首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Stink bugs, primarily southern green stink bug, Nezara viridula (Hemiptera: Pentatomidae), are a major pest complex of soybeans (Glycine max) throughout the southern United States. Densities sometimes peak during late R6 and R7 soybean growth stages when soybeans are approaching physiology maturity and the rate of injury from stink bugs is reduced. Field cage trials were conducted from 2005 to 2008 to examine the type and extent of soybean damage caused by southern green stink bugs during the R7 growth stage. The yield response was variable, but overall was not significant. The impact of southern green stink bugs on quality was more consistent. Test weight decreased, and heat damage and total damage increased as stink bug density increased. Based on these data, three economic injury models were developed using different assumptions. The model that assumes no yield loss, does not predict economic injury within the range of stink bug densities tested. However, if the statistically non-significant yield losses are accepted as real, then the models suggest that the southern green stink bug economic injury level and action threshold for soybeans during R7 stage is generally between nine and 15 stink bugs per row m.  相似文献   

2.
A 3-yr study (2009–2011) was conducted to examine the spatial and temporal dynamics of stink bugs in three commercial farmscapes. Study locations were replicated in South Carolina and Georgia, in an agriculturally diverse region known as the southeastern coastal plain. Crops included wheat, Triticum aestivum (L.), corn, Zea mays (L.), soybean, Glycine max (L.), cotton, Gossypium hirsutum (L.), and peanut, Arachis hypogaea (L.). Farmscapes were sampled weekly using whole-plant examinations for corn, with all other crops sampled using sweep nets. The predominant pest species of phytophagous stink bugs were the brown stink bug, Euschistus servus (Say), the green stink bug, Chinavia hilaris (Say), and the southern green stink bug, Nezara viridula (L.). Chi-square tests indicated a departure from a normal distribution in 77% of analyses of the variance to mean ratio, with 37% of slopes of Taylor’s power law and 30% of coefficient β of Iwao’s patchiness regression significantly greater than one, indicating aggregated distributions. Spatial Analyses by Distance IndicEs (SADIE) indicated aggregated patterns of stink bugs in 18% of year-end totals and 42% of weekly counts, with 80% of adults and nymphs positively associated using the SADIE association tool. Maximum stink bug densities in each crop occurred when the plants were producing fruit. Stink bugs exhibited greater densities in crops adjacent to soybean in Barnwell and Lee Counties compared with crops adjacent to corn or fallow areas. The diversity of crops and relatively small size of fields in the Southeast leads to colonization of patches within a farmscape. The ecological and management implications of the spatial and temporal distribution of stink bugs within farmscapes are discussed.  相似文献   

3.
Two artificial diets developed for rearing Lygus spp., a fresh yolk chicken egg based-diet (FYD) and a dry yolk chicken egg based-diet (DYD), were evaluated as an alternative food source for rearing the southern green stink bug, Nezara viridula (L.) (Heteroptera: Pentatomidae). Survival to adult was 97.3 and 74.67%, respectively, on the fresh and dry yolk diets. Insects fed FYD had 100% survival of nymphs from first through fourth instars. Adult development was significantly shorter on FYD (30.37 ± SE 0.30 d) as compared with DYD (32.77 ± SE 0.16 d). Increased male and female longevity, higher fecundity, and larger egg mass sizes were also observed with N. viridula-fed FYD. However, fertility and hatchability was higher on DYD. A complete cohort life table was constructed to describe the development of N. viridula on both diets.  相似文献   

