共查询到20条相似文献,搜索用时 0 毫秒
1.
Antje Hartmann Charlotte Söffler Klaus Failing Andreas Schaubmar Martin Kramer Martin J. Schmidt 《Veterinary radiology & ultrasound》2014,55(6):592-598
Diffusion‐weighted imaging (DWI) MRI has been primarily reported as a method for diagnosing cerebrovascular disease in veterinary patients. In humans, clinical applications for diffusion‐weighted MRI have also included epilepsy, Alzheimer's, and Creutzfeld–Jakob disease. Before these applications can be developed in veterinary patients, more data on brain diffusion characteristics are needed. Therefore, the aim of this study was to evaluate the distribution of diffusion in the normal canine brain. Magnetic resonance imaging of the brain was performed in ten, clinically normal, purpose‐bred beagle dogs. On apparent diffusion coefficient maps, regions of interest were drawn around the caudate nucleus, thalamus, piriform lobe, hippocampus, semioval center, and cerebral cortex. Statistically significant differences in mean apparent diffusion coefficient were found for the internal capsule, hippocampus, and thalamus. The highest apparent diffusion coefficient (1044.29 ± 165.21 μm2/s (mean ± SD (standard deviation)) was detected in the hippocampus. The lowest apparent diffusion coefficient was measured in the semioval center (721.39 ± 126.28 μm2/s (mean ± SD)). Significant differences in mean apparent diffusion coefficients of the caudate nucleus, thalamus, and piriform lobe were found by comparing right and left sides. Differences between brain regions may occur due to differences in myelination, neural density, or fiber orientation. The reason for the differences between right and left sides remains unclear. Data from the current study provide background for further studies of diffusion changes in dogs with brain disease. 相似文献
2.
QUN ZHAO SUNBOK LEE MARC KENT SCOTT SCHATZBERG SIMON PLATT 《Veterinary radiology & ultrasound》2010,51(2):122-129
We evaluated dynamic contrast‐enhanced magnetic resonance imaging (DCE‐MRI) in canine brain tumors. Magnetic resonance data sets were collected on seven canine intracranial tumors with a 3 T magnet using a T1‐weighted fast spin echo fluid attenuated inversion recovery sequence after an IV bolus injection (0.2 mmol/kg) of Gd‐DTPA. The tumors were confirmed histopathologically as adenocarcinoma (n=1), ependymoma (n=1), meningioma (n=3), oligodendroglioma (n=1), and pituitary macroadenoma (n=1) The data were analyzed using a two‐compartment pharmacokinetic model for estimation of three enhancement parameters, ER (rate of enhancement), Kel (rate of elimination), and Kep (rate constant), and a model‐free phenomenologic parameter initial area under the Gd concentration curve (IAUGC) defined over the first 90 s postenhancement. Pearson's correlations were calculated between parameters of the two methods. The IAUGC has a relatively strong association with the rate of enhancement ER, with r ranges from 0.4 to 0.9, but it was weakly associated with Kep and Kel. To determine whether any two tumors differed significantly, the Kolmogorov–Smirnov test was used. The results showed that there were statistical differences (P<0.05) between distributions of the enhancement pattern of each tumor. These kinetic parameters may characterize the perfusion and vascular permeability of the tumors and the IAUGC may reflect blood flow, vascular permeability, and the fraction of interstitial space. The kinetic parameters and the IAUGC derived from DCE‐MRI present complementary information and they may be appropriate to noninvasively differentiate canine brain tumors although a larger prospective study is necessary. 相似文献
3.
JAIME E. SAGE VALERIE F. SAMII CARLEY J. ABRAMSON ERIC M. GREEN MARK SMITH CHERYL DINGUS 《Veterinary radiology & ultrasound》2006,47(3):249-253
T2-weighted fast spin echo and conventional spin echo are two magnetic resonance (MR) pulse sequences used to image the brain. Given the same scan parameters the resolution of fast spin-echo images will be inferior to that of conventional spin-echo images. However, fast spin-echo images can be acquired in a shorter time allowing scan parameters to be optimized for increased resolution without increasing the time to an unacceptable level. MR imaging of the brain of 54 dogs, suspected of having parenchymal brain abnormalities was performed using a 1.5 T scanner. Acquisition time ranged from 4 min 24 s to 7 min 16 s (average = 5 min 15 s) for fast spin-echo scans and from 6 min 32 s to 11 min 26s (average = 7 min 55s) for conventional spin-echo scans. All reviewers consistently rated the resolution of fast spin-echo images higher than the conventional spin-echo images (P = 0.000). The potential disadvantages of fast spin-echo acquisitions (motion artifacts, blurring, and increased hyperintensity of fat) did not affect the resolution of the images. Fast spin echo offers increased resolution in a comparable time to conventional spin echo by increased number of excitations and finer matrix size, thus improving the signal-to-noise ratio and spatial resolution, respectively. 相似文献
4.
