首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Progressive myelomalacia (PMM) is a fatal sequela of acute thoracolumbar intervertebral disc extrusion in dogs, with unpredictable onset in the days after the inciting injury. No single reliable diagnostic test is currently available. Magnetic resonance imaging (MRI) features such as T2-weighted spinal cord hyperintensity and loss of subarachnoid signal in a half-Fourier single-shot turbo spin echo (HASTE) sequence have been associated with PMM, but are sometimes present in other dogs with severe deficits. Magnetic resonance imaging findings in 22 dogs with a clinical or histopathologic diagnosis of PMM and 38 deep pain-negative paraplegic dogs were compared in a retrospective case-control study. Length of T2-weighted hyperintense spinal cord change and HASTE signal loss were significantly associated with clinically evident PMM (P = .0019 and P = .0085), however, there were no significant differences between groups when analysis was restricted to dogs not yet showing clinical signs of PMM. The PMM group also had significantly shorter compressive lesions than the control group (P = 0.026), suggesting a possible role of more severe focal pressure at the extrusion site. A segment of total loss of contrast enhancement in the venous sinuses and meninges, a feature not previously described, was more common in the PMM group and the difference approached significance (P = 0.054). Findings show that MRI features can support the diagnosis in dogs with clinical evidence of PMM, and absence of these features supports absence of PMM at time of imaging. However, their absence does not reliably differentiate dogs with imminent progressive myelomalacia from other dogs with severe deficits following intervertebral disc extrusion.  相似文献   

2.
Objective : To describe the patterns of enhancement of extradural intervertebral disc on chemically fat saturated gadolinium‐enhanced magnetic resonance images and to investigate the clinical and pathological associations with enhancement. Methods : Medical records and magnetic resonance images were reviewed from 30 dogs with histopathologically confirmed disc disease and enhancement on a T1‐weighted postcontrast fat saturated sequence. Results : Median duration of neurological signs was 4 days and the most common grade of severity was II, seen in 46·6% of dogs. Homogeneous, heterogeneous and peripheral patterns of disc enhancement were described, with peripheral enhancement most commonly identified (57% of dogs). There were no clinical or pathological differences between the dogs with each of the patterns. The mean signal intensity of a region of interest within the extruded disc material and contrast‐to‐noise ratio of the disc material were significantly higher on postcontrast T1‐weighted fat saturated images (P=<0·0001 each). Clinical Significance : The use of fat saturated gadolinium‐enhanced magnetic resonance imaging can detect enhancement of extradural disc material. Patterns of enhancement are not associated with the clinical presentation or pathological features.  相似文献   

3.
Cranial thoracic intervertebral disc herniations have been reported to be rare in dogs due to the presence of the intercapital ligament, however some studies have proposed they may not be uncommon in German Shepherd dogs. The purpose of this retrospective study was to compare cranial thoracic intervertebral disc herniations in German Shepherd dogs and other large breed dogs (control group). Medical records at the Ontario Veterinary College were searched for German Shepherd dogs and other large breed dogs that had magnetic resonance imaging studies including the T1‐T9 region. For each dog and each disc space from T1‐T9, three variables (compression, disc degeneration, and herniation) were recorded and graded based on review of sagittal T2‐weighted images. Twenty‐three German Shepherd dogs and 47 other large breed dogs met inclusion criteria. The German Shepherd dog group had higher scores than the control group for compression (P = 0.0099) and herniation (P < 0.001), but not disc degeneration (P = 0.97). In the German Shepherd dog group, intervertebral discs T2‐T3 and T4‐T5 had an increased risk for compression and T3‐T4 had an increased risk for compression and herniation. Findings from this study indicated that German Shepherd dogs may be more likely than other large breed dogs to have spinal cord compression due to cranial thoracic disc herniations. Imaging of the cranial thoracic spine, including T2‐T3, is recommended for German Shepherd dogs with T3‐L3 neurological signs.  相似文献   

