首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Defense responses to Fusarium oxysporum f. sp. asparagi and F. proliferatum were compared after root inoculation of the asparagus fern, Asparagus densiflorus vars. Myersii and Sprengeri, and cultivated asparagus, A. officinalis cv. Guelph Millennium. Both varieties of A. densiflorus exhibited a hypersensitive response with rapid death of epidermal cells within 8–24 h and restricted the fungal growth. In A. officinalis roots, rapid cell death was not found, and necrotic lesions were observed 8–14 d after fungal inoculation. Peroxidase and phenylalanine ammonia-lyase activities increased significantly in inoculated A. densiflorus but not A. officinalis plants. Local and systemic induction of peroxidase activity was detected after pathogen inoculation in root and spear tissues, respectively, of A. densiflorus. POX activity decreased in roots of inoculated A. officinalis by 8 d post-inoculation. Germination and germ tube growth were inhibited when spores of F. oxysporum f. sp. asparagi were incubated in root exudates and on root segment surfaces of inoculated A. densiflorus plants exhibiting hypersensitive cell death. Spore germination of F. proliferatum and three fungi non-pathogenic to cultivated asparagus was inhibited as well. Rapid induction of hypersensitive cell death in A. densiflorus was associated with restriction of fungal growth, and activation of peroxidase and phenylalanine ammonia-lyase, two defense enzymes thought to be important for plant disease resistance.  相似文献   

2.
A survey was made to identify the most important soilborne fungal pathogens of asparagus crops in the Netherlands. Ten plants were selected from each of five fields with a young (1–4 y) first planting, five fields with an old (6–13 y) first planting and five fields with a young replanting. The analysis included fungi present in the stem base and the roots of plants with symptoms of foot and root rot or showing growth decline without specific disease symptoms. Isolates of each species were tested for pathogenicity to asparagus on aseptically grown plantlets on Knop's agar. Symptoms were caused byFusarium oxysporum, F. culmorum, Botrytis cinerea, Penicillium verrucosum var.cyclopium, Cylindrocarpon didymum, Phialophora malorum, Phoma terrestris andAcremonium strictum. F. oxysporum was by far the most common species and was isolated from 80% of the plants. Not all of its isolates were pathogenic to asparagus. Symptoms were caused by 67%, 78% and 93% of the isolates obtained from young first plantings, old first plantings and replantings, respectively.F. culmorum was isolated from 31% of the plants. Two other notorious pathogens of asparagus,F. moniliforme andF. proliferatum, did not occur in our samples.Species causing symptoms in the vitro test that were found on more than 5% of the plants were additionally tested for their pathogenicity in pot experiments.F. oxysporum f.sp.asparagi caused severe foot and root rot, significantly reduced root weights and killed most of the plants.F. culmorum caused lesions on the stem base often resulting in death of the plant.P. terrestris, a fungus only once reported as a pathogen of asparagus, caused an extensive root rot, mainly of secondary roots that became reddish. The fungus was isolated in only a few samples and is not to be regarded as an important pathogen in Dutch asparagus crops.P. malorum caused many small brown lesions on the stem base and incidentally also on the upper part of small main roots. This is the first report of its pathogenicity to asparagus. The fungus is one of the organisms inciting spear rust and it reduced crop quality rather than crop yield.P. verrucosum var.cyclopium andC. didymum did not cause symptoms in pot experiments.Because of its predominance on plants with foot and root rot and its high virulence,F. oxysporum f.sp.asparagi was considered to be the main soilborne pathogen of asparagus in the Netherlands.  相似文献   