BILL GROSS DAVID GARCIA‐TAPIA ELIZABETH RIEDESEL NORMAN MATTHEW ELLINWOOD JACKIE K. JENS 《Veterinary radiology & ultrasound》2010,51(4):361-373
The normal neonatal canine brain exhibits marked differences from that of the mature brain. With development into adulthood, there is a decrease in relative water content and progressive myelination; these changes are observable with magnetic resonance imaging (MRI) and are characterized by a repeatable and predictable time course. We characterized these developmental changes on common MRI sequences and identified clinically useful milestones of transition. To accomplish this, 17 normal dogs underwent MRI of the brain at various times after birth from 1 to 36 weeks. Sequences acquired were T1‐weighted (T1W), T2‐weighted (T2W), fluid attenuated inversion recovery, short tau inversion recovery, and diffusion weighted imaging sequences. The images were assessed subjectively for gray and white matter relative signal intensity and results correlated with histologic findings. The development of the neonatal canine brain follows a pattern that qualitatively matches that observed in humans, and which can be characterized adequately on T1W and T2W images. At birth, the relative gray matter to white matter signal intensity of the cortex is reversed from that of the adult with an isointense transition at 3–4 weeks on T1W and 4–8 weeks on T2W images. This is followed by the expected mature gray matter to white matter relative intensity that undergoes continued development to a mostly adult appearance by 16 weeks. On the fluid attenuated inversion recovery sequence, the cortical gray and white matter exhibit an additional signal intensity reversal during the juvenile period that is due to the initial high relative water content at the subcortical white matter, with its marked T1 relaxation effect. 相似文献
5.
BYEONG-TECK KANG KI-JIN KO DONG-PYO JANG JAE-YONG HAN CHAE-YOUNG LIM CHUL PARK JONG-HYUN YOO JU-WON KIM DONG-IN JUNG YOUNG-BO KIM EUNG-JE WOO ZANG-HEE CHO HEE-MYUNG PARK 《Veterinary radiology & ultrasound》2009,50(6):615-621
The purpose of this study was to describe relevant canine brain structures as seen on T2-weighted images following magnetic resonance (MR) imaging at 7 T and to compare the results with imaging at 1.5 T. Imaging was performed on five healthy laboratory beagle dogs using 1.5 and 7 T clinical scanners. At 1.5 T, spin echo images were acquired, while gradient echo images were acquired at 3 T. Image quality and conspicuity of anatomic structures were evaluated qualitatively by direct comparison of the images obtained from the two different magnetic fields. The signal-to-nose ratio (SNR) and contrast-to-noise ratio (CNR) were calculated and compared between 1.5 and 7 T. The T2-weighted images at 7 T provided good spatial and contrast resolution for the identification of clinically relevant brain anatomy; these images provided better delineation and conspicuity of the brain stem and cerebellar structures, which were difficult to unequivocally identify at 1.5 T. However, frontal and parietal lobe and the trigeminal nerve were difficult to identify at 7 T due to susceptibility artifact. The SNR and CNR of the images at 7 T were significantly increased up to 318% and 715% compared with the 1.5 T images. If some disadvantages of 7 T imaging, such as susceptibility artifacts, technical difficulties, and high cost, can be improved, 7 T clinical MR imaging could provide a good experimental and diagnostic tool for the evaluation of canine brain disorders. 相似文献
6.
PAULA MARTÍN‐VAQUERO RONALDO C.