4.
The green stink bug, Chinavia hilaris (Say) (Hemiptera: Pentatomidae), is a pest of cotton in the southeastern United States but little is known concerning its spatiotemporal distribution in corn cropping systems. Therefore, the spatiotemporal distribution of C. hilaris in farmscapes, when corn was adjacent to cotton, peanut, or both, was examined weekly. The spatial patterns of C. hilaris counts were analyzed using Spatial Analysis by Distance Indices methodology. Interpolated maps of C. hilaris density were used to visualize abundance and distribution of C. hilaris in crops in corn–peanut–cotton farmscapes. This stink bug was detected in six of seven corn–cotton farmscapes, four of six corn–peanut farmscapes, and in both corn–peanut–cotton farmscapes. The frequency of C. hilaris in cotton (89.47%) was significantly higher than in peanut (7.02%) or corn (3.51%). This stink bug fed on noncrop hosts that grew in field borders adjacent to crops. The spatial distribution of C. hilaris in crops and the capture of C. hilaris adults and nymphs in pheromone-baited traps near noncrop hosts indicated that these hosts were sources of this stink bug dispersing into crops, primarily cotton. Significant aggregated spatial distributions were detected in cotton on some dates within corn–peanut–cotton farmscapes. Maps of local clustering indices depicted small patches of C. hilaris in cotton or cotton–sorghum at the peanut–cotton interface. Factors affecting the spatiotemporal dynamics of C. hilaris in corn farmscapes are discussed.  相似文献   

5.
6.
The green stink bug, Chinavia hilaris (Say) (Hemiptera: Pentatomidae), is a pest of cotton in the southeastern United States, but little is known concerning its spatiotemporal distribution in agricultural farmscapes. Therefore, spatiotemporal distribution of C. hilaris in farmscapes where cotton fields adjoined peanut was examined weekly. Spatial patterns of C. hilaris counts were analyzed using SADIE (Spatial Analysis by Distance Indices) methodology. Interpolated maps of C. hilaris density were used to visualize abundance and distribution of C. hilaris in crops. For the six peanut-cotton farmscapes studied, the frequency of C. hilaris in cotton (94.8%) was significantly higher than in peanut (5.2%), and nymphs were rarely detected in peanut, indicating that peanut was not a source of C. hilaris into cotton. Significantly, aggregated spatial distributions were detected in cotton. Maps of local clustering indices depicted patches of C. hilaris in cotton, mainly at field edges including the peanut-to-cotton interface. Black cherry (Prunus serotina Ehrh.) and elderberry (Sambucus nigra subsp. canadensis [L.] R. Bolli) grew in habitats adjacent to crops, C. hilaris were captured in pheromone-baited stink bug traps in these habitats, and in most instances, C. hilaris were observed feeding on black cherry and elderberry in these habitats before colonization of cotton. Spatial distribution of C. hilaris in these farmscapes revealed that C. hilaris colonized cotton field edges near these two noncrop hosts. Altogether, these findings suggest that black cherry and elderberry were sources of C. hilaris into cotton. Factors affecting the spatiotemporal dynamics of C. hilaris in peanut-cotton farmscapes are discussed.  相似文献   

7.
Brown stink bugs, Euschistus servus, are an important early-season pest of field corn in the southeastern United States. Feeding in the early stages of corn development can lead to a number of growth deformities and deficiencies and, ultimately, a reduction in yield. An observational and two experimentally manipulated trials were conducted in 2017 and 2018 to 1) determine optimal timing for assessing brown stink bug damage, 2) assess the level of damage from which yield compensation can occur, and 3) examine the relationship between brown stink bug density and early-season damage and yield. Fields were identified with infestations of brown stink bugs and a damage rating system for early stages of corn was established. Varying rates of brown stink bug densities were introduced using field cages and damage was assessed throughout the season. The density and duration of stink bug infestations were critical factors for damage potential, with each day of active feeding per plant resulting in a loss of ~14 kg/ha in yield. The level of damage in early stages of corn was categorized into easily identifiable groups, with only the most severe damage leading to a reduction in yield. Moderate and minimal feeding damage did not result in yield loss. This study emphasizes the need for early and frequent scouting of corn to determine the risk of damage and yield loss from brown stink bugs. Results from this study can be used to help develop management programs for brown stink bugs in the early vegetative stages of field corn.  相似文献   

