首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 92 毫秒
1.
A total of 1400 juvenile Jian carp (Cyprinus carpio var. Jian) (8.93 ± 0.03 g) were fed diets containing graded levels of vitamin K at 0.027 (basal diet), 1.52, 3.02, 4.51, 6.02 and 7.52 mg kg?1 diet for 60 days to investigate the effects of vitamin K on growth, enzyme activities and antioxidant capacity in the hepatopancreas and intestine. Percentage weight gain (PWG), feed intake and feed efficiency of fish were improved by vitamin K. Activities of trypsin, chymotrypsin, amylase and lipase in the intestine and hepatopancreas and Na+, K+‐ATPase, creatine kinase, alkaline phosphatase and gamma‐glutamyl transpeptidase in the intestine were increased by vitamin K. Malondialdehyde and protein carbonyl contents in the hepatopancreas and intestine were decreased with vitamin K supplements. Certain level of vitamin K increased antihydroxyl radical, antisuperoxide anion, superoxide dismutase, catalase, glutathione‐S‐transferase, glutathione peroxidase and glutathione reductase activities and glutathione contents in the hepatopancreas and intestine. Intestinal Lactobacillus, Ecoli and Aeromonas were changed with vitamin K supplements. Together, these results indicate that vitamin K improved fish growth, digestive and absorptive ability, and anti‐oxidant capacity. The dietary vitamin K requirement of juvenile Jian carp (8.93–73.7 g) based on PWG was 3.13 mg kg?1 diet.  相似文献   

2.
A total of 1200 juvenile Jian carp (Cyprinus carpio var. Jian) (8.76 ± 0.02 g) were fed diets containing graded levels of histidine at 2.3 (unsupplemented control), 4.4, 6.3, 8.6, 10.8 and 12.7 g kg?1 diet for 60 days to investigate the effects of histidine levels on growth performance, body composition, intestinal enzymes activities and microflora. Specific growth rate (SGR), feed efficiency, protein efficiency ratio, protein productive value, body protein content and lipid content of fish were lowest in fish fed the basal diet (P < 0.05). Activities of glutamate‐pyruvate transaminase in muscle and hepatopancreas, trypsin, chymotrypsin, amylase, lipase activities in intestine and hepatopancreas, and Na+, K+‐ATPase, creatine kinase, alkaline phosphatase, γ‐glutamyl transpeptidase activities in three intestinal segments were improved by dietary histidine (P < 0.05), whereas glutamate‐oxaloacetate transaminase activities and plasma ammonia content followed an opposite trend. The amounts of Lactobacillus, Escherichia coli and Aeromonas were significantly affected by dietary histidine levels (P < 0.05). These results suggested that histidine could improve growth and enhance intestinal enzymes activities of juvenile Jian carp. The dietary histidine requirement of juvenile Jian carp (8.76–68.02 g) based on SGR was 7.8 g kg?1 diet or 2.38 g 100 g?1 protein by quadratic regression analysis.  相似文献   

3.
A 9‐week feeding trial was carried out with juvenile Jian carp (Cyprinus carpio var. Jian) to study the effects of dietary phosphorus on growth, body composition, intestinal enzyme activities and microflora. Quadruple groups of juvenile Jian carp (7.17 ± 0.01 g) were fed practical diets containing available phosphorus 1.7 (unsupplemented control), 3.6, 5.5, 7.3, 9.2 and 11.0 g kg?1 diet to satiation. Feed intake, specific growth ratio and feed efficiency were the lowest in fish fed the basal diet (P < 0.05). Body moisture, protein, lipid content and ash were all significantly affected by dietary available phosphorus levels (P < 0.05). Activities of trypsin, amylase, Na+, K+‐ATPase, alkaline phosphatase and gamma‐glutamyl transpeptidase were improved with increasing dietary phosphorus levels. Intestinal Aeromonas and Escherichia coli decreased with increasing dietary phosphorus up to 3.6 and 5.5 g kg?1 diet respectively (P < 0.05), while Lactobacillus increased with the increasing dietary phosphorus up to 9.2 g kg?1 diet (P < 0.05). These results suggested that phosphorus could enhance intestinal enzyme activities of juvenile Jian carp and the minimum dietary available phosphorus requirement for SGR of juvenile Jian carp (7.2–63.8 g) was 5.2 g kg?1 diet.  相似文献   