Da COSTA RITA L. ECHANDI CHRISTINA L. TOSTI MICHAEL V. KNOPP STEFFEN SAMMET 《Veterinary radiology & ultrasound》2011,52(1):25-32
Magnetic resonance (MR) imaging of the canine brain is commonly acquired at field strengths ranging from 0.2 to 1.5 T. Our purpose was to compare the MR image quality of the canine brain acquired at 3 vs. 7 T in dogs. Low‐resolution turbo spin echo (TSE) T2‐weighted images (T2W) were obtained in transverse, dorsal, and sagittal planes, and high‐resolution TSE T2W and turbo spin echo proton density‐weighted images were obtained in the transverse and dorsal planes, at both 3 and 7 T. Three experienced reviewers evaluated 32 predetermined brain structures independently and without knowledge of field strength for spatial resolution and contrast. Overall image quality and evidence of artifacts were also evaluated. Contrast of gray and white matter was assessed quantitatively by measuring signal intensity in regions of interest for transverse plane images for the three pulse sequences obtained. Overall, 19 of the 32 neuroanatomic structures had comparable spatial resolution and contrast at both field strengths. The overall image quality for low‐resolution T2W images was comparable at 3 and 7 T. High‐resolution T2W was characterized by superior image quality at 3 vs. 7 T. Magnetic susceptibility and chemical shift artifacts were slightly more noticeable at 7 T. MR imaging at 3 and at 7 T provides high spatial resolution and contrast images of the canine brain. The use of 3 and 7 T MR imaging may assist in the elucidation of the pathogenesis of brain disorders, such as epilepsy. 相似文献
7.
Rebecca Manley Andrea R. Matthews Federica Morandi George A. Henry Katherine H. DeAnna Gordon Conklin Ann Reed 《Veterinary radiology & ultrasound》2013,54(3):253-262
Motion artifact is an important limiting factor for abdominal magnetic resonance imaging (MRI) in veterinary patients. The purpose of this study was to determine the effects of pulse sequence on abdominal MRI diagnostic quality in dogs. Ten normal dogs were each scanned using 16 MRI pulse sequences. Sequences included breath‐holding sequences, respiratory navigation sequences, and traditional spin‐echo sequences. Four observers independently scored diagnostic quality for each sequence based on the appearance of specific organs, overall diagnostic quality, and degree of artifactual interference. Signal‐to‐noise ratio and contrast‐to‐noise ratio were also calculated for each sequence. The sequence with the highest overall mean diagnostic quality score was the dorsal T2 turbo spin echo (TSE) with fat saturation and breath‐holding. The sequence with the lowest mean diagnostic quality score was the dorsal T2 fast spin echo. The sequence with the highest signal‐to‐noise ratio for all evaluated organs was the sagittal T1 spin echo. Signal‐to‐noise and contrast‐to‐noise ratios did not correlate with subjective assessment of overall diagnostic quality for the majority of the sequences evaluated (P < 0.05). The three sequences considered to have the highest diagnostic quality for the cranial abdomen were the dorsal T2 TSE with fat saturation and breath‐hold, transverse T1 turbo fast low‐angle shot gradient echo with breath‐hold, and dorsal T2 half‐Fourier acquisition single shot TSE with respiratory navigation. These sequences had short acquisition times, yielded studies of similar diagnostic quality, provided complementary information, and are therefore recommended for routine canine abdominal MRI protocols. 相似文献
8.
Alberto Arencibia DVM PhD Jose M. Vazquez DVM PhD Juan A. Ramirez MD PhD Gregorio Ramirez DVM PhD Jose M. Vilar DVM Miguel A. Rivero DVM Santiago Alayon MD Francisco Gil DVM PhD 《Veterinary radiology & ultrasound》2001,42(5):405-408
The purpose of this investigation was to define the magnetic resonance (MR) imaging appearance of the brain and associated structures of the equine head. MR images were acquired in oblique dorsal (T2-weighted), sagittal (T1-weighted), and transverse planes (T2-weighted), using a magnet of 1.5 Tesla and a human body coil. Relevant anatomic structures were identified and labeled at each level. The resulting images provided excellent anatomic detail of the cranioencephalic structures. Annotated MR images from this study are intended as a reference for clinical imaging studies of the equine head, specially in the diagnosis of brain diseases in the horse. 相似文献
9.
T2*‐weighted magnetic resonance imaging (MRI) has been reported to help improve detection of intracranial hemorrhage and is widely used in human neuroimaging. To assess the utility of this technique in small animals, interpretations based on this sequence were compared with those based on paired T2‐weighted and fluid‐attenuated inversion recovery (FLAIR) sequences in 200 dogs and cats that underwent brain MRI for suspected intracranial disease. Two sets of images (T2 + FLAIR and T2*) were reviewed separately in random order unaccompanied by patient information and were interpreted as normal or abnormal based on whether intracranial abnormalities were seen. The number and location of intracranial lesions were recorded. Eighty‐five studies were considered normal and 88 were considered abnormal based on both sets of images, with good agreement (κ = 0.731) between the two. Susceptibility artifact was present in 33 cases (16.5%) on T2*‐weighted images. In 12 cases (6%) a total of 69 lesions were seen on T2*‐weighted images that were not seen on T2/FLAIR, all of which were associated with susceptibility artifact caused by presumed intracranial hemorrhage. Pseudolesions were seen on T2*‐weighted images in five cases, none of which were associated with susceptibility artifact. Abnormalities were seen on T2/FLAIR images that were not seen on T2*‐weighted images in 35 cases, confirming that T2* does not replace standard spin echo sequences. These results support inclusion of T2*‐weighted sequences in small animal brain MRI studies and indicate that that a large number of abnormalities (especially hemorrhagic lesions) can go undetected if it is not performed. 相似文献
10.