8.
Sampling of herbivorous stink bugs in southeastern U.S. cotton remains problematic. Remote sensing was explored to improve sampling of these pests and associated boll injury. Two adjacent 14.5-ha cotton fields were grid sampled in 2011 and 2012 by collecting stink bug adults and bolls every week during the third, fourth, and fifth weeks of bloom. Satellite remote sensing data were collected during the third week of bloom during both years, and normalized difference vegetation index (NDVI) values were calculated. Stink bugs were spatially aggregated on the third week of bloom in 2011. Boll injury from stink bugs was spatially aggregated during the fourth week of bloom in 2012. The NDVI values were aggregated during both years. There was a positive association and correlation between stink bug numbers and NDVI values, as well as injured bolls and NDVI values, during the third week of bloom in 2011. During the third week of bloom in 2012, NDVI values were negatively correlated with stink bug numbers. During the fourth week of bloom in 2011, stink bug numbers and boll injury were both positively associated and correlated with NDVI values. During the fourth week of bloom in 2012, stink bugs were negatively correlated with NDVI values, and boll injury was negatively associated and correlated with NDVI values. This study suggests the potential of remote sensing as a tool to assist with sampling stink bugs in cotton, although more research is needed using NDVI and other plant measurements to predict stink bug injury.  相似文献   

9.
Lethal and sublethal insecticide effects on non-targeted pest species are frequently neglected but have potential consequences for pest management and secondary pest outbreaks. Here, the lethal and demographic effects of four soybean insecticides (chlorantraniliprole, deltamethrin, pyriproxyfen, and spinosad, which are used against caterpillars, whiteflies, and green stink bugs) on the brown stink bug Euschistus heros (F.), the main stink bug species currently attacking Neotropical soybean fields, were assessed. Deltamethrin exhibited drastic acute mortality in adult females of E. heros with a median lethal time (LT50) of 0.6 days, whereas pyriproxyfen treated females exhibited a survival similar to that of water-treated insects (LT50 of 89 and 67 days, respectively). Chlorantraniliprole and spinosad-treated females exhibited intermediate survival with a TL50 of 54 and 47 days, respectively. Further scrutiny of the three most selective insecticides (i.e., chlorantraniliprole, pyriproxyfen, and spinosad) using age-structured matrices to assess the demographic impact of these compounds under earlier exposure indicated that both pyriproxyfen and spinosad significantly reduced the population growth of the pest species by compromising the survival of eggs (<17% hatching) and 1st nymphs (LT50 of 3 and 2 days, respectively) and fertility; these results were unlike those obtained for chlorantraniliprole- and water-treated controls, which exhibited less than 50% mortality during development. However, chlorantraniliprole significantly compromised the fertility of adult insects (>50% reduction compared with water-treated insects) to a greater extent than pyriproxyfen and spinosad, but without impairing insect population growth as much. Therefore, although pyriproxyfen and spinosad, besides deltamethrin, are not used to target the Neotropical brown stink bug, these insecticides adversely affected this pest species at the dose recommended for application on the label, thereby preventing its outbreak under such conditions.  相似文献   

10.
The green belly stink bug, Dichelops furcatus (F.) (Hemiptera: Heteroptera: Pentatomidae) is a pest of corn and soybean in southern Brazil. It also occurs on wheat, but information on its damage to this crop is limited. To determine the need for sustainable IPM programs, the impact of this bug on wheat production should be determined. Studies were conducted in the screenhouse with 1, 2 and 4 bugs caged for 16 days on single plants, cv. ‘BRS Parrudo’. During the vegetative period (plants ca. 25 cm tall), all infestation levels significantly reduced plant height and ear head length, but did not reduce grain yield. Feeding damage caused tissue necrosis on leaves. During the booting stage, grain yield was significantly reduced with 2 and 4 bugs per plant; ear heads were small, discolored and abnormally developed. In 2013 and 2014 field trials, plants were infested for 18 days with 2, 4 and 8 bugs per m2 at vegetative, booting, and milky grain stage. At these infestation levels, there was no significant reduction in grain yield. There was a significant decrease in the number of normal seedlings resulting from seeds exposed to 8 bugs per m2 at the milky grain stage. Results suggest that, in general, there is no need to control D. furcatus on wheat, unless numbers are ≥8 bugs per m2 during reproductive period.  相似文献   

