首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

Evidence of trivalent manganese (Mn3+) in the aqueous phase of soils is unknown so far although this strong oxidant has large environmental implications.

Aims

We aimed to modify a spectrophotometric protocol (porphyrin method) and to discriminate between Mn2+ and Mn3+ in the aqueous phase of forest soils based on kinetic modeling.

Methods

We investigated manganese speciation in 12 forest floor solutions and 41 soil solutions from an acidic forest site by adjusting pH and correcting for absorbance.

Results

The solutions showed broad ranges in pH (3.4−6.3), dissolved organic carbon (DOC, 1.78−77.1 mg C L−1), and total Mn (MnT, 23.9−908 µg L−1). For acidic solutions, a pH-buffer was added to increase the pH of the solutions to 7.5−8.0, and background absorption was corrected for colored solutions, that is, solutions high in DOC. This was done to accelerate the reaction kinetics and avoid overestimation of MnT concentrations. After the pH and color adjustments, the comparison of MnT concentrations between the porphyrin method and optical emission spectrometry showed good agreement. Trivalent Mn, which is stabilized by organic ligands, constitutes significant proportions in both forest floor solutions (10−87%) and soil solutions (0.5−74%).

Conclusions

The dissolved Mn3+ is present in acidic forest soils. Thus, we revise the paradigm that this species is not stable and encourage to apply the revised method to other soils.  相似文献   

2.
Dissolved organic matter (DOM) is often considered the most labile portion of organic matter in soil and to be negligible with respect to the accumulation of soil C. In this short review, we present recent evidence that this view is invalid. The stability of DOM from forest floor horizons, peats, and topsoils against microbial degradation increases with advanced decomposition of the parent organic matter (OM). Aromatic compounds, deriving from lignin, likely are the most stable components of DOM while plant‐derived carbohydrates seem easily degradable. Carbohydrates and N‐rich compounds of microbial origin produced during the degradation of DOM can be relatively stable. Such components contribute much to DOM in the mineral subsoil. Sorption of DOM to soil minerals and (co‐)precipitation with Al (and probably also with Fe), especially of the inherently stable aromatic moieties, result in distinct stabilization. In laboratory incubation experiments, the mean residence time of DOM from the Oa horizon of a Haplic Podzol increased from <30 y in solution to >90 y after sorption to a subsoil. We combined DOM fluxes and mineralization rate constants for DOM sorbed to minerals and a subsoil horizon, and (co‐)precipitated with Al to estimate the potential contribution of DOM to total C in the mineral soil of a Haplic Podzol in Germany. The contribution of roots to DOM was not considered because of lack of data. The DOM‐derived soil C ranges from 20 to 55 Mg ha–1 in the mineral soil, which represents 19%–50% of the total soil C. The variation of the estimate reflects the variation in mineralization rate constants obtained for sorbed and (co‐)precipitated DOM. Nevertheless, the estimates indicate that DOM contributes significantly to the accumulation of stable OM in soil. A more precise estimation of DOM‐derived C in soils requires mineralization rate constants for DOM sorbed to all relevant minerals or (co‐)precipitated with Fe. Additionally, we need information on the contribution of sorption to distinct minerals as well as of (co‐)precipitation with Al and Fe to DOM retention.  相似文献   

3.
The forest floor represents the major source of dissolved organic carbon (DOC) and nitrogen (DON) in forest soils. The release mechanisms of DOC and DON from forest floors and their environmental controls as well as the dynamics of concentrations and fluxes are still poorly understood. We investigated the effect of drying and rewetting on the release of DOC and DON from a Norway spruce forest floor. Undisturbed soil columns of 17 cm diameter and 15—20 cm height were taken with 7 replicates from the forest floor of a mature Norway spruce (Picea abies [L.] Karst.) site and established at 10°C in the laboratory. Columns were exposed to different periods of drying (3, 5, 10, 20 days). Each drying period was followed by a rewetting for 5 days at an irrigation rate of 10 mm d—1 with a natural throughfall solution. The percolates from the forest floor were collected daily and analyzed for DOC, total N, NH4, NO3, pH, electrical conductivity and major ions. Drying for 10 and 20 days decreased the water content of the Oi horizon from 280% dry weight to about 30%. The water content of the Oe and the Oa horizon only changed from about 300% to 200%. The fluxes of DOC from the forest floor were moderately effected by drying and rewetting with an increase after 3 and 5 days of drying, but a decrease after 10 and 20 days. On the contrary, the drying for 10 and 20 days resulted in a drastic increase of the DON fluxes and a subsequent decrease of the DOC/DON ratios in the forest floor percolates from about 50 to 3.3. These results suggest that the mechanisms for DOC release in forest floors differ from those for DON and that drying and rewetting cause temporal variations in the DOC/DON ratios in forest floor percolates.  相似文献   