Francisco J. Llabres-Diaz VMD DVR MRCVS Ruth Dennis MA VetMB DVR MRCVS 《Veterinary radiology & ultrasound》2003,44(1):5-19
Forty-three dogs without evidence of endocrine disease that underwent spinal or abdominal magnetic resonance imaging (MRI) for clinical reasons were studied. Because the procedures were not optimized for inclusion of the adrenal glands, they were not always visible in all planes. Eighty-five of the 86 adrenal glands were seen and only the left gland in a 6-month-old Irish wolfhound could not be found. The right adrenal gland lay cranial to the left in all of the animals in which both glands were seen. The best landmarks for localization of the glands were vascular; both adrenal glands were always cranial to the ipsilateral renal vessels and in the region of the celiac and cranial mesenteric arteries. Various measurements were made on all the available scan planes. In some dogs the whole adrenal gland was difficult to visualize clearly, and this hindered the measuring process, especially when the right adrenal gland was in close contact with the caudal vena cava. The adrenal glands were mainly linear in shape but also had a variable degree of modification of their poles, especially the cranial pole of the right adrenal gland, which tended to be consistently wider and to present different shapes (rounded, arrowhead, inverted P, hook-shaped, triangular, or dome-shaped). Two main patterns of signal intensity were seen on fast spin echo (FSE) sequences (T2-weighted, T1-weighted, and T1-weighted after administration of a paramagnetic contrast medium): homogeneous and hypointense to surroundings or a corticomedullary type pattern with a hyperintense central area surrounded by a hypointense rim of tissue. The outline of the left adrenal gland was always very clear. The clarity of outline of the right adrenal gland was more variable, especially if it was in contact with the liver or the caudal vena cava. It was felt that the amount of retroperitoneal fat was not as important as stated in the human literature for visualization of the adrenal glands and that with an appropriate selection of scan planes and pulse sequences good assessment of the adrenal glands can be performed with MRI in canine patients. 相似文献
11.
M. Keith Chaffin DVM MS Michael A. Walker DVM Newell H. Mcarthur DVM MS PhD Elias E. Perris DVM Nora S. Matthews DVM 《Veterinary radiology & ultrasound》1997,38(2):102-111
Magnetic resonance imaging (MRI) was performed on gthe brain of 5 normal, anesthetized, neonatal (age 3-to-6 days) Quarter Horse foals. The objectives of the study were to develop a technique for imaging the brain of neonatal foals, and to ascertain their normal brain anatomy. Interavenous propofol was administered for induction and maintenance of general anesthesia. Using spin echo MR techniques, T1 weighted sagittal and transverse views, and spin density and T2 weighted transverse views were successfully made of each foal. MR images provided excellent visualization of many anatomic struictures of the brain and head. MRI of the bgrain is feasible for selected neonantal equine patients. 相似文献
12.
Susan M. Newell DVM MS John P. Graham MVB MSc Gregory D. Roberts DVM MS Pamela E. Ginn DVM Cleatis L. Chewning RT Jay M. Harrison MS Camille Andrzejewski BS 《Veterinary radiology & ultrasound》2000,41(1):27-34
Magnetic resonance images of the cranial abdomen were acquired from 15 clinically normal cats. All cats had T1-weighted images, 8 cats had T2-images made and 7 cats had T1-weighted post Gd-DTPA images acquired. Signal intensity measurements for T1, T2, and T1 post contrast sequences were calculated for liver, spleen, gallbladder, renal cortex, renal medulla, pancreas, epaxial muscles, and peritoneal fat. On T1-weighted images the epaxial muscle had the lowest signal intensity, followed by renal medulla, spleen, renal cortex, pancreas, liver and fat, respectively. On T2-weighted images, epaxial muscle had the lowest signal intensity followed by liver, spleen, fat, and gallbladder lumen. Calculations of specific organ percent enhancement following contrast medium administration were made and compared with that reported in humans. A brief review of the potential clinical uses of MR in cats is presented. 相似文献
13.