3.
The vegetative compatibility patterns among isolates ofElegans fusaria causing wilt disease of carnation were investigated. Nitrate non-utilizing mutants were generated from 16 isolates labelledF. redolens, nine of which came from carnation, and from 33 isolates labelledF. oxysporum, 19 of which came from carnation. Pairings of the mutants revealed five vegetative compatibility groups among the isolates from carnation, corresponding withF. oxysporum f.sp.dianthi race 1 (VCG1), race 2 (VCG2) and race 4 (VCG3),F. redolens f.sp.dianthi (VCG4) andF. redolens isolates from foot rot-diseased carnations (VCG5). Besides three isolates typical ofF. redolens, VCG4 comprised a now slightly deviating subculture of the type isolate ofF. redolens f.sp.dianthi of which the cultural characteristics correspond toF. oxysporum instead ofF. redolens. This observation may be taken to support previous conclusions that the distinction between both taxa is not justified. Otherwise, the compatibility patterns did not provide decisive evidence to accept or reject conspecificity of both taxa. Isolates from carnation did not form heterokaryons with other formae speciales ofF. oxysporum.Samenvatting De vegetatieve compatibiliteitspatronen bij isolaten vanElegans-fusaria die verwelkingsziekte bij anjer veroorzaken werden onderzocht. Van 16 isolaten vanF. redolens, waarvan negen afkomstig van anjers, en van 33 isolaten vanF. oxysporum, waarvan 19 afkomstig van anjers, werden mutanten gegenereerd die zonder een organische stikstofbron geen luchtmycelium meer konden vormen. Paringen tussen mutanten van isolaten afkomstig van anjers brachten een vijftal vegetatieve compatibiliteitsgroepen aan het licht, die overeenkwamen metF. oxysporum f.sp.dianthi fysio 1 (VCG 1), fysio 2 (VCG 2) en fysio 4 (VCG3),F. redolens f.sp.dianthi (VCG4) enF. redolens isolaten afkomstig van aan voetrot lijdende anjers (VCG5). Naast drie voorF. redolens karakteristieke isolaten omvatte VCG4 ook een afwijkende subculture van het type-isolaat vanF. redolens f.sp.dianthi, die in cultuureigenschappen overeen kwam metF. oxysporum in plaats vanF. redolens. Deze waarneming geeft enige steun aan eerdere conclusies dat het onderscheid tussen beide taxa niet gerechtvaardigd is. Daarbuiten gaven de compatibiliteitspatronen geen uitsluitsel over de mogelijke conspecificiteit van beide taxa. Isolaten afkomstig van anjers vormden geen heterokaryons met andere formae speciales vanF. oxysporum.  相似文献   

4.
The Elegans fusaria causing wilt disease of carnation. I. Taxonomy   总被引:1,自引:0,他引:1  
The distinction of the wilt disease pathogen of carnationFusarium (oxysporum var.)redolens fromF. oxysporum (var.oxysporum) is considered. Previous reports that isolates of both taxa cause indistinguishable diseases in carnation are confirmed.F. (oxysporum var.)redolens andF. oxysporum were found to form one variable complex on morphological criteria. Apparently, host specialization rather than morphological variation reflects the evolutionary relationships in theFusarium sectionElegans. The distinction ofF. redolens fromF. oxysporum does therefore not seem justified, neither at specific nor at varietal level.Samenvatting Het onderscheid tussenFusarium (oxysporum var.)redolens enF. (oxysporum var.)oxysporum als verwekkers van verwelkingsziekte bij anjer wordt ter discussie gesteld. Fytopathologisch onderzoek bevestigde vermeldingen in de literatuur dat voor anjer pathogene isolaten van beide soorten ziekten veroorzaken die niet te onderscheiden zijn; dit is ook bekend voor andere gewassen. Op morfologische gronden blekenF. (oxysporum var.)redolens enF. oxysporum één variabel complex te vormen. Kennelijk geeft de pathogene specialisatie inFusarium sectieElegans de evolutionaire verwantschappen beter weer dan de morfologische variatie. Het onderscheiden vanF. redolens naastF. oxysporum is daarom noch als soort, noch als variëteit gerechtvaardigd.  相似文献   