4.
马尾松-麻栎混交林土壤溶解性有机碳、氮空间分布特征   总被引:3,自引:0,他引:3  
以河南省驻马店西部低山丘陵区马尾松—麻栎混交林为研究对象,分析土壤有机碳(SOC)、溶解性有机碳(DOC)和溶解性有机氮(DON)储量及其对坡向、土层深度(0—10cm和10—20cm)及胸高断面积的响应规律。结果表明:坡向和胸高断面积显著影响SOC和DOC储量(p0.05),且不同坡向土壤中SOC、DOC和DON的影响因素不同。阳坡SOC储量主要限制性因素是速效钾,阴坡是全氮;阳坡与阴坡土壤DOC和DON储量主要受全氮的影响。另外,土层深度亦对SOC、DOC和DON储量有显著影响(p0.05),且随土层加深而降低,呈表层富集的现象。相关性分析表明,SOC、DOC和DON储量与土壤物理性质即土壤湿度、紧实度及土壤中颗粒组成存在显著的相关性。SOC、DOC和DON两两之间呈显著正相关关系,并均与土壤全氮、有效氮(铵态氮、硝态氮和碱解氮)、速效磷和速效钾等含量也存在显著的相关性(p0.01),表明土壤养分含量是影响马尾松—麻栎混交林土壤有机碳储量及溶解性有机碳、氮空间分布的重要因素。  相似文献   

5.
Freezing and thawing may substantially influence the rates of C and N cycling in soils, and soil frost was proposed to induce NO losses with seepage from forest ecosystems. Here, we test the hypothesis that freezing and thawing triggers N and dissolved organic matter (DOM) release from a forest soil after thawing and that low freezing temperatures enhance the effect. Undisturbed soil columns were taken from a soil at a Norway spruce site either comprising only O horizons or O horizons + mineral soil horizons. The columns were subjected to three cycles of freezing and thawing at temperatures of –3°C, –8°C, and –13°C. The control columns were kept at constant +5°C. Following the frost events, the columns were irrigated for 20 d at a rate of 4 mm d–1. Percolates were analyzed for total N, mineral N, and dissolved organic carbon (DOC). The total amount of mineral N extracted from the O horizons in the control amounted to 8.6 g N m–2 during the experimental period of 170 d. Frost reduced the amount of mineral N leached from the soil columns with –8°C and –13°C being most effective. In these treatments, only 3.1 and 4.0 g N m–2 were extracted from the O horizons. Net nitrification was more negatively affected than net ammonification. Severe soil frost increased the release of DOC from the O horizons, but the effect was only observed in the first freeze–thaw cycle. We found no evidence for lysis of microorganisms after soil frost. Our experiment did not confirm the hypothesis that soil frost increases N mineralization after thawing. The total amount of additionally released DOC was rather low in relation to the expected annual fluxes.  相似文献   