4.
Amy S.  Tidwell  DVM  Andrew  Specht  DVM  Lauren  Blaeser  DVM  Marc  Kent  DVM 《Veterinary radiology & ultrasound》2002,43(4):319-324
Myelography and magnetic resonance imaging (MRI) were performed on a 4-year-old neutered female Rottweiler with bilateral pelvic limb paresis. On the myelogram, there was extradural spinal cord compression at the level of the T11-12 intervertebral disc. Inadvertent placement of epidural contrast medium also allowed identification of a 1-cm circular filling defect in the epidural space dorsal to the compressed spinal cord. MRI showed partial loss of the nucleus pulposus signal of the T11-12 disc, a focal signal void within the vertebral canal at T11 compatible with a free disc fragment, and extradural masses compressing the spinal cord at T10-11 and T11-12. Hemorrhage within the masses was confirmed on T2*-weighted images. A mixture of hematoma and mineralized disc material was found at surgery, and there was no histopathologic evidence of neoplasia. In this article, the appearance on MRI of hemorrhage associated with intervertebral disc herniation is discussed.  相似文献   

5.
Treatment recommendations differ for dogs with intervertebral disk extrusion vs. intervertebral disk protrusion. The aim of this retrospective, cross‐sectional study was to determine whether clinical and magnetic resonance imaging (MRI) variables could be used to predict a diagnosis of thoracolumbar intervertebral disk extrusion or protrusion in dogs. Dogs were included if they were large breed dogs, had an MRI study of the thoracolumbar or lumbar vertebral column, had undergone spinal surgery, and had the type of intervertebral disk herniation (intervertebral disk extrusion or protrusion) clearly stated in surgical reports. A veterinary neurologist unaware of surgical findings reviewed MRI studies and recorded number, location, degree of degeneration and morphology of intervertebral disks, presence of nuclear clefts, disk space narrowing, extent, localization and lateralization of herniated disk material, degree of spinal cord compression, intraparenchymal intensity changes, spondylosis deformans, spinal cord swelling, spinal cord atrophy, vertebral endplate changes, and presence of extradural hemorrhage. Ninety‐five dogs were included in the sample. Multivariable statistical models indicated that longer duration of clinical signs (P = 0.01), midline instead of lateralized disk herniation (P = 0.007), and partial instead of complete disk degeneration (P = 0.01) were associated with a diagnosis of intervertebral disk protrusion. The presence of a single intervertebral herniation (P = 0.023) and dispersed intervertebral disk material not confined to the disk space (P = 0.06) made a diagnosis of intervertebral disk extrusion more likely. Findings from this study identified one clinical and four MRI variables that could potentially facilitate differentiating intervertebral disk extrusions from protrusions in dogs.  相似文献   

6.
Existing reports concerning intervertebral disc disease (IVDD) have focused almost exclusively on dogs, although a small number of individual case reports of IVDD of cats has been published. The medical records of six cats with IVDD were reviewed. Radiographic studies confirmed narrowed intervertebral disc spaces, mineralised intervertebral discs, and one or more extradural compressive lesions of the spinal cord in each cat. All disc extrusions were located in the thoracolumbar region. Surgical decompression of the spinal cord was achieved in all cats by means of hemilaminectomy and removal of compressive extradural material confirmed to be degenerative disc material. Good to excellent neurological recovery was noted in five of the six cats included in this report. Based on this review, it appears that IVDD of cats has many similarities to IVDD of dogs, and that healthy cats with acute intervertebral disc extrusion(s) respond favourably to surgical decompression of the spinal cord.  相似文献   

7.
O bjectives : To describe the clinical and magnetic resonance imaging features of cervical vertebral malformation-malarticulation in Bernese mountain dogs.
M ethods : Seven Bernese mountain dogs (four males and three females) were diagnosed with cervical vertebral malformation-malarticulation by magnetic resonance imaging. The following data were evaluated retrospectively: (1) abnormalities of the cervical vertebral column and spinal cord, (2) spinal cord compression, (3) intervertebral disc degeneration and herniation, (4) severity of clinical signs pretreatment and after treatment, (5) type of treatment and (6) outcome.
R esults : Spin echo T1-weighted and T2-weighted images disclosed multi-level, extradural compressive spinal cord lesions (ventral, dorsolateral or both) spanning from intervertebral disc spaces C3-4 to C6-7. In all seven dogs, T2-weighted images disclosed one or more intramedullary hyperintensities associated with extradural spinal cord compression. Surgery was performed in five dogs. Two dogs were managed medically. The prognosis for surgical or conservative management in Bernese mountain dogs was similar to cervical vertebral malformation-malarticulation in other breeds.
C linical S ignificance : Cervical vertebral malformation-malarticulation is an important differential diagnosis for young to middle-aged Bernese mountain dogs with a C1-5 or C6-T2 neuroanatomic localisation. Dorsolateral spinal cord compression associated with articular process hypertrophy was the most common feature of cervical vertebral malformation-malarticulation in the seven Bernese mountain dogs evaluated.  相似文献   