Christopher P. Ober Christopher D. Warrington Daniel A. Feeney Carl R. Jessen Susan Steward 《Veterinary radiology & ultrasound》2013,54(2):149-158
Intracranial diseases are common in dogs and improved noninvasive diagnostic tests are needed. Magnetic resonance (MR) spectroscopy is a technique used in conjunction with conventional MR imaging to characterize focal and diffuse pathology, especially in the brain. As with conventional MR imaging, there are numerous technical factors that must be considered to optimize image quality. This study was performed to develop an MR spectroscopy protocol for routine use in dogs undergoing MR imaging of the brain. Fifteen canine cadavers were used for protocol development. Technical factors evaluated included use of single‐voxel or multivoxel acquisitions, manual placement of saturation bands, echo time (TE), phase‐ and frequency‐encoding matrix size, radiofrequency coil, and placement of the volume of interest relative to the calvaria. Spectrum quality was found to be best when utilizing a multivoxel acquisition with the volume of interest placed entirely within the brain parenchyma without use of manually placed saturation bands, TE = 144 ms, and a quadrature extremity radiofrequency coil. An 18 × 18 phase‐ and frequency‐encoding matrix size also proved optimal for image quality, specificity of voxel placement, and imaging time. 相似文献
14.
MAGNETIC RESONANCE IMAGING OF THE NORMAL FELINE BRAIN 总被引:1,自引:1,他引:1
Lola C. Hudson DVM PhD Laurent Cauzinille DVM Joe N. Kornegay DVM PhD Mary B. Tompkins DVM PhD 《Veterinary radiology & ultrasound》1995,36(4):267-275
The Purpose of this study was to produce an atlas of magnetic resonance images (MRI) of the feline brain and associated structures. The head of nine clinically normal cats was imaged in 2 or 3 anatomic planes and 3 sets of technical parameters resulting in T1, T2, and proton-weighted density images. Images were compared with anatomic texts, with preserved and sectioned feline cadaver heads, with preserved and sectioned feline brains, and with intact, sectioned, and disarticulated feline skulls for aid in identification of structures. Anatomic and neuroanatomic structures are identified on selected images in different planes as reference for MR morphology of the normal feline brain and related structures. 相似文献
15.
Ann Carstens Robert M. Kirberger Mark Velleman Leif E. Dahlberg Lizelle Fletcher Eveliina Lammentausta 《Veterinary radiology & ultrasound》2013,54(4):365-372
Osteoarthritis of the metacarpo/metatarsophalangeal joints is one of the major causes of poor performance in horses. Delayed gadolinium‐enhanced magnetic resonance imaging of cartilage (dGEMRIC) may be a useful technique for noninvasively quantifying articular cartilage damage in horses. The purpose of this study was to describe dGEMRIC characteristics of the distal metacarpus3/metatarsus3 (Mc3/Mt3) articular cartilage in 20 cadaver specimens collected from normal Thoroughbred horses. For each specimen, T1 relaxation time was measured from scans acquired precontrast and at 30, 60, 120, and 180 min post intraarticular injection of Gd‐DTPA2‐ (dGEMRIC series). For each scan, T1 relaxation times were calculated using five regions of interest (sites 1–5) in the cartilage. For all sites, a significant decrease in T1 relaxation times occurred between precontrast scans and 30, 60, 120, and 180 min scans of the dGEMRIC series (P < 0.0001). A significant increase in T1 relaxation times occurred between 60 and 180 min and between 120 and 180 min post Gd injection for all sites. For sites 1–4, a significant increase in T1 relaxation time occurred between 30 and 180 min postinjection (P < 0.05). Sites 1–5 differed significantly among one another for all times (P < 0.0001). Findings from this cadaver study indicated that dGEMRIC using intraarticular Gd‐DTPA2‐ is a feasible technique for measuring and mapping changes in T1 relaxation times in equine metacarpo/metatarsophalangeal joint cartilage. Optimal times for postcontrast scans were 60–120 min. Future studies are needed to determine whether these findings are reproducible in live horses. 相似文献
16.