5.
Fusarium corm rot of saffron (Crocus sativus L.), incited by Fusarium oxysporum f. sp. gladioli, causes severe yield losses in Italy. Major symptoms during flowering (October–November) include yellowing and wilting of shoots, basal stem rot and corm rot. Sixty-four isolates of F. oxysporum f. sp. gladioli, obtained from infected saffron crops located in Italy (Abruzzi, Tuscany and Umbria) and in Spain, were characterized by pathogenicity and vegetative compatibility. Chlorate-resistant, nitrate-nonutilizing (nit) mutants were used to determine vegetative compatibility among the isolates of the pathogen with the aim of examining the genetic relatedness among populations from different locations. All the isolates belonged to vegetative compatibility group 0340. Since saffron shares susceptibility to F. oxysporum f. sp. gladioli with other ornamental plants of the Iridaceae (Crocus, Gladiolus, Iris and Ixia), it is likely that a clone of the pathogen (VCG 0340) was introduced with other hosts and is responsible for the disease outbreak observed on saffron in Italy. Alternatively, or additionally, the clone of F. oxysporum f. sp. gladioli causing disease on saffron in other countries may have spread to the saffron fields in Italy through the import and dispersal of infested propagation material.  相似文献   

6.
Asparagus replant-bound early decline (ARED) was characterized and its etiology was elucidated in experiments under greenhouse and field conditions. Selective soil treatments were used to differentiate between autotoxic compounds and soil-borne pathogens as causal agents. In greenhouse experiments, there were symptoms of ARED within 12—15 weeks. Asparagus plants grown in soil formerly used for asparagus (asparagus soil) showed brown lesions on primary and secondary roots, and many secondary roots had rotted. Root weights of plants grown in asparagus soil were lower than those of plants grown in fresh soil.Fusarium oxysporum f. sp.asparagi (Foa) was by far the most common species among the fungi isolated from roots with lesions. Under greenhouse and field conditions, there were similar symptoms, which indicates that the results obtained under greenhouse conditions are similar to those in the field. The vertical distribution of the ARED-causing factor(s) was studied in a greenhouse experiment in which plants were grown in soil from three layers: 0–30, 30–60, and 60–90 cm. For all four asparagus soils tested, there were ARED symptoms and similar disease severity in samples from all three depths. The causal factor persisted at least 11 years after soil was no longer used for asparagus. When asparagus soil was diluted with fresh soil to give mixtures with 100%, 80%, 50%, 20% and 0% asparagus soil, disease severity did not decrease with increasing dilution of the asparagus soil from 100% to 20%. Disease severity of all mixtures with asparagus soil was significantly higher than that for fresh soil. The results imply that ARED is caused by a pathogen colonizing the soil rather than inhibition by autotoxins released from residues of the preceding asparagus crop. This conclusion is supported by the results of greenhouse and outdoor experiments with heat and fungicide treatments of soil. ARED was nullified by heat treatments of 30 min at 55 or 60 °C but not 45 and 50 °C, eliminating autotoxins as an important cause of ARED because they are heat-stable. Foa is eliminated by a 30-min soil treatment at 55–60 °C but not 50 °C. Prochloraz, known for its toxicity toF. oxysporum, also nullified ARED. Disease severity level was related to the density of Foa in soil. The results provide conclusive evidence thatF. oxysporum f. sp.asparagi is the main cause of ARED in the Netherlands, which largely removes the need to discriminate between early decline and replant-bound early decline, because Foa is the main cause of both diseases.  相似文献   

7.
The diversity of Fusarium populations in asparagus (Asparagus officinalis L.) decline fields in Japan was estimated by PCR-SSCP (single-stranded conformational polymorphism) analysis of the ITS2 regions of the nuclear rRNA genes. This method was used to rapidly and objectively identify pathogens associated with roots of plants showing symptoms of asparagus decline collected from fields in five regions across Japan. Over 651 fusarial isolates were obtained, and were easily differentiated into three principal species. Fusarium oxysporum f. sp. asparagi was most frequently isolated from the domestic five regions (68%), whereas Fusarium proliferatum (28.6%) was less frequent. Fusarium solani was found much rarely (2.5%). The frequency of isolation of Fusarium proliferatum increased gradually from the north to the south of Japan, though considerable differences were found between fields in each region, as well as regional differences among the Fusarium populations. Most of the fusarial isolates were highly pathogenic in vitro. These results reveal that Fusarium oxysporum f. sp. asparagi and Fusarium proliferatum are important biotic factors which lead to asparagus decline in Japan.  相似文献   