8.
Objective— To report clinical and diagnostic imaging features, and outcome after surgical treatment of ventral intraspinal cysts in dogs.
Study Design— Retrospective study.
Animals— Dogs (n=7) with ventral intraspinal cysts.
Methods— Clinical signs, magnetic resonance imaging (MRI) findings and surgical findings of 7 dogs and histologic findings (1 dog) with intraspinal cysts associated with the intervertebral disc were reviewed.
Results— Ventral intraspinal cyst is characterized by: (1) clinical signs indistinguishable from those of typical disc herniation; (2) an extradural, round to oval, mass lesion with low T1 and high T2 signal intensity on MRI, compatible with a liquid-containing cyst; (3) cyst is in close proximity to the intervertebral disc; and (4) MRI signs of disc degeneration. Although the exact cause is unknown, underlying minor disc injury may predispose to cyst formation.
Conclusion— Intraspinal cysts have clinical signs identical to those of disc herniation. Given the close proximity of the cyst to the corresponding disc and the similarity of MRI findings to discal cysts in humans, we propose the term "canine discal cyst" to describe this observation.
Clinical Relevance— Discal cysts should be considered in the differential choices for cystic extradural compressing lesions.  相似文献   

9.
The cervical spine of 27 dogs with cervical pain or cervical myelopathy was evaluated using magnetic resonance imaging (MRI). Spin echo T1, T2, and post-contrast T1 weighted imaging sequences were obtained with a 0.5 Tesla magnet in 5 dogs and a 1.5 Tesla magnet in the remaining 22 dogs. MRI provided for visualization of the entire cervical spine including the vertebral bodies, intervertebral discs, vertebral canal, and spinal cord. Disorders noted included intervertebral disc degeneration and/or protrusion (12 dogs), intradural extramedullary mass lesions (3 dogs), intradural and extradural nerve root tumors (3 dogs), hydromyelia/syringomyelia (1 dog), intramedullary ring enhancing lesions (1 dog), extradural synovial cysts (1 dog), and extradural compressive lesions (3 dogs). The MRI findings were consistent with surgical findings in 18 dogs that underwent surgery. Magnetic resonance imaging provided a safe, useful non-invasive method of evaluating the cervical spinal cord.  相似文献   

10.
Intradural disc herniation is a rarely reported cause of neurologic deficits in dogs and few published studies have described comparative imaging characteristics. The purpose of this retrospective cross sectional study was to describe clinical and imaging findings in a group of dogs with confirmed thoracolumbar intradural disc herniation. Included dogs were referred to one of four clinics, had acute mono/paraparesis or paraplegia, had low field magnetic resonance imaging (MRI) and/or computed tomographic myelography, and were diagnosed with thoracolumbar intradural disc herniation during surgery. Eight dogs met inclusion criteria. The prevalence of thoracolumbar intradural disc herniation amongst the total population of dogs that developed a thoracolumbar intervertebral disc herniation and that were treated with a surgical procedure was 0.5%. Five dogs were examined using low‐field MRI. Lesions that were suspected to be intervertebral disc herniations were observed; however, there were no specific findings indicating that the nucleus pulposus had penetrated into the subarachnoid space or into the spinal cord parenchyma. Thus, the dogs were misdiagnosed as having a conventional intervertebral disc herniation. An intradural extramedullary disc herniation (three cases) or intramedullary disc herniation (two cases) was confirmed during surgery. By using computed tomographic myelography (CTM) for the remaining three dogs, an intradural extramedullary mass surrounded by an accumulation of contrast medium was observed and confirmed during surgery. Findings from this small sample of eight dogs indicated that CTM may be more sensitive for diagnosing canine thoracolumbar intradural disc herniation than low‐field MRI.  相似文献   