6.
长期不同施肥潮土对可溶性有机碳的吸附特征   总被引:1,自引:0,他引:1       下载免费PDF全文
可溶性有机碳(DOC)吸附影响土壤元素化学行为。为此,本研究采用批处理法研究了DOC在长期不同施肥处理(对照CK、氮N、氮磷NP、氮磷钾NPK、化肥+秸秆还田NPKS、化肥+有机肥NPKM)潮土上的吸附动力学和等温吸附特征。结果表明,猪粪源DOC易于分解,需要添加0.025 mmol(1 mL 25 mmol/L)Na N3抑制其分解,抑制率超过90%。DOC吸附符合准二级动力学方程(R~2≥0.99)。不同施肥处理下,吸附速率常数k及初始速率常数h与平衡吸附Qe都没有显著差异,平均值分别为0.208 kg/(g·h)、1.60 g/(kg·h)和2.77g/kg。吸附等温式可用Langmuir方程很好拟合(R~2≥0.96),吸附容量(最大吸附量)Q_(max)在不同施肥处理下也没有显著差异(平均7.05 g/kg),但在N和NP等非平衡施肥下却保持高的亲合力,半饱和吸附浓度k_d分别为50.2和57.6 mg/L,吸附亲合常数K则分别为0.02和0.017 4 L/mg;相反,在NPKM处理下,显著低的亲合性发生,k_d和K分别为72.94 mg/L和0.013 8 L/mg。研究证明粘粉粒含量控制了不同施肥处理潮土对DOC的吸附;土壤有机碳水平不影响Q_(max),而且高土壤有机碳还降低其吸附亲合性。  相似文献   

7.
The partitioning of dissolved organic carbon (DOC) within mineral soils is primarily controlled by adsorption to soil particle surfaces. We compare the theoretical limitations and modeling accuracy of four isotherm approaches to describe DOC partitioning to soil surfaces. We use 52 mineral soil samples to create linear initial mass (IM), non-linear, and Langmuir isotherms, all relating the initial solution concentration (Xi) to the amount of DOC adsorbed or released from soil surfaces. The Langmuir isotherm is also used with final concentration (Xf). The IM isotherm failed to meet theoretical assumptions and provided poor fits to experimental data. The non-linear and Langmuir Xi approaches had good fits to experimental data, and the Langmuir Xi approach had the most robust estimates of desorption capacity. Both Langmuir Xi and Xf isotherms hold the advantage of estimating the maximum adsorption capacity, yet the Xf isotherm is a better reflection of adsorption processes.  相似文献   

8.
研究施肥对砂姜黑土可溶性碳淋溶的影响,对有机肥的可持续利用有重要意义。该研究依托33 a的长期试验,分析常规施肥(MF)、化肥+低量小麦秸秆(MFL)、化肥+高量小麦秸秆(MFH)、化肥+猪粪(MFP)和化肥+牛粪(MFC)等施肥方式对土壤剖面(0~60 cm)理化性质、微生物性状、可溶性有机碳(Dissolved Organic Carbon,DOC)和可溶性无机碳(Dissolved Inorganic Carbon,DIC)含量与分布的影响,探寻可持续的有机肥利用方式。结果表明,长期增施有机肥后0~60 cm剖面各土层有机碳、微生物量碳、氮均有不同程度提升,而对土壤全氮、容重和pH值的影响主要发生在0~20 cm表层。与MF处理相比,增施有机肥后0~20和>20~40 cm土层DOC含量均有显著(P <0.05)提高,而对>40~60 cm土层无显著影响。相对而言,0~60 cm各土层DIC的含量均有显著提升。长期增施有机肥后0~60 cm各土层DOC的UV280吸收值和芳香性指数分别较MF处理均有显著提高,其中以MFC处理最为显著,0~20、>20~40和>40~60 cm土层DOC的芳香性指数分别提高71.2%、153.3%和38.1%,这说明长期增施有机肥后土壤剖面DOC结构发生明显改变,芳香化合物含量提高,化合物结构变得更加复杂。逐步线性回归模型表明,土壤剖面DOC和DIC分布主要受pH值和微生物量碳的共同影响,且pH值的影响强度大于微生物量碳,而土壤剖面DOC化学结构受微生物量碳的影响。总体而言,外源有机物料投入的类型和数量是影响土壤剖面可溶性碳分布的重要措施,长期增施农家肥的碳淋失风险高于秸秆还田。  相似文献   