4.
A 6‐month trial was conducted to evaluate the effects of dietary cottonseed meal (CSM) and free gossypol (FG) on allogynogenetic silver crucian carp, Carassius auratus gibelio♀ × Cyprinus carpio♂ with 4 replicates of each treatment. Isonitrogenous and isocaloric diets were formulated with the 0 g kg?1 (control), 200 g kg?1, 400 g kg?1, and 560 g kg?1 CSM. Diets with FG were made by supplementing batches of control diet with 214 mg kg?1, 428 mg kg?1, and 642 mg kg?1. Weight gain, specific growth rate, and protein efficiency ratio increased significantly up to an inclusion level of CSM of 400 g kg?1 in the diet, with a significant decrease in food conversion ratio. Further increase in CSM to 560 g kg?1 did not cause further changes in fish performance. Free gossypol did not affect fish performance significantly at any inclusion level. Neither CSM nor FG caused significant effects in any of the other evaluated parameters such as whole body composition, haemoglobin concentration, activities of serum lysozyme, superoxide dismutase, alanine aminotransferase and aspartate aminotransferase, and histology of hepatic tissues and midgut. Our results suggested that crucian carp can tolerate at least 642 mg kg?1 FG and that it is safe to including 400 g kg?1 CSM in crucian carp feed.  相似文献   

5.
The rapidly growing yellow grouper industry has experienced relatively severe bacterial disease problems in China. The proliferation of pathogens in fish can be suppressed by commensal microbiota. In this background, we used nested polymerase chain reaction‐denaturing gradient gel electrophoresis (PCR‐DGGE) and sequence analysis to investigate microbiota in the skin, gills and intestines, including adherent bacteria and non‐adherent bacteria in yellow grouper fed with natural diet and complete feed. A total of 21 bacterial species were identified using phylogenetic analysis. The γ‐Proteobacteria group (81.0%, 17 species) dominated the bacterial communities in yellow grouper completely. Others belonged to Firmicutes (9.5%, two species), Actinobacteria (4.75%, one species) and Verrucomicrobia (4.75%, one species). The higher similarities (above 91%) of the DGGE band patterns in skin, gill and intestinal‐non‐adherent bacteria between two groups of fish indicated that existed more stable microbial communities existed in these specifically ecological niches in yellow grouper. However, considerable differences existed between two intestinal‐adherent bacteria (IAB) samples; that is, compared with natural diet fed yellow grouper, higher bacterial apparent species richness and possibly less abundance existed in IAB in fish fed with complete diets, probably indicating that the community structures in IAB were affected easily and significantly by diet.  相似文献   

6.
This study was designed to examine the effects of glycinin on growth, digestive ability, immune responses, antioxidant capacity and gene expression levels of golden crucian carp. Golden crucian carp were fed diets containing glycinin at 0, 30, 60, 90 and 120 g/kg, respectively, for 8 weeks. Body weight, weight gain percentage, specific growth rate and feed efficiency ratio were negatively related to the content of glycinin in diet. Activities of protease, acid phosphatase, alkaline phosphatase, lysozyme in hepatopancreas, and activities of catalase, glutathione peroxidase, superoxide dismutase, and total antioxidant capacity in the proximal intestine, mid intestine, distal intestine and hepatopancreas were negatively related to the content of glycinin in diet, whereas malondialdehyde in proximal intestine, mid intestine, distal intestine and hepatopancreas increased directly with the content of glycinin in diet. Furthermore, the relative expressions of TNF‐α and IL‐1β in proximal intestine, mid intestine and distal intestine increased directly with the content of glycinin in diet, whereas the relative expressions of TNF‐α and IL‐1β in hepatopancreas were negatively related to the content of glycinin in diets. The relative expressions of IL‐10 in proximal intestine, mid intestine, distal intestine and hepatopancreas all were negatively related to the content of glycinin in diets. In conclusion, reductions in growth, immunity and antioxidant capacity, intestine inflammation with dysfunction of digestive system occurred in golden crucian carp that fed a diet containing glycinin at 30 g/kg or higher after 8 weeks.  相似文献   