11.
Cervical vertebral fusion was noted radiographically in four dogs presented for signs of cervical spinal cord compression. Ventral extradural spinal cord compression was seen on myelography at intervertebral disc spaces adjacent to the fused vertebrae in two dogs and at a site removed in two dogs. At surgery, no intervertebral disc space was found in the area of fusion. No other instances of cervical vertebral fusion were identified in reviewing radiographs of 1225 other dogs with cervical intervertebral disc extrusion evaluated at our hospital. Clinical signs resolved in all dogs after surgical removal of extruded intervertebral disc material. Information from these four dogs suggest vertebral fusion may predispose adjacent discs to herniation.  相似文献   

12.
Objective— To describe the influence of fenestration at the disc herniation site on recurrence in thoracolumbar disc disease of chondrodystrophoid dogs.
Study Design— Prospective clinical study.
Animals— Chondrodystrophic dogs (n=19).
Methods— Dogs were divided into 2 groups: group 1 (9 dogs) had thoracolumbar disc extrusion (Hansen type I) treated by hemilaminectomy and concomitant fenestration of the affected intervertebral disc and group 2 (10 dogs) had hemilaminectomy without fenestration. All dogs had 3 magnetic resonance imaging (MRI) examinations: preoperatively, immediately postoperatively to assess removal of herniated disc material, and again 6 weeks after surgery.
Results— There were 13 male and 6 female dogs; mean age, 7.1 years. Thoracolumbar disc herniation was confirmed with MRI. Immediate post surgical MRI revealed that the herniated disc removal was complete in all but 1 dog and that fenestration did not lead to complete removal of nucleus pulposus within the intervertebral disc space. On the 3rd MRI examination, none of the group 1 dogs had further disc material herniation at the fenestrated site. Six of the 10 group 2 dogs had a recurrence of herniation leading to clinical signs in 3 dogs (pain in 2 dogs, paresis in 1 dog).
Conclusion— In thoracolumbar disc herniation, fenestration of the affected intervertebral disc space prevents further extrusion of disc material.
Clinical Relevance— Fenestration reduces the risk of early recurrence of disc herniation and associated postoperative complications.  相似文献   

13.
The T2*‐weighted gradient recalled echo sequence is a sensitive means to detect blood degradation products. While not a routine sequence in magnetic resonance imaging of the spine in small animals, it can provide additional valuable information in select cases. The goal of this retrospective, cross‐sectional study was to describe findings when acquiring this sequence during magnetic resonance imaging examination of the spine in small animals. The University of Tennessee's veterinary radiology database was searched for dogs and cats that underwent magnetic resonance imaging for suspect spinal disease in which a T2*‐weighted gradient recalled echo sequence was acquired and susceptibility artifact was identified. The following information was recorded: signalment, clinical signs, location and appearance of susceptibility artifact, and final diagnosis. Thirty‐nine cases were included in the study. Extradural susceptibility artifacts were observed in cases of intervertebral disc herniation with or without associated hemorrhage (n = 28), extradural hemorrhage associated with spinal trauma (n = 2), hemophilia (n = 1), and in a cystic extradural mass (n = 1). Remaining lesions displaying susceptibility artifact were intramedullary and included presumptive acute noncompressive nucleus pulposus extrusion (n = 2), hematoma (n = 1), hemangiosarcoma metastasis (n = 1), intramedullary disc extrusion (n = 1), presumptive meningomyelitis (n = 1), and a mass of undetermined etiology (n = 1). Inclusion of a T2*‐weighted gradient recalled echo sequence may be helpful in spinal magnetic resonance imaging when standard imaging sequences are ambiguous or intramedullary lesions are observed.  相似文献   