9.
长期施肥措施下土壤有机碳矿化特征研究   总被引:8,自引:2,他引:8  
研究长期不同施肥措施下旱作农田土壤有机碳的矿化特征及其温度敏感性可为加深理解土壤碳循环过程提供理论依据。本文以半干旱黄土区粮-豆轮作体系为研究对象,通过两种不同温度(15℃和25℃)的室内培养试验,分析了长期不同施肥措施下土壤有机碳矿化的动力学特征及其温度敏感性。研究结果表明,土壤有机碳矿化速率在培养初期较高,之后缓慢下降。施肥措施和培养温度对土壤有机碳矿化均具有显著影响。与不施肥对照(CK)相比,在15℃培养条件下,长期单施磷肥(P)、氮磷配施(NP)和氮磷有机肥配施(NPM)处理的土壤有机碳累积矿化量(C_(min))分别增加41%、85%和89%,在25℃培养条件下,分别增加7%、46%和77%。另外,与CK处理相比,P、NP和NPM处理土壤有机碳矿化的温度敏感性(Q_(10))分别降低25%、21%和6%。施肥改变了土壤有机碳矿化的动力学参数,其改变程度与施肥种类和培养温度有关。与CK处理相比,在15℃培养条件下,P、NP和NPM处理的土壤潜在矿化有机碳量(C_p)分别增加29%、65%和48%;在25℃培养条件下,NP和NPM处理的C_p分别增加2%和21%,而P处理则减少36%。不同施肥处理土壤有机碳矿化速率常数(k)在15℃培养条件下变化较小,在25℃培养条件下则有较大幅度的增加。在25℃培养条件下,C_(min)和Cp随土壤有机碳和全氮含量的增加而显著增加。可见,长期施肥显著促进了半干旱黄土区粮-豆轮作体系土壤有机碳的矿化,减弱了土壤有机碳矿化的温度敏感性。  相似文献   

10.
土壤矿物吸附和土壤团聚体对土壤有机碳含量的影响研究   总被引:3,自引:1,他引:2  
Soil organic carbon (SOC) can act as a sink or source of atmospheric carbon dioxide; therefore, it is important to understand the amount and composition of SOC in terrestrial ecosystems, the spatial variation in SOC, and the underlying mechanisms that stabilize SOC. In this study, density fractionation and acid hydrolysis were used to assess the spatial variation in SOC, the heavy fraction of organic carbon (HFOC), and the resistant organic carbon (ROC) in soils of the southern Hulunbeier region, northeastern China, and to identify the major factors that contribute to this variation. The results showed that as the contents of clay and silt particles (0--50 μm) increased, both methylene blue (MB) adsorption by soil minerals and microaggregate contents increased in the 0--20 and 20--40 cm soil layers (P < 0.05). Although varying with vegetation types, SOC, HFOC, and ROC contents increased significantly with the content of clay and silt particles, MB adsorption by soil minerals, and microaggregate content (P < 0.05), suggesting that soil texture, the MB adsorption by soil minerals and microaggregate abundance might be important factors influencing the spatial heterogeneity of carbon contents in soils of the southern Hulunbeier region.  相似文献   

11.
秸秆施用后土壤溶解性有机质的动态变化   总被引:11,自引:2,他引:11  
采用室内培养方法研究了水稻秸秆腐解对土壤溶解性有机质(Dissolved Organic Matter,DOM)含量及其化学组成的动态影响。结果表明,秸秆腐解的前7 d显著增加了土壤溶解性有机碳(DOC)含量,7 d后则无明显影响;同时,秸秆腐解增加了土壤中溶解性糖(DS)、溶解性酚酸(DP)以及芳香族化合物含量。随着腐解时间的延长,溶解性糖在DOC中所占比例下降,而芳香族化合物逐渐上升,表明秸秆腐解不同阶段DOM的化学组成发生了变化。溶解性总氮(TDN)的变化表明,秸秆腐解增加土壤氮素的固定。  相似文献   

12.
长期不同施肥下黑土与灰漠土有机碳储量的变化   总被引:5,自引:1,他引:5  
采用长期试验,研究了20年不同施肥下1 m深黑土与灰漠土有机碳含量与碳储量的剖面变化。结果表明,单施化肥和不施肥对黑土1 m土层有机碳储量没有显著影响,但灰漠土略有降低。有机肥配施化肥能显著提高土壤有机碳含量和储量。高量有机肥配施化肥(NPKM2)能提高020 cm和2040 cm土层土壤有机碳含量,黑土分别提高56.6%和49.6%、灰漠土提高143.1%和46.9%;常量有机无机配施(NPKM)效果较差,增幅分别为黑土35.1%和35.3%,灰漠土80.2%和4.1%。两种土壤1 m土体的有机碳储量,NPKM2处理分别提高了C 30.7 t/hm2与C 40.6 t/hm2。显然,有机无机肥配施可以显著提高1 m深土体中有机碳储量,主要是由于提高了040 cm土层土壤有机碳含量。  相似文献   

