首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conventional soil maps contain valuable knowledge on soil–environment relationships.Such knowledge can be extracted for use when updating conventional soil maps with improved environmental data.Existing methods take all polygons of the same map unit on a map as a whole to extract the soil–environment relationship.Such approach ignores the difference in the environmental conditions represented by individual soil polygons of the same map unit.This paper proposes a method of mining soil–environment relationships from individual soil polygons to update conventional soil maps.The proposed method consists of three major steps.Firstly,the soil–environment relationships represented by each individual polygon on a conventional soil map are extracted in the form of frequency distribution curves for the involved environmental covariates.Secondly,for each environmental covariate,these frequency distribution curves from individual polygons of the same soil map unit are synthesized to form the overall soil–environment relationship for that soil map unit across the mapped area.And lastly,the extracted soil–environment relationships are applied to updating the conventional soil map with new,improved environmental data by adopting a soil land inference model(SoLIM)framework.This study applied the proposed method to updating a conventional soil map of the Raffelson watershed in La Crosse County,Wisconsin,United States.The result from the proposed method was compared with that from the previous method of taking all polygons within the same soil map unit on a map as a whole.Evaluation results with independent soil samples showed that the proposed method exhibited better performance and produced higher accuracy.  相似文献   

2.
The physical and chemical heterogeneities of soils make the soil spectral different and complicated, and it is valuable to increase the accuracy of prediction models for soil organic matter(SOM) based on pre-classification. This experiment was conducted under a controllable environment, and different soil samples from northeast of China were measured using ASD2500 hyperspectral instrument. The results showed that there are different reflectances in different soil types. There are statistically significant correlation between SOM and reflectence at 0.05 and 0.01 levels in 550–850 nm, and all soil types get significant at 0.01 level in 650–750 nm. The results indicated that soil types of the northeast can be divided into three categories: The first category shows relatively flat and low reflectance in the entire band; the second shows that the spectral reflectance curve raises fastest in 460–610 nm band, the sharp increase in the slope, but uneven slope changes; the third category slowly uplifts in the visible band, and its slope in the visible band is obviously higher than the first category. Except for the classification by curve shapes of reflectance, principal component analysis is one more effective method to classify soil types. The first principal component includes 62.13–97.19% of spectral information and it mainly relates to the information in 560–600, 630–690 and 690–760 nm. The second mainly represents spectral information in 1 640–1 740, 2 050–2 120 and 2 200–2 300 nm. The samples with high OM are often in the left, and the others with low OM are in the right of the scatter plot(the first principal component is the horizontal axis and the second is the longitudinal axis). Soil types in northeast of China can be classified effectively by those two principles; it is also a valuable reference to other soil in other areas.  相似文献   

3.
A rapid and reliable method was developed for analysis of ethephon residues in maize, in combination with the investigation of its dissipation in field condition and stabilities during the sample storage. The residue analytical method in maize plant, maize kernel and soil was developed based on the quantification of ethylene produced from the derivatization of ethephon residue by adding the saturated potassium hydroxide solution to the sample. The determination was carried out by using the head space gas chromatography with flame ionization detector(HS-GC-FID). The limit of quantification(LOQ) of the method for maize plant was 0.05, 0.02 mg kg–1 for maize kernel and 0.05 mg kg–1 for soil, respectively. The fortified recoveries of the method were from 84.6–102.6%, with relative standard deviations of 7.9–3.8%. Using the methods, the dissipation of ephethon in maize plant or soil was investigated. The half life of ethephon degradation was from 0.6 to 3.3 d for plant and 0.7 to 5.7 d for soil, respectively. The storage stabilities of ethephon residues were determined in fresh and dry kernels with homogenization and without homogenization process. And the result showed that ethephon residues in maize kernels were stable under –18°C for 6 mon. The results were helpful to monitor the residue dissipation of ethephon in the maize ecosystem for further ecological risk assessment.  相似文献   

4.
The objective of this paper is to investigate a simple and practical method for soil productivity assessment in the black soil region of Northeast China. Firstly, eight kinds of physicochemical properties for each of 120 soil samples collected from 25 black soil profiles were analyzed using cluster and correlation analysis. Subsequently, parameter indices were calculated using physicochemical properties. Finally, a modified productivity index (MPI) model were developed and validated. The results showed that the suitable parameters for soil productivity assessment in black soil region of Northeast China were soil available water, soil pH, clay content, and organic matter content. Compared with original productivity index (PI) model, MPI model added clay content and organic matter content in parameters while omitted bulk density. Simulation results of original PI model and MPI model were compared using crop yield of land block where investigated soil profiles were located. MPI model was proven to perform better with a higher significant correlation with maize yield. The correlation equation between MPI and yield was: Y= 3.2002Ln(MP/)+ 10.056, R^2 = 0.7564. The results showed that MPI model was an effective and practical method to assess soil productivity in the research area.  相似文献   

5.
Maize is widely planted throughout the world and has the highest yield of all the cereal crops. The arid region of Northwest China has become the largest base for seed-maize production, but water shortage is the bottleneck for its long-term sustainability. Investigating the transpiration