11.
The most destructive enemy of the lychee, Litchi chinensis Sonn. (Sapindales: Sapindaceae), in India is a stink bug, Tessaratoma papillosa (Drury) (Hemiptera: Tessaratomidae). The population of T. papillosa on lychee trees varied from 1.43 ± 0.501 to 9.85 ± 3.924 insects per branch in this study. An increase in the temperature and a decrease in the relative humidity during summer months (April to July) favor the population buildup of T. papillosa. A forecasting model to predict T. papillosa incidences in lychee orchards was developed using the autoregressive integrated moving average (ARIMA) model of time-series analysis. The best-fit model for the T. papillosa incidence was ARIMA (1,1), where the P-value was significant at 0.01. The highest T. papillosa incidences were predicted for April in 2010, January in 2011, May in 2012, and February in 2013. A model based on time series offers longer-term forecasting. The forecasting model, ARIMA (1,1), developed in this study will predict T. papillosa incidences in advance, thus providing functional guidelines for effective planning of timely prevention and control measures.  相似文献   

12.
龙眼幼果期荔枝蝽的防治指标   总被引:1,自引:0,他引:1  
测定了龙眼幼果期荔枝蝽(TessaratomapapilosaDrury)若虫密度与落果率的相关性及防治指标。结果表明,龙眼幼果期幼龄树及成龄树2龄若虫密度防治指标分别为1.6头/果穗和1.2头/果穗,而相应的有虫果穗率分别为33%和26%。同时,根据福建龙眼生产的实际情况,制定了不同产量、价格相应的虫口密度及有虫果穗率的防治指标,为防治提供理论依据。  相似文献   

13.
In Brazil, some of the most important insect pests causing damage to soybean (Glycine max) are stink bugs. Soybean production would increase if varieties with enhanced resistance were developed. The aim of this work was to examine different traits associated with plant development, and yield-related traits, in an F2:3 soybean population in a stink bug-infested field and to evaluate genetic parameters and correlations among those traits. The parents and progeny from 229 F2 plants developed by crossing a resistant cultivar (IAC-100) with a susceptible cultivar (CD-215) were evaluated in three replications in a single environment. Seven agronomic traits and eight indicators of insect resistance were measured. Genotypes showed significant differences for all traits except lodging. The grain-filling period exhibited a positive genotypic correlation of 0.66 with hundred-seed weight, whereas a negative genotypic correlation of ?0.53 was found between pod damage index (%) and weight of healthy seeds. In general, a shorter pod-filling period, lower weight of hundred-seeds, lower indices of pod damage, and higher seed-yield per plant were phenotypic traits of genotypes resistant to these insects.  相似文献   

14.
Stink bugs (Hemiptera: Pentatomidae) are ubiquitous, cryptic, phytophagous pests that are found in many crops. In agroecosystems, individuals disperse from adjacent noncrop hosts and tend to aggregate or cluster within fields. In this study, we characterized the distribution of Euschistus servus (Say) and Euschistus tristigmus (Say) (Hemiptera: Pentatomidae) over 2 yr at three southeastern United States farmscapes. Stink bugs were captured in pheromone-baited traps, and Spatial Analysis by Distance Indices (SADIE) used to identify the location of significant aggregations by habitat type and season. Euschistus servus adults were more likely to be captured in pecan orchards, cotton, other crops, or unmanaged habitats than in woodland habitats. Significant aggregations of E. servus were detected in a variety of habitats including pecan, corn, cotton, peanut, and tobacco, as well as fallow and hay fields, pastures, and hedgerows. Fewer adult E. tristigmus were captured than E. servus adults, and E. tristigmus adults were typically trapped and aggregated in woodland habitats. The resulting data provide an important understanding regarding the seasonal movement and relative abundance levels of stink bug populations, which are critical to the development of integrated pest management strategies.  相似文献   