8.
In recent years in Finland, Fusarium infections in onions have increased, both in the field and in storage, and Fusarium species have taken the place of Botrytis as the worst pathogens causing post‐harvest rot of onion. To study Fusarium occurrence, samples were taken from onion sets, harvested onions and also from other plants grown in the onion fields. Isolates of five Fusarium species found in the survey were tested for pathogenicity on onion. Fusarium oxysporum was frequently found in onions and other plants, and, of the isolates tested, 31% caused disease symptoms and 15% caused growth stunting in onion seedlings. Fusarium proliferatum, a species previously not reported in Finland, was also identified. Over 50% of the diseased onion crop samples were infected with F. proliferatum, and all the F. proliferatum isolates tested were pathogenic to onion. Thus, compared to F. oxysporum, F. proliferatum seems to be more aggressive on onion. Also some of the F. redolens isolates were highly virulent, killing onion seedlings. Comparison of the translation elongation factor 1α gene sequences revealed that the majority of the aggressive isolates of F. oxysporum f. sp. cepae group together and are distinct from the other isolates. Incidence and relative proportions of the different Fusarium species differed between the sets and the mature bulbs. More research is required to determine to what extent Fusarium infections spoiling onions originate from infected onion sets rather than the field soil.  相似文献   

9.
Fusarium oxysporum and Fusarium proliferatum are important causal agents of crown and root rot of asparagus. In order to detect differences in pathogenicity and aggressiveness, two F. proliferatum and five F. oxysporum single spore isolates from asparagus spears from plantings in Austria and Germany, 55 pure cultures of F. oxysporum from asparagus roots from a planting in Hesse, Germany, and a single F. oxysporum isolate from an asparagus shoot collected in Austria were evaluated in a 28-day quick test on Hoagland??s agar in glass culture tubes. Plantlets were inoculated with spore suspensions from each respective isolate after 14 days of growth under sterile, controlled conditions in a growth chamber. A severity scale was used to assess symptoms on roots two weeks after inoculation. The effects of the single-spore isolates on root and shoot fresh weights of the plantlets were also determined. The pathogenicity of the majority of the F. proliferatum and F. oxysporum isolates included in this study was confirmed. Inoculation with pure and single-spore cultures resulted in elevated disease severity in comparison to non-inoculated controls. In particular, the two F. proliferatum isolates were found to be more aggressive than the F. oxysporum isolates. Moreover, all single spore isolates caused a reduction in fresh weight of roots and shoots in comparison to the controls. With respect to differences among asparagus cultivars, ??Ramos??, was found to be more susceptible than ??Ravel??. Overall, the quick test method was found to be capable of evaluating the pathogenicity and aggressiveness of the tested F. oxysporum and F. proliferatum isolates towards asparagus within 28 days.  相似文献   

10.
In order to characterize the pathogen(s) responsible for the outbreak of fusarium diseases in Algeria, 48 Fusarium spp. isolates were collected from diseased tomato in Algeria and compared with 58 isolates of Fusarium oxysporum originating from seven other Mediterranean countries and 24 reference strains. Partial sequences of the translation elongation factor EF‐1α gene enabled identification of 27 isolates as F. oxysporum, 18 as F. commune and three as F. redolens among the Algerian isolates. Pathogenicity tests confirmed that all isolates were pathogenic on tomato, with disease incidence greater at 28°C than at 24°C. All isolates were characterized using intergenic spacer (IGS) DNA typing, vegetative compatibility group (VCG) and PCR detection of the SIX1 (secreted in xylem 1) gene specific to F. oxysporum f. sp. lycopersici (FOL). No DNA polymorphisms were detected in the isolates of F. redolens or F. commune. In contrast, the 27 Algerian isolates of F. oxysporum were shown to comprise nine IGS types and 13 VCGs, including several potentially new VCGs. As none of the isolates was scored as SIX1+, the 27 isolates could be assigned to F. oxysporum f. sp. radicis‐lycopersici (FORL). Isolates from Tunisia were also highly diverse but genetically distinct from the Algerian isolates. Several Tunisian isolates were identified as FOL by a PCR that detected the presence of SIX1. The results show that isolates from European countries were less diverse than those from Tunisia. Given the difference between Algerian populations and populations in other Mediterranean countries, newly emergent pathogenic forms could have evolved from local non‐pathogenic populations in Algeria.  相似文献   