7.
PCR‐denaturing gradient gel electrophoresis (DGGE) was applied to analyse the microbial community attached to the gills and skin of poly‐cultured gibel carp (Carassius auratus gibelio) and bluntnose black bream (Megalobrama amblycephala Yih) and compare these results with those detected in the rearing water. The microbiota discussed included bacteria, fungi and a specific bacterial taxa of actinomycetes was also analysed. Proteobacteria, Firmicutes, Actinobacteria, Cyanobacteria, Ascomycota, Basidiomycota and some unclassified microbiota were identified. Based on our results, we concluded that: (1) the adherent bacterial/fungal communities on the gills and skin were different from those in the rearing water, (2) the bacterial/fungal diversities on fish gills were lower than that on fish skin, (3) the adherent bacterial/fungal communities on gill and skin of gibel carp were different from that of bluntnose black bream and (4) the adherent actinomycetal community showed certain similarity between the skin of different hosts. Based on our conclusions, we suggested that the topic investigated in the present study merits further investigations.  相似文献   

8.
The effect of dietary β‐glucan on the bacterial community in the gut of common carp (Cyprinus carpio) was examined after oral application of Aeromonas hydrophila. Carp received either feed supplemented with 1% MacroGard®, a β‐1,3/1,6‐glucan, or a β‐glucan‐free diet. Fourteen days after feeding, half of the carp from each group were intubated with 109 colony‐forming units (CFU) of a pathogenic strain of A. hydrophila. Gut samples were taken 12 hr to 7 days after application and analysed using microbiological and molecular biological techniques (NGS, RT‐PCR‐DGGE). The reaction of the mucosa and the microbiota to an A. hydrophila intubation differed in carp fed with β‐glucan compared to carp from the control group. In β‐glucan fed carp, the total bacterial amount was lower but the number of bacterial species was higher. Bacterial composition was different for carp from both treatment groups. The number of mucin filled goblet cells was reduced in carp fed the β‐glucan diet. Mucus was obviously released from the goblet cells and was probably washed out of the gut together with high numbers of bacteria. This might be protective against pathogenic bacteria and, therefore, feeding with β‐glucan may provide protection against infections of the gut in carp.  相似文献   

9.
This study was conducted to determine the effects of dietary cellulase addition on improving the nutritive value of Chlorella for juvenile crucian carp Carassius auratus (initial body weight: 2.99 ± 0.02 g, mean ± SEM). Five isonitrogenous and isoenergetic experimental diets were formulated to contain 0.0 (control), 0.5, 1.0, 1.5 and 2.0 g kg?1 cellulase, respectively. Each experimental diet was randomly assigned to triplicate groups with 25 juvenile fish per fibreglass tank for 8 weeks. The results showed that weight gain, specific growth rate, feed intake and the trypsin activity in the anterior intestine increased with increasing dietary cellulase to 1.5 g kg?1 and then declined with further addition. However, the mRNA expression levels of Mrf4 and Myf5, the apparent digestibility coefficients for dry matter, protein, energy and the majority of amino acids, and the activity of lipase in the anterior intestine were highest in fish fed the 1.0 g kg?1 cellulase diet, and then tended to decline with further cellulase supplementation. In conclusion, the optimal dietary cellulase supplementation level was 1.0–1.5 g kg?1, which can improve growth performance, digestive activities and nutrient digestibility in crucian carp.  相似文献   

