly retarded the gelation of OF resin, whereas epoxide and vinyl silanes had no influence on resin gelation. This retardation was found to be due to an increase in the pH of the resin.  相似文献   

18.
稻草中密度纤维板用改性脲醛树脂的研究   总被引:4,自引:2,他引:2  
对比三聚氰胺、二甲基硅油、硅树脂和偶联剂KH-550四种改性剂改性的脲醛(UF)树脂性能的差别及其对稻草中密度纤维板性能的影响,并进行经济评价,最终确定适用于稻草纤维板的改性UF树脂的工艺条件,同时借助于红外光谱(FT-IR)和差热扫描分析(DSC)研究最佳改性UF树脂的结构和固化特性.结果表明,三聚氰胺改性脲醛(MUF)树脂不论是对树脂性能、板性能改善还是从成本分析方面均为稻草纤维板最佳的胶黏剂,FT-IR显示出与未加三聚氰胺相比,加入三聚氰胺后树脂的羟甲基含量降低了10 %,DSC分析则表明其峰值温度有较大幅度的提高,但放出的热量较少.加入三聚氰胺改性的UF树脂其表面张力变小.  相似文献   

19.
Adhesive bond line stiffness is an important property that plays a significant role in the properties of wood composites, but is typically ignored by methods used for characterizing adhesive quality. This paper proposes a new test method that can measure effective bond line stiffness. The experiments measured the global stiffness of double-lap shear specimens and then calculated an adhesive stiffness property using shear-lag analysis of each specimen’s specific geometry and layer properties. Experiments were done for phenol formaldehyde (PF) and polyvinyl acetate (PVA) bonding wood strands of hybrid poplar and densified hybrid poplar. The stiffness of PF bond lines was an order of magnitude higher than PVA bond lines, and both were affected by the amount of adhesive coverage. The bond line stiffness with densified wood was similar to, or higher than undensified wood despite the lack of penetration of resin into the densified strands.  相似文献   

20.
用酚化木材制备酚醛树脂的研究   总被引:7,自引:0,他引:7  
本文研究了用酚化木材制备酚醛树脂的技术,并对其性能进行分析。在硫酸催化作用下,用苯酚对中国人工林杨树木粉进行液化。待液化产物冷却后,加入一定量的碱性催化剂和福尔马林,在(60?2)C下1小时,然后升温至(85?2)C继续反应1小时,冷却。同时观察了甲醛与苯酚的配比对树脂性能的影响。结果表明当甲醛与苯酚的摩尔比超过1.8时,用酚化木材制备的酚醛树脂具备较高的胶合强度和很强的胶合耐久性,并具有极低的醛类释放量。图4参13。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号