13.
Dissolved organic matter (DOM) is involved in many important biogeochemical processes in soil. As its collection is laborious, very often water‐soluble organic matter (WSOM) obtained by extracting organic or mineral soil horizons with a dilute salt solution has been used as a substitute of DOM. We extracted WSOM (measured as water‐soluble organic C, WSOC) from seven mineral horizons of three forest soils from North‐Rhine Westphalia, Germany, with demineralized H2O, 0.01 M CaCl2, and 0.5 M K2SO4. We investigated the quantitative and qualitative effects of the extractants on WSOM and compared it with DOM collected with ceramic suction cups from the same horizons. The amounts of WSOC extracted differed significantly between both the extractants and the horizons. With two exceptions, K2SO4 extracted the largest amounts of WSOC (up to 126 mg C kg–1) followed by H2O followed by CaCl2. The H2O extracts revealed by far the highest molar UV absorptivities at 254 nm (up to 5834 L mol–1 cm–1) compared to the salt solutions which is attributed to solubilization of highly aromatic compounds. The amounts of WSOC extracted did not depend on the amounts of Fe and Al oxides as well as on soil organic C and pH. Water‐soluble organic matter extracted by K2SO4 bore the largest similarity to DOM due to relatively analogue molar absorptivities. Therefore, we recommend to use this extractant when trying to obtain a substitute for DOM, but as WSOM extraction is a rate‐limited process, the suitability of extraction procedures to obtain a surrogate of DOM remains ambiguous.  相似文献   

14.
Carbon fractions in soils apparently vary not only in space, but also over time. A lack of knowledge on the seasonal variability of labile carbon fractions under arable land hampers the reliability and comparability of soil organic carbon(SOC) surveys from different studies. Therefore, we studied the seasonal variability of two SOC fractions, particulate organic matter(POM) and dissolved organic carbon(DOC), under maize cropping: POM was determined as the SOC content in particle-size fractions, and DOC was measured as the water-extractable SOC(WESOC) of air-dried soil. Ammonium, nitrate, and water-extractable nitrogen were measured as potential regulating factors of WESOC formation because carbon and nitrogen cycles in soils are strongly connected. There was a significant annual variation of WESOC(coefficient of variation(CV) = 30%). Temporal variations of SOC in particle-size fractions were smaller than those of WESOC. The stocks of SOC in particle-size fractions decreased with decreasing particle sizes, exhibiting a CV of 20%for the coarse sand-size fraction(250–2 000 μm), of 9% for the fine sand-size fraction(50–250 μm), and of 5% for the silt-size fraction(20–50 μm). The WESOC and SOC in particle-size fractions both peaked in March and reached the minimum in May/June and August, respectively. These results indicate the importance of the time of soil sampling during the course of a year, especially when investigating WESOC.  相似文献   