SIMON R. PLATT J. FRASER McCONNELL LAURENT S. GAROSI JANE LADLOW ALBERTA DE STEFANI G. DIANE SHELTON 《Veterinary radiology & ultrasound》2006,47(6):532-537
In humans affected with inflammatory myopathies, regions of altered signal intensity are found on magnetic resonance (MR) images of affected muscles. Although electromyography (EMG) is more practical for muscle disease evaluation, and a muscle biopsy is the only manner in which a definitive diagnosis can be made, MR imaging has proven useful if a specific anatomic localization is difficult to achieve. Three dogs with focal inflammatory myopathy diagnosed with the assistance of MR imaging are discussed and the findings are compared with those found in humans. MR images of the affected muscles in each dog were characterized by diffuse and poorly marginated abnormal signal on T1- and T2-weighted images. Marked enhancement was noted in these muscles after contrast medium administration. An inflammatory myopathy was confirmed histologically in all three dogs. A good association existed between the MR images and muscle inflammation identified histopathologically. MR imaging may be a useful adjunctive procedure for canine inflammatory myopathies. 相似文献
17.
John P. Graham MVB MSc Gregory D. Roberts DVM MS Susan M. Newell DVM MS 《Veterinary radiology & ultrasound》2000,41(1):35-40
The pituitary glands of six normal dogs were evaluated using dynamic magnetic resonance imaging. T1 weighted images were obtained every 13 seconds for three minutes of three contiguous slices through the pituitary gland following a bolus intravenous injection of gadolinium-DTPA. Contrast enhancement was seen initially in the region of the pituitary stalk at 52-65 seconds followed by uniform enhancement at 104-143 seconds post injection. This pattern of enhancement was seen in all subjects and is similar to that reported in humans. 相似文献
18.
Susan L. Kraft DVM Patrick R. Gavin DVM PHD Lyle R. Wendling MD Venkat K. Reddy BVSC PHD 《Veterinary radiology & ultrasound》1989,30(4):147-158
Magnetic resonance (MR) images of the canine brain were acquired during investigation of dogs with neurologic disease. A paramagnetic contrast medium was used for enhancement. MR provided images with excellent contrast between grey and white matter, as well as brain tissue and cerebrospinal fluid. Good resolution and anatomic detail of the canine brain were obtained. A series of images was compiled and labelled as a reference for MR anatomy of the canine brain. 相似文献
19.
SUSANNE A. E. B. BOROFFKA CHRISTIANE GÖRIG EDUARDO AURIEMMA MAARTJE H. A. C. PASSON‐VASTENBURG GEORGE VOORHOUT PAUL Y. BARTHEZ 《Veterinary radiology & ultrasound》2008,49(6):540-544
We describe the magnetic resonance (MR) imaging aspects of normal canine optic nerve, the diameter of the optic nerve as measured on MR images, and optimal MR sequences for the evaluation of the optic nerve using a 0.2 T MR unit. Three millimeter contiguous slides of the normal canine orbital region were acquired in transverse and dorsal oblique planes using a variety of tissue weighting sequences. It was apparent that detailed anatomic assessment of the optic nerve can be performed with low‐field MR imaging, but none of the sequences provided unequivocal superior image quality of the optic nerve. The mean diameter of the optic nerve sheath complex was 3.7 mm and of the optic nerve 1.7 mm. The intraorbital and intracanalicular parts of the optic nerve are consistently visible and differentiation between the optic nerve and optic nerve sheath complex is possible using low‐field MR systems. 相似文献
20.
Cynthia C. Nordberg DVM Kenneth A. Johnson MVSc PhD 《Veterinary radiology & ultrasound》1999,40(2):128-136
Magnetic resonance imaging was conducted on previously frozen left carpi from six normal dogs using a 1.5 Tesla magnet in combination with a transmit/receive wrist coil. Three-millimeter thick T1-weighted spin-echo images and 1-mm thick T2*-weighted gradient-recalled 3-D images were obtained in dorsal and sagittal planes. Carpi were embedded, sectioned, and stained. Anatomic structures on the histologic sections were correlated with the MR images. All of the carpal ligaments plus the radioulnar articular disc and the palmar fibrocartilage were identified on MR images. The accessorio-quartile ligament, which had not been well described previously in dogs, was also identified. It originated on the accessory carpal bone and inserted on the fourth carpal bone. The T2*-weighted gradient echo imaging technique provided better images than T1-weighted technique, largely because thinner slices were possible (1 mm vs. 3 mm), resulting in less volume averaging of thin ligaments with surrounding structures. Although MRI is currently the imaging modality of choice to identify ligamentous injury in humans, further studies are needed to determine if abnormalities can be detected in canine carpal ligaments using MRI. 相似文献