14.
15.
In order to compare the accuracy of MR sequences for diagnosis of meningeal disease, MR images of the brain, and histopathologic specimens including the meninges of 60 dogs were reviewed retrospectively by independent observers in a cross‐sectional study. MR images included T1‐weighted pre‐ and postgadolinium images, subtraction images, T2‐weighted images, and T2‐weighted fluid‐attenuated inversion‐recovery (FLAIR) images. Pathologic changes affected the pachymeninges in 16 dogs, leptomeninges in 35 dogs, and brain in 38 dogs. The meninges were normal in 12 dogs. Meninges were classified histopathologically as normal (grade 0), slightly or inconsistently affected (grade 1), or markedly affected (grade 2). When applying relaxed pathologic criteria (grades 0 and 1 considered normal), the results of ROC analysis (area under curve, AUC) were: T1‐weighted postcontrast images 0.74; subtraction images 0.7; T2‐weighted images 0.68; FLAIR images 0.56. The difference in AUC between T1‐weighted postgadolinium images and FLAIR images was significant (P = 0.04). AUC for FLAIR images was not significantly different from 0.5. When applying strict pathologic criteria (only grade 0 considered normal), none of the MR sequences had AUC significantly different from 0.5. On the basis of T1‐weighted postgadolinium images and subtraction images, correct anatomic classification of lesions occurred more often for pachymeningeal than leptomeningeal lesions (P < 0.001). Overall, MR imaging had low sensitivity for diagnosis of meningeal pathology in dogs, particularly for changes affecting the leptomeninges. Subtraction images had similar accuracy to T1‐weighted postgadolinium images for meningeal lesions in dogs. T2‐weighted FLAIR images appear to have limited diagnostic utility for meningeal lesions.  相似文献   

16.
Forty‐six dogs with either cervical (C1–C5 or C6–T2) or thoracolumbar (T3–L3) acute myelopathy underwent prospective conventional computed tomography (CT), angiographic CT, myelography, and CT myelography. Findings were confirmed at either surgery or necropsy. Seventy‐eight percent of lesions were extradural, 11% were extradural with an intramedullary abnormality, 7% were intramedullary, 2% were intradural–extramedullary, and 2% had nerve root compression without spinal cord compression. Intervertebral disc herniation was the most frequent abnormality regardless of signalment or neurolocalization. Twenty‐one of 23 Hansen type I disc extrusions but none of the Hansen type II disc protrusions were mineralized. Two chondrodystrophic dogs had acute myelopathy attributable to extradural hemorrhage and subarachnoid cyst. CT myelography had the highest interobserver agreement, was the most sensitive technique for identification of compression, demonstrating lesions in 8% of dogs interpreted as normal from myelography and enabling localization and lateralization in 8% of lesions incompletely localized on myelography due to concurrent spinal cord swelling. None of the imaging techniques evaluated permitted definitive diagnosis of spinal cord infarction or meningomyelitis but myelography and CT myelography did rule out a surgical lesion in those cases. While conventional CT was adequate for the diagnosis and localization of mineralized Hansen type I disc extrusions in chondrodystrophic breeds, if no lesion was identified, plegia was present due to concurrent extradural compression and spinal cord swelling, or the dog was nonchondrodystrophic, CT myelography was often necessary for correct diagnosis.  相似文献   

17.
Vertebral lesions and associated neurological signs occur in dogs with multiple myeloma, however, veterinary literature describing MRI findings is currently lacking. The objective of this multicenter, retrospective, case series study was to describe neurological signs and MRI findings in a group of dogs that presented for spinal pain or other neurological deficits and had multiple myeloma. Electronic records of four veterinary referral hospitals were reviewed. Dogs were included if they had a pathologically confirmed diagnosis of multiple myeloma, had presented for spinal pain or other neurological signs, and had undergone MRI of the vertebral column. The MRI studies were evaluated and the anatomical location of lesion(s), signal intensity, presence of extra‐dural material, degree of spinal cord compression, extent of vertebral lesions, and contrast enhancement were recorded. Twelve dogs met inclusion criteria. Most dogs (n = 8) had a chronic progressive history, with varying degrees of proprioceptive ataxia and paresis (n = 11), and spinal pain was a feature in all dogs. The MRI findings were variable but more consistent features included the presence of multiple expansile vertebral lesions without extension beyond the outer cortical limits of affected vertebrae, and associated extradural material causing spinal cord compression. The majority of lesions were hyper‐ to isointense on T2 (n = 12) and T1‐weighted (n = 8) sequences, with variable but homogeneous contrast‐enhancement (n = 12). These described MRI characteristics of multiple myeloma may be used to aid early identification and guide subsequent confirmatory diagnostic steps, to ultimately improve therapeutic approach and long‐term outcome.  相似文献   