15.
长期施肥对栗褐土有机碳矿化的影响   总被引:7,自引:0,他引:7  
【目的】 土壤有机碳矿化是土壤中重要的生物化学过程,与土壤养分的释放、土壤质量的保持以及温室气体的形成密切相关。本文以 25 年长期定位施肥试验为依托,对栗褐土土壤有机碳矿化速率、有机碳累积矿化量的动态变化进行研究,为科学管理土壤肥力、增加栗褐土碳汇、减少温室气体排放提供依据。 【方法】 田间试验开始于 1988,共设置 8 个施肥处理:不施肥 (CK);单施氮肥 (N);氮磷肥合施 (NP);单施低量有机肥(M1);低量有机肥与氮肥合施 (M1N);低量有机肥与氮磷肥合施(M1NP);高量有机肥与氮肥合施 (M2N);高量有机肥与氮磷肥合施 (M2NP)。于 2013 年玉米播种前,采集耕层 (0—20 cm) 土壤样品,采用室内培养方法,对土壤碳矿化释放 CO2 的数量和速率进行测定,并利用一级动力学方程计算出土壤有机碳库潜在矿化势和周转速率。 【结果】 各肥料处理不同程度地提高了栗褐土总有机碳含量,以高量有机肥与化肥配施作用最为显著。与 CK 相比,M2N、M2NP 处理土壤总有机碳含量增加了 121.1%、166.8%。不同处理土壤样品培养有机碳矿化速率均在第一天达到峰值,随后急剧下降。5 d 后,下降趋缓,不同处理 CO2 产生速率趋于一致。培养期间,各处理矿化速率变化符合对数函数关系。长期施用不同肥料均可以提高栗褐土有机碳的矿化速率,其大小顺序为:有机肥与化肥配施 > 单施有机肥 > 单施化肥 > 对照。培养 57 d 后,各处理土壤有机碳累积矿化量为 555.0~980.3 mg/kg,以 M2NP、M1N 的累积量较高,为对照的 1.77 倍、1.73 倍。长期施肥栗褐土有机碳矿化率呈下降趋势,以处理 M2NP 下降最明显,与对照相比,降低了 6.3 个百分点。施肥处理土壤的潜在矿化势均高于对照,M1N、M2NP 最高,为 923.7 mg/kg 和 926.4 mg/kg,较对照增加了 74.0% 和 74.5%。不同施肥处理均可明显提升土壤有机碳的周转速率,减少周转时间,其中处理 M1NP、M2NP 效果最为明显。 【结论】 长期施用化肥、有机肥及有机无机肥配施可有效促进栗褐土有机碳的积累,提高有机碳的矿化速率和周转速率,降低有机碳的矿化率 (累积矿化量占有机碳总量的比率),加强了土壤的固碳能力,以 M2NP 处理的效果更佳。   相似文献   

16.
有机物料碳和土壤有机碳对水稻土甲烷排放的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
基于30年水稻土长期施肥定位试验,在保证原有定位试验正常开展的前提下,将部分化肥处理变更为有机肥处理(或反之),通过观测一年水稻轮作周期内不同处理甲烷(CH_4)排放通量季节性变化,探讨不同肥力水稻土中外源有机碳及土壤有机碳含量对田间CH_4排放的影响。结果表明:施化肥处理和有机肥处理,水稻土全年CH_4累积排放量范围分别为1.73~4.72和35.09~86.60 g·m~(-2)。有机肥处理改施化肥后,田间土壤CH_4的排放量显著降低;化肥处理改施有机肥或有机肥处理增施有机肥后,田间土壤CH_4的排放量显著提高。外源有机碳的输入量是田间土壤CH_4年排放量的决定性因素,外源有机碳输入量(x)与水稻土CH_4年累积排放量(y)之间满足直线方程:y=0.087 7 x+3.265 7(R~2=0.965 9,n=21)。土壤有机碳同样也是影响稻田CH_4排放的因素,在不同有机碳水平的水稻土上施用等量相同化肥或有机肥,土壤有机碳含量高的水稻土都更有利于CH_4的产生。单施化肥稻田土壤CH_4排放的最主要碳源是土壤有机碳,有机碳含量(x)和水稻土CH_4年累积排放量(y)之间的指数方程:y=0.162 4 e~(0.162 2 x)(R~2=0.940 6,n=9)。有机肥可促进土壤有机碳分解释放CH_4,土壤有机碳含量相同的条件下,高量有机肥比常量有机肥的土壤有机碳分解比率高0.65%,等量相同有机肥但土壤有机碳含量不同的条件下,土壤有机碳分解比率无显著差异;同样,土壤有机碳也可促进有机物料碳分解释放CH_4,在常量有机肥或高量有机肥处理中,土壤有机碳含量高者比低者的有机物料碳分解比率分别多出3.57%和2.34%。  相似文献   