10.
Herbivorous grass carp (Ctenopharyngodon idella) has a powerful capability to digest aquatic weed. Cellulase activity or cellulase‐producing bacteria were found in the gut of grass carp. However, it remains uncertain whether the cellulase‐producing bacteria were a part of indigenous intestinal microbiota that the fish harboured or were introduced with food. In the present study, the bacterial diversities and population abundance in the gut of starved grass carps have been investigated by sequencing 16S rRNA gene libraries. The 16S rRNA gene libraries revealed that 28 parasitic bacteria from gut were affiliated to seven genera of Vibrio, Acinetobacter, Providencia, Yersinia, Pseudominas, Morganella or Aeromonas, respectively, and Aeromonas was identified as the most dominant genus in the gut of C. idella. All of cellulase‐producing bacteria isolated from the gut of C. idella in this research belonged to Aeromonas. On the whole, the results in this research showed that cellulase activity within C. idella should be at least partially resulting from bacteria of Aeromonas with cellulase‐producing capabilities, which were indigenous and dominant intestinal species.  相似文献   

11.
12.
内参基因在实时荧光定量PCR(qRT-PCR)中具有校准的作用,然而鲤疱疹病毒Ⅱ型感染异育银鲫内参基因目前仍未见研究报道。采用qRT-PCR技术检测不同处理条件下异育银鲫组织和尾鳍细胞GAPDH、EF-1α、18S rRNA和β-actin 4个候选内参基因在组织和尾鳍细胞的转录水平,利用软件geNorm、Norm Finder、Best Keeper和Delta Ct分析了其表达量的稳定性,以筛选出健康异育银鲫不同组织以及鲤疱疹病毒Ⅱ型感染的肾脏、脾脏和异育银鲫尾鳍细胞在不同时间均较稳定的内参基因。geNorm稳定值以及4个内参的表达量Ct值分析显示,健康异育银鲫脑、脾脏、肾脏、肌肉、鳃、肠、肝脏和心脏组织中β-actin和EF-1α都是比较稳定的内参基因;鲤疱疹病毒Ⅱ型感染肾脏和尾鳍细胞不同时间点,内参基因β-actin稳定性最佳;鲤疱疹病毒Ⅱ型感染脾脏不同时间点时,EF-1α稳定性最佳。分别以4个候选内参基因为内参分析PIN1基因在肾脏组织不同感染时间的相对表达量,结果进一步证实,PIN1基因在肾脏组织感染不同时间点以β-actin为内参时,其表达量呈下降趋势,与cDNA文库测序...  相似文献   

13.
The polymerase chain reaction–denaturing gradient gel electrophoresis (PCR‐DGGE) of 16S ribosomal RNA gene was used to investigate bacterial communities in the intestines of large yellow croaker at six different ages (12 d, 18 d, 26 d, 40 d, 3 mo, and 1 yr old) as well as within the corresponding feed and culture water. In addition, Illumina Miseq sequencing was utilized to compare intestinal microbiota between 12‐d‐old and 1‐yr‐old individuals. PCR‐DGGE results revealed that the culture water had the highest bacterial diversity, followed by the feed, while the intestines had the lowest diversity. The intestinal microbiota at six ages changed severely; however, the change did not follow any trend. The large yellow croaker intestines harbored specific bacterial communities that differed from those in both feed and water. Illumina Miseq sequencing results revealed that the diversity of intestinal bacteria in 12‐d‐old fish was higher than that in 1‐yr‐old fish, and the bacterial composition differed significantly between them. γ‐Proteobacteria and Pseudoalteromonas supplied the most abundant phylum and genus in the 12‐d‐old fish intestine. However, in the 1‐yr‐old fish intestine, Firmicutes and Clostridium were the most dominant, respectively. The study may contribute to a better understanding of gut microbiota and dynamics of the large yellow croaker and the relationship with their surrounding environment.  相似文献   