11.
Recent data on the epidemiology of the common mycotoxigenic species of Fusarium, Alternaria, Aspergillus and Penicillium in infected or colonized plants, and in stored or processed plant products from the Mediterranean area are reviewed. Emphasis is placed on the toxigenicity of the causal fungal species and the natural occurrence of well known mycotoxins (aflatoxins, ochratoxins, fumonisins, trichothecenes, zearalenone, patulin, Alternaria-toxins and moniliformin), as well as some more recently described compounds (fusaproliferin, beauvericin) whose toxigenic potential is not yet well understood. Several Fusarium species reported from throughout the Mediterranean area are responsible of the formation of mycotoxins in infected plants and in plant products, including: Fusarium graminearum, F. culmorum, F. cerealis, F. avenaceum, F. sporotrichioides and F. poae, which produce deoxynivalenol, nivalenol, fusarenone, zearalenone, moniliformin, and T-2 toxin derivatives in wheat and other small grains affected by head blight or scab, and in maize affected by red ear rot. Moreover, strains of F. verticillioides, F. proliferatum, and F. subglutinans, that form fumonisins, beauvericin, fusaproliferin, and moniliformin, are commonly associated with maize affected by ear rot. Fumonisins, were also associated with Fusarium crown and root rot of asparagus and Fusarium endosepsis of figs, caused primarily by F. proliferatum. Toxigenic A. alternata strains and associated tenuazonic acid and alternariols were commonly found in black mould of tomato, black rot of olive and citrus, black point of small cereals, and black mould of several vegetables. Toxigenic strains of A. carbonarius and ochratoxin A were often found associated with black rot of grapes, whereas toxigenic strains of A. flavus and/or P. verrucosum, forming aflatoxins and ochratoxin A, respectively, were found in moulded plant products from small cereals, peanuts, figs, pea, oilseed rape, sunflower seeds, sesame seeds, pistachios, and almonds. Finally, toxigenic strains of P. expansum and patulin were frequently found in apple, pear and other fresh fruits affected by blue mould rot, as well as in derived juices and jams.  相似文献   

12.
The mechanism by which Fusarium diseases of cymbidium plants are suppressed by a weakly virulent strain HPF-1 of Fusarium sp. was studied. Strain HPF-1 produced microscopic, necrotic local lesions on cymbidium leaves, causing minor damage to palisade tissues at the infection sites. This weakly virulent strain remained near the site of infection and did not develop further. It systemically and nonselectively suppressed some diseases of cymbidium such as yellow spot of leaves caused by Fusarium proliferatum and F. fractiflexum, bulb and root rot caused by F. oxysporum, and dry rot of bulbs and roots caused by F. solani. Because endogenous salicylic acid levels increased in cymbidium leaves inoculated with strain HPF-1, the mechanism of disease suppression is thought to be systemic acquired resistance.  相似文献   

13.
Several Fusarium species occurring worldwide on maize as causal agents of ear rot, are capable of producing mycotoxins in infected kernels, some of which have a notable impact on human and animal health. The main groups of Fusarium toxins commonly found are: trichothecenes, zearalenones, fumonisins, and moniliformin. In addition, beauvericin and fusaproliferin have been found in Fusarium-infected maize ears. Zearalenone and deoxynivalenol are commonly found in maize red ear rot, which is essentially caused by species of the Discolour section, particularly F. graminearum. Moreover, nivalenol and fusarenone-X were often found associated with the occasional occurrence of F. cerealis, and diacetoxyscirpenol and T-2 toxin with the occurrence of F. poae and F. sporotrichioides, respectively. In addition, the occurrence of F. avenaceum and F. subglutinans usually led to the accumulation of moniliformin. In maize pink ear rot, which is mainly caused by F. verticillioides, there is increasing evidence of the wide occurrence of fumonisin B1. This carcinogenic toxin is usually found in association with moniliformin, beauvericin, and fusaproliferin, both in central Europe due to the co-occurrence of F. subglutinans, and in southern Europe where the spread of F. verticillioides is reinforced by the widespread presence of F. proliferatum capable of producing fumonisin B1, moniliformin, beauvericin, and fusaproliferin.  相似文献   