17.
Current trends of soil organic carbon in English arable soils   总被引:1,自引:0,他引:1  
Abstract. A model of the impact of land management changes upon soil organic carbon (SOC) was constructed, and the total amount of topsoil organic carbon was estimated for the arable area of England from 1940 to 2000. The largest influence on the overall mean SOC in arable topsoils proved to be a decline in the area of both permanent and temporary grassland. SOC declined over a prolonged period (60 years), but has now reached a plateau. Modelling changes in mean values enabled a statistical evaluation to be made between a measured decline in the number of sites with 'high' SOC levels between 1980 and 1995, and the decline predicted by the model. The SOC content of arable soils in England was measured at National Soil Inventory sites twice in recent decades: in 1980 and 1995. The proportion of fine textured soils in the lowest SOC class (<2.3%) rose from just over 40% to about 50% over the same period. There was a significant difference between the observed values of 1995 and those expected from modelling the decline from 1980 values, in the category of 'low SOC' fine textured soils. The variation in the fine textured soils represents a significant and widespread decline in topsoil organic carbon concentrations, which was greater than the underlying long-term trend.  相似文献   

18.
紫色土坡耕地可溶性有机碳径流迁移特征   总被引:6,自引:3,他引:6  
为探明紫色土坡耕地可溶性有机碳(dissolved organic carbon,DOC)的径流迁移特征,该文通过具有壤中流观测功能的径流小区观测地表径流和壤中流的可溶性有机碳(DOC)迁移。结果表明,径流方式对紫色土坡耕地径流DOC迁移质量浓度具有明显影响。地表径流过程中DOC质量浓度随降雨历时逐渐降低,而壤中流过程DOC质量浓度则表现出先升后降而后趋于稳定的趋势。暴雨和大雨地表径流和壤中流过程中DOC质量浓度均表现出不同的变化特征。暴雨地表径流过程DOC初始质量浓度高,衰减快,壤中流DOC质量浓度高、峰值出现较早。2010、2011年2a内地表径流和壤中流平均累积径流量分别为61.2、300.3mm,平均径流系数为7.7%和37.6%。2a内次降雨产流事件中地表径流和壤中流DOC平均质量浓度分别为3.9和3.4mg/L,壤中流DOC年平均迁移通量为105.2mg/m2,年平均负荷达1007.6mg/m2,约为地表径流的4.8倍,壤中流携带DOC损失是紫色土坡耕地DOC径流迁移的主要方式。土层温度是影响壤中流DOC质量浓度季节性变化的重要因素,二者具有显著的负相关性(P<0.05),而土层温度对地表径流DOC质量浓度季节性变化无显著影响。该研究可为调控紫色土坡耕地DOC流失提供一定的参考。  相似文献   

19.
土壤有机碳研究进展   总被引:9,自引:2,他引:9  
回顾了国内外土壤有机碳研究进展及趋势,阐述了全球土壤有机碳库存量及分布、我国土壤有机碳库储量概况、农田土壤有机碳组成及其影响因素、农田土壤有机碳转化规律及影响因素,指出了我国在土壤有机碳研究方面存在的问题及今后的发展方向.  相似文献   

20.
Dissolved organic carbon (DOC) and nitrogen (DON) are important components of the carbon and nitrogen turnover in soils. Little is known about the controls on the release of DOC and DON from forest floors, especially about the influence of solid phase properties. We investigated the spatial variation of the release of DOC and DON from Oe and Oa forest floor samples at a regional scale. Samples were taken from 12 different Norway spruce sites with varying solid phase properties, including C/N ratio, pH, different fractions of extractable carbon and exchangeable cations. Most of these solid phase properties are available for large forested areas of Europe in high spatial resolution. The samples were incubated at water holding capacity for eight weeks at 15°C and then extracted with an artificial throughfall solution to measure DOC and DON release. The rates of soil respiration and N-mineralization were determined to estimate soil microbial activity. The release of DOC and DON from Oe samples was two- to threefold higher than from Oa samples. The amounts released differed by one order of magnitude among the sites. The DOC/DON ratios in the percolates of the Oa samples were much higher as compared to the solid phase C/N, indicating different release rates of DOC and DON. In contrast, the DOC/DON ratios of the Oe percolates were in the range of the C/N ratios of the solid phase. The release of DOC and DON from Oe samples was not statistically correlated to any of the measured solid phase parameters, but to N-mineralization. The DOC and DON release from the Oa samples was positively related only to pH and soil respiration. Overall it was not possible to explain the large spatial variation of DOC and DON release by the measured solid phase properties with satisfying accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号