18.
Thoracolumbar intervertebral disc extrusion is a common disease in dogs. Surgical decompression of the spinal cord is the preferred treatment. Localization of the compressive material is critical for surgical planning. Myelography has been used for localizing extruded disc material, but this procedure carries risk of complications. Computed tomography (CT) is becoming more available for use in veterinary medicine and CT myelography is used for localization of extruded disc material. This report compares CT with intravenous contrast medium and CT myelography for identifying extruded intervertebral discs. CT with intravenous contrast medium is as effective as CT myelography for determining level and laterality of compressive disc extrusions.  相似文献   

19.
Our aim was to characterize the magnetic resonance (MR) imaging features of canine disc extrusion accompanied by epidural hemorrhage or inflammation. We correlated the imaging characteristics of this type of disc extrusion in 46 dogs and compared these features with clinical signs and pathologic findings. Data from 50 control dogs with MR imaging features of a disc extrusion with no associated hemorrhage or inflammation, characterized by a T2‐hypointense extradural mass, were used for comparison of the relative location of the two types of lesions and prognosis. Disc extrusion causing epidural hemorrhage or inflammation is more common in the caudal aspect of the lumbar spine than disc extrusions that do not cause signs of hemorrhage or inflammation (P<0.05) in MR images. In dogs with disc extrusion and associated epidural hemorrhage or inflammation, there was no association between MR imaging features and signalment, the presence or absence of hemorrhage, or pathologic findings. The appearance of the lesion created by disc extrusion with epidural hemorrhage and inflammation encompasses a wide variety of imaging features, likely related to the duration of the hemorrhage and associated inflammatory changes. In 10 of 46 dogs these secondary changes masked identification of the disc extrusion itself in the MR images. An awareness of the variety of MR imaging features of disc extrusion accompanied by extradural hemorrhage or inflammation is important to avoid making an incorrect diagnosis and to facilitate a proper surgical approach. The prognosis of dogs with disc extrusion accompanied by hemorrhage or inflammation does not appear to be different than for dogs with disc extrusion and without imaging signs of epidural hemorrhage or inflammation.  相似文献   

20.
Background: Myelin‐like material in canine cerebrospinal fluid (CSF) specimens has been attributed to demyelinating or myelomalacic conditions. In our experience, myelin‐like material is observed frequently, especially in lumbar samples, and in a variety of disease conditions. Objectives: The objective of this study was to determine if there are associations between the presence of myelin‐like material and CSF collection site, body weight, underlying disease, and patient outcome. Methods: Wright–Giemsa‐stained cytocentrifuged specimens of CSF from the cerebellomedullary cistern (n=51) and lumbar cistern (n=47) of 98 dogs with neurologic disease were evaluated retrospectively for the presence and amount of extracellular myelin‐like material. Results were compared based on collection site, body weight, type of neurologic disease, and outcome. Results: Myelin‐like material was observed in 20/98 (20%) samples and was more frequently observed in lumbar (17/47, 36%) than cerebellomedullary samples (3/51, 6%) (P=.0028). Samples from dogs <10 kg were more likely to contain myelin (14/36, 39%) compared with dogs ≥10 kg (5/60, 8%) (P=.0052). Larger amounts of myelin‐like material were observed in CSF from dogs with intervertebral disk disease compared with other diseases (P=.045). No association was found between myelin‐like material and outcome. Conclusion: The association of extracellular myelin‐like material in canine CSF samples with sampling site and body weight suggests it is more often an artifact of collection technique and anatomy rather than the result of neurologic disease. Myelin‐like material in CSF is not associated with a poorer prognosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号