14.
The incidence of garlic rot has constantly increased in France since the early 2000s. To set up an efficient method of garlic protection against this disease, we have clarified its aetiology. This was achieved by surveying garlic from the two main French basins of garlic production over 3 years. Fungi were isolated from 5,493 garlic cloves belonging to pink, purple, and white garlic types. Sequencing of the translation elongation factor 1α gene of 1,171 strains revealed that 94% of the strains belonged to the species Fusarium proliferatum and 6% belonged to F. oxysporum. The pathogenicity of both species on garlic was confirmed by artificial inoculations and reisolations. There was significantly more F. oxysporum in garlic cloves with symptoms coming from the southeast basin (9.44%) than from the southwest basin (2.76%). This study confirms that garlic rot is present in pink, purple, and white types. However, pink type garlic harbours F. oxysporum significantly less frequently (1.59%) than white (9.39%) and purple (7.34%) types. Sequencing of rpb1, rpb2, ITS, and IGS regions of a subsample of strains revealed that there is little genetic diversity in the French population of F. proliferatum.  相似文献   

15.
The response of microconidia from pathogenic and non-pathogenic Fusarium oxysporum to root exudates from tomato plants inoculated with different pathogenic and non-pathogenic F. oxysporum strains was studied. Root exudates from non-inoculated tomatoes highly stimulated the microconidial germination of the two tomato pathogens, F. oxysporum f.sp. lycopersici strain Fol 007 and F. oxysporum f.sp. radicis-lycopersici strain Forl 101587. In root exudates from tomato plants challenged with the pathogen Fol 007 the microconidial germination of Fol 007 was increased, whereas in root exudates from plants challenged with Forl 101587 the microconidial germination of Fol 007 was reduced. Root exudates of tomato plants challenged with the non-pathogenic unspecific F. oxysporum strain Fo 135 and the biocontrol strain Fo 47 clearly reduced microconidial germination of the pathogenic strain Forl 101587. Moreover, the microconidial germination rate of the biocontrol strain Fo 47 was increased in the presence of root exudates of tomato plants challenged with the tomato wilt pathogen Fol 007. These results indicate that pathogenic and non-pathogenic F. oxysporum strains alter the root exudation of tomato plants differently and consequently the fungal propagation of pathogenic and non-pathogenic F. oxysporum strains in the rhizosphere is affected differently.  相似文献   

16.
浙江省铁皮石斛根腐病病原真菌的鉴定   总被引:3,自引:0,他引:3  
为明确铁皮石斛根腐病病原真菌,于其主产地浙江省金华市武义县收集铁皮石斛根腐病病株,采用平板分离方法对病原真菌进行分离,使用镰刀菌种特异性引物并结合ITS和TEF序列分析及形态学鉴定确定该镰刀菌的分类地位。结果表明,共分离纯获得真菌117株,其中有105株镰刀菌;经分子生物学分析及形态学鉴定结果显示,分离出的镰刀菌为层出镰刀菌Fusarium prolife‐mum、茄病镰刀菌F. solani、尖孢镰刀菌F. oxysporum和厚垣镰刀菌F. chlamydosporum四个种,其中层出镰刀菌在数量上具有优势地位,占总镰刀菌数的44.8%;茄病镰刀菌、尖孢镰刀菌、厚垣镰刀菌分别占总镰刀菌数的21.0%、15.2%和19.0%。在致病性测定中发现层出镰刀菌和茄病镰刀菌并不具备致病性,尖孢镰刀菌的致病性明显弱于厚垣镰刀菌,表明厚垣镰刀菌为浙江省金华市武义县铁皮石斛根腐病的主要致病菌。  相似文献   