14.
A total of 900 juvenile Jian carp (Cyprinus carpio var. Jian) (7.99 ± 0.02 g) were fed diets containing graded levels of xylanase at 220 (unsupplemented control), 650, 1070, 1480, 1810 and 2470 U kg?1 diet for 10 weeks to investigate the effects of xylanase levels on growth performance, intestinal enzyme activities and microflora. The per cent weight gain, feed efficiency, protein efficiency ratio, protein production value, lipid production value, ash production value, calcium production value and phosphorus retention ratio were significantly improved with increasing levels of xylanase up to a point, and thereafter declined (< 0.05). The activities of trypsin, chymotrypsin, lipase and amylase in the hepatopancreas and intestine, activities of alkaline phosphatase, Na+, K+‐ATPase, creatine kinase and γ‐glutamyl transpeptidase in three intestinal segments were improved by dietary xylanase (< 0.05). The amounts of Lactobacillus, Escherichia coli and Aeromonas were significantly affected by dietary xylanase levels (< 0.05). In conclusion, xylanase supplementation improved growth performance, enhanced intestinal enzyme activities and influenced the balance of intestinal microflora of juvenile Jian carp. The optimal level of xylanase in juvenile Jian carp (7.99–99.16 g) based on PWG was 1259 U kg?1 diet by the quadratic regression analysis.  相似文献   

15.
The autochthonous microbiota in the foregut, midgut and hindgut of juvenile grouper Epinephelus coioides following the dietary administration of probiotic Bacillus clausii for 60 days were assessed using polymerase chain reaction‐denaturing gradient gel electrophoresis (PCR‐DGGE). A complex and generally similar bacterial composition along the digestive tract of E. coioides was detected in the DGGE profiles, while several bacteria showed regional specialization. Similarity dendrogram revealed that the bacterial composition of the foregut was more similar to the midgut than the hindgut. Samples collected from the probiotic group and the control group showed generally similar DGGE patterns, while no significant difference in the total number of bands and Shannon index were observed between the probiotic group and the control group, suggested that probiotic B. clausii exerted no significant effect on the gut microbiota of E. coioides. However, various potentially beneficial bacteria, such as Enterococcus sp.‐like and Bacillus pumilus‐like bacterium were selectively stimulated by probiotic B. clausii, while some potential harmful species, like Staphylococcus sp.‐like and Vibrio ponticus‐like bacterium were depressed. These indicated that the gut microbiota was modified to some degree by probiotic B. clausii. Sequences analysis showed that the autochthonous gut bacteria of E. coioides could be classified into four groups, i.e. Proteobacteria, Firmicutes, Actinobacteria and unclassified bacteria.  相似文献   

16.
Herbivorous grass carp (Ctenopharyngodon idellus) has a powerful capability to digest cellulose from aquatic plants, depending on the cellulase complex produced by the cellulolytic bacterial community in the gastrointestinal (GI) tract. However, it remains uncertain which bacteria taxa may actively participate in the digestion of food fibre. In this study, a total of 499 cellulolytic bacteria from the gut content of grass carp fed on Sudan grass (242 strains) and artificial feedstuffs (257 strains) were randomly isolated and characterized using carboxymethyl‐cellulose, microcrystalline cellulose and cellobiose agar media. The results showed that more than half of the isolates were capable of degrading carboxymethyl‐cellulose and cellobiose, while the remaining isolates were restricted to microcrystalline cellulose decomposition, exclusively. The cellulolytic bacterial community was dominated by Aeromonas, followed by Enterobacter, Enterococcus, Citrobacter, Bacillus, Raoultella, Klebsiella, Hydrotalea, Pseudomonas, Brevibacillus and some unclassified bacteria, as revealed by 16S rDNA sequence analysis. Notably, grass carp fed on grass with high‐fibre content harboured a higher diversity of cellulolytic bacteria than the ones fed on low‐fibre feedstuffs. Our results provided evidence for a positive correlation between the content of food fibre and the diversity of cellulolytic bacteria in grass carp intestines. Thus, improving growth conditions and cellulase activities for GI cellulolytic microorganisms in grass carp intestines are critical for effective utilization of feedstuffs containing high fibre levels.  相似文献   