15.
大豆对食叶性害虫抗性机制的研究   总被引:6,自引:1,他引:5  
1993~1996年,利用田间自然虫源,以叶面积损失率为指标,进一步鉴定了从6724份大豆资源中筛选出的46份抗感材料对食叶性害虫的抗性表现。从中选出3份抗虫和3份感虫的材料,用以研究自然虫源下豆卷叶螟、斜纹夜蛾、大造桥虫和筛豆龟蝽的产卵选择性,并在实验室和网室人工接虫条件下,研究了抗感材料对斜纹夜蛾的抗虫性机制。结果表明,田间自然虫源下抗感材料以叶面积损失率为指标的综合抗性相差显著;4种重要食叶性害虫在抗虫品种上的产卵量较少;用抗虫品种叶片饲养斜纹夜蛾幼虫,表现为食量减少、体重变小、死亡率增加、历期延长以及蛹重减轻等,而对蛹死亡率和蛹历期的影响不明显。大豆对食叶性害虫具有明显的排趋性和抗生性,尤以后者为重要。  相似文献   

16.
Six insect pests of potato, green peach aphid,Myzus persicae (Sulzer); potato leafhopper,Empoasca fabae (Harris); Colorado potato beetle,Leptinotarsa decemlineata (Say); tarnished plant bug,Lygus lineolaris (Palisot de Beauvois); red-legged grasshopper,Melanoplus femurrubrum (DeGeer); and southern army worm,Prodenia eridania (Cramer), were tested for their ability to transmit potato spindle tuber viroid (PSTV). PSTV infection was determined by a gel electrophoretic assay made 6 weeks after transfer of insects from infected to non-infected plants of the cultivar, ‘Katahdin.’ Plants grown from tubers of the original non-infected hosts were also assayed. PSTV was detected in only 2 of 183 test plants; these 2 plants had been infested with the tarnished plant bug. These results suggest that the insect species studied are relatively insignificant as vectors of PSTV.  相似文献   

17.
A method for rearing the southern green stinkbug, (Nezara viridula L.) (Heteroptera: Pentatomidae), using a modified lygus semi-solid artificial diet was developed. First to second-instar nymph were reared in a density of 631.5 ± 125.05 eggs per Petri-dish (4 cm deep × 15 cm diam). Second instar to adult were reared in a density of 535.0 ± 112.46 s instar nymphs per rearing cage (43 × 28 × 9 cm). Mating and oviposition occurred in popup rearing cages (30 × 30 cm), each holding 60–90 mixed sex adults of similar age. Adults emerged 35.88 ± 2.13 d after oviposition and survived for an average of 43.09 ± 9.53 d. On average, adults laid 223.95 ± 69.88 eggs in their lifetime, for a total production of 8,099 ± 1,277 fertile eggs/oviposition cage. Egg fertility was 77.93% ± 16.28. Egg masses held in petri-dishes had a total hatchability of 79.38% ± 20.03. Mortality of early nymphs in petri-dishes was 0.64% ± 0.12 for the first instar and 1.37% ± 0.45 for second instar. Late nymphal mortality in rearing cages was 1.41% ± 0.10, 3.47% ± 1.27, and 4.72% ± 1.29 for the third, fourth, and fifth instars, respectively. Survivorship from nymphs to adults was 88.48% ± 2.76. Using artificial diet for rearing N. viridula could reduce cost by avoiding time-consuming issues with daily feeding fresh natural hosts and insect manipulation. It could increase reliability and simplicity of bug production, which should facilitate mass rearing of its biological control agents.  相似文献   