17.
The occurrence of Fusarium species of Liseola section and related toxins was investigated for two years (1996 and 1998) on maize ear rot samples collected in the most important areas for maize growing in Slovakia. The species most frequently isolated was F. verticillioides, followed by F. proliferatum in 1996 and F. subglutinans in 1998. Most of the strains belonged to mating populations A, D, and E of the teleomorph Gibberella fujikuroi. Fusarium graminearum was also frequently recovered in both the years of investigations. Toxin analysis of maize ears showed that most of the samples (21 out of 22) were contaminated with at least one toxin. In particular, the concentration of fumonisin B1, and fumonisin 2 was up to 26.9 and 5.1gg-1, respectively in 1996, and up to 12.1 and 6.3gg-1, respectively in 1998. Beauvericin was detected only in one sample in 1996. Seven samples in 1996 were contaminated by fusaproliferin up to 8.2gg-1, but just traces of the toxin were found in one sample in 1998. All 29 strains of F. verticillioides, two of three strains of F. proliferatum and none of eight F. subglutinans strains isolated from samples produced fumonisin B1 in culture on whole maize kernels (0.1–5646 and 940–1200ugg-1, respectively). Two strains of F. subglutinans and two of F. proliferatum produced beauvericin (up to 65 and 70gg-1, respectively). Ten strains of F. verticillioides produced beauvericin: 9 strains produced a low amount (up to 3gg-1), while only one of them produced a high level of toxin (375gg-1). Fusaproliferin was produced by two F. proliferatum strains (220 and 370gg-1), by seven F. subglutinans (20–1335gg-1) and by three F. verticillioides (10–35gg-1). This is the first report on fusaproliferin production by F. verticillioides, although at low level.  相似文献   

18.
The pea root rot complex is a major concern for green pea production worldwide. This study aimed at characterizing its composition and dynamics throughout a cropping season in northern France. To this end, fungi and oomycetes were isolated from green pea plant roots with symptoms sampled at the flowering stage in 22 fields in 2017, and at the pea emergence, elongation and flowering stages in two fields in 2018. Out of 646 isolates collected, 317 were identified using molecular markers. Fusarium oxysporum, F. solani and F. redolens were highly predominant. Pathogenicity tests separated the isolates into four aggressiveness groups. F. solani isolates were the most aggressive. Phylogenetic analysis of their TEF1 sequences showed that they mainly belonged to the F. pisi lineage, and that F. oxysporum isolates were genetically close to isolates from the UK that did not belong to the forma specialis pisi. In addition, several Clonostachys rhizophaga isolates are reported for the first time to cause pea root rot. The oomycetes were rarely found and were represented by a few Pythium spp. isolates. Lastly, this study shows that the fungal and oomycete communities associated with pea root rot change during the cropping season. The level of dissimilarity of the root-rot-associated communities decreased throughout the cropping season towards a more similar composition at the flowering stage, dominated by F. solani, F. oxysporum and F. redolens. The proportion of nonpathogenic to weakly pathogenic isolates decreased progressively during the growing season in favour of moderately to highly pathogenic isolates.  相似文献   

19.
In the asparagus crop at least four soil-borne diseases can be distinguished. Footrot is one which appears to be caused byFusarium oxysporum f. sp.asparagi and is characterized by brown oval lesions on the lower parts of stems. A method is described for testing for pathogenicity the species ofFusarium and other fungi isolated from diseased plants. A negative correlation was found between the number ofF. oxysporum f. sp.asparagi isolates and the ‘G-value’ which provides an indication of the development of an asparagus crop.  相似文献   

20.
This study concerned a new disease detected in 1997 in southeastern Spain — Fusarium wilt in basil (Ocimum basilicum L.), caused byFusarium oxysporum f.sp.basilici. Its importance was evaluated at two locations in the Almería area, where 14% of the plants presented symptoms of the disease after 4 months of cropping. The search for sources of the disease inoculum was centered on the health of the seeds and the polypropylene trays that were reused for plant production. Analysis of four lots of seeds from Germany and Italy showed that two of them harboredF. oxysporum f.sp.basilici. This finding was confirmed by the analysis of seeds collected from diseased plants. Furthermore, analysis of three reused trays revealed the presence of the pathogen on them and it was concluded that the trays acted as the source of dispersion of the mycosis. http://www.phytoparasitica.org posting July 14, 2004.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号