17.
18.
A 60‐day feeding trial was carried out with juvenile Jian carp (Cyprinus carpio var. Jian) to study the effects of myo‐inositol (MI) on the growth, digestive enzyme and intestinal microbial population. Diets with seven levels of inositol (163.5, 232.7, 384.2, 535.8, 687.3, 838.8 and 990.3 mg MI kg?1 diet) were fed to Jian carp (initial weight 22.28±0.07 g). Per cent weight gain (PWG) was improved with increasing inositol levels up to 535.8 mg MI kg?1 diet (P<0.05), and plateaued (P>0.05). The protein production value, lipid production value and ash production value were increased with increasing dietary inositol levels up to 384.2, 838.8 and 838.8 mg MI kg?1 diet respectively (P<0.05). Although intestinal protein content and trypsin activity were not affected by inositol levels (P>0.05), chymotrypsin, lipase and amylase activities in intestine were the lowest for fish fed the MI‐unsupplemented diet (P<0.05). Alkaline phosphatase, Na+, K+‐ATPase, γ‐glutamyl transpeptidase and creatinkinase activities in the intestine were increased with an increase in the inositol levels up to 384.2–687.3 mg MI kg?1 diet (P<0.05). Intestinal Aeromonas hydrophila and Escherichia coli decreased with an increase in the levels of dietary inositol up to 232.7 and 687.3 mg MI kg?1 diet respectively (P<0.05), while Lactobacillus in the intestine increased with an increase in inositol levels up to 990.3 mg MI kg?1 diet (P<0.05). In conclusion, inositol improved growth, digestive capacity and intestinal microbial population of juvenile Jian carp, and the dietary inositol requirement for PWG of juvenile Jian carp is 518.0 mg MI kg?1 diet.  相似文献   

19.
Under experimental challenges, the gastrointestinal (GI) tract of fish has been proposed as an infectious route of several pathogenic bacteria. Is this also the case for diseased fishponds? A field research was conducted to verify this hypothesis. A crucian carp (Carassius carassius) reared fishpond with motile Aeromonas septicaemia outbreak was sampled in this study. A total of 62 strains of Aeromonas hydrophila were isolated and identified. The clonal relationship among these strains was determined by sequencing the gyrB gene, ERIC‐PCR, RAPD‐PCR, and the presence of seven virulence genes. Strains with identical genotypes were further confirmed as the same clone by multilocus sequence typing analysis. Experimental infection assays were also conducted in zebrafish (Danio rerio). The results show that the same clone strains identical to those in the blood of diseased fish existed in the intestinal digesta of diseased and uninfected fish. Regardless of their origins, all these strains were highly pathogenic to zebrafish. The result indicates that pathogenic strains of A. hydrophila had existed in the GI tract of fish before the infection occurred. This increases our knowledge on infectious route of A. hydrophila in crucian carp.  相似文献   

20.
  • 1. Crucian carp Carassius carassius, which is native to south‐east England, has received little previous study in Britain but is threatened by introductions of goldfish Carassius auratus through hybridization and by frequent mis‐identification of brown goldfish as crucian carp. The present study provides the first data on back‐calculated growth, morphology and age‐at‐maturity of crucian carp in Britain.
  • 2. The youngest mature crucian were female (age 2+), the smallest mature crucian were male (age 3+), with almost all fish mature at age 3+. Sex dimorphism in back‐calculated standard length at age was not observed except at age 2+ (juveniles longest). Shifts in morphological characters often associated with maturation (dorsal and ventral fin length, dorsal and anal fin depth, pre‐dorsal distance, body width) were observed between ages 4+ and 7+, which (in contrast to the relatively abrupt shift in maturity) suggests that age and size at maturation may not reflect the size and age of active (i.e. real) spawning.
  • 3. Back‐calculated standard lengths at age for crucian carp were intermediate relative to other European populations, indicating that environmental conditions in England appear to be well suited to the species despite being at the westernmost extent of the species' native European range. The management of ornamental ponds specifically for crucian carp is discussed.
© Crown copyright 2007. Reproduced with the permission of Her Majesty's Stationery Office. Published by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号