18.
In recent years, Pyrus bretschneideri Rehd. var. ‘Suli’ has been damaged by a disease characterized by the presence of black spots on young fruit in China, which was always followed by severe bitter rot on matured fruits. The etiology of these symptoms and their relationship with the bitter rot was unknown. A colony was routinely isolated from young and matured ‘Suli’ pear fruits showing black spots and rot symptoms, respectively. This fungal colony was identified as Colletotrichum fructicola based on morphological characteristics and DNA sequence data of 7 regions. C. fructicola was confirmed to be capable of eliciting both black spots and bitter rot symptoms by completion of Koch's Postulates. The results suggested that the disease characterized by the presence of black spots on young fruits is indeed an early stage of the bitter rot observed on matured fruits of ‘Suli’ pear. Variety resistance analysis indicated an obvious resistance variation possessed by the pear varieties generally cultured in China, with black spots only occurring on some pear varieties. Our results also indicated that wounding can break the quiescent infections, enhance the infectivity of C. fructicola, and lead to more rapid rot of young and matured fruits. These results provided a clear clue that C. fructicola can invade some varieties of P. bretschneideri Rehd. directly without entry via wounds, but subsequently turned into quiescent infection and causing black spots on the fruit surface. The quiescent infection acts as a pathogenic factor responsible for bitter rot of matured fruits. The influence of temperature and pH conditions for growth and colony morphology of C. fructicola were also evaluated. The characterization of C. fructicola causing bitter rot of pear (P. bretschneideri) is expected to provide useful information for controlling this economically important disease.  相似文献   

19.
The white-spotted globular bug Eysarcoris guttigerus (Thunberg) (Hemiptera: Pentatomidae) is widely distributed in East Asia and the Pacific region. In Japan, the species is found in grassy or composite weeds in the western area of the main islands and Ryukyu Islands of Japan. One notable characteristic of the Eysarcoris genus is the two white spots on the scutellum. This is not the case with the Ishigaki Island population, however, which sports red spots instead of white, suggesting that intraspecific variation exists in the species. Therefore, we investigated intraspecific variation in E. guttigerus using mitochondrial NADH dehydrogenase subunit 2 (ND2), cytochrome oxidase subunit 1 (CO1), cytochrome b (Cytb), tRNA-Serine (tRNAser), NADH dehydrogenase subunit 1 (ND1), and 16S ribosomal RNA (16SrRNA) genes from 13 populations of Japan. The obtained maximum likelihood phylogenetic tree was divided into three groups—Group 1: Mainland, Group 2: Central Ryukyu Islands (Okinawa-Amamioshima Islands), and Group 3: South Ryukyu Islands (Ishigaki Island). The Ishigaki population was significantly separated from the other populations with consistent differences in spot color. The estimated period of divergence between the Ishigaki population and the other populations was consistent with the period of formation of the Kerama Gap in the Ryukyu arc. Thus, the process of formation of the Kerama Gap may have influenced the intraspecific variation of E. guttigerus.  相似文献   

20.
Two trials of winter wheat, embracing 17 varieties and 4 breeding lines, harvested in 2003 from locations in the semi-arid eastern part of Austria, were severely infested by naturally occurring bugs (Eurygaster sp.). In these trials bug damage was determined by selecting and weighing the infested kernels. Glutenin degradation was determined by the addition of meal from bug-infested kernels to meal from sound kernels from the same trials to reach sample mixtures representing a degree of bug attack of 6%. These mixtures and blanks made from sound meal were incubated in buffer solution (pH=8.5) at 37 °C for 45 min. The reduction in glutenin content due to the activity of bug proteinases was measured by RP-HPLC analysis of the glutenin fraction and comparison of the results of damaged and sound samples. The results showed good correlations between the degree of bug attack and the digestibility of glutenin (location 1: R2=0.69, P<0.01; location 2: R2=0.36, P<0.01). Both parameters seem to be variety specific. The determination of digestibility of glutenins was repeated in material from a trial harvested in 2005 in another location in eastern Austria, with eight varieties being the same as used in the 2003 trials. A correlation with the degree of bug attack in location 1 from the 2003 harvest was found again (R2=0.61, P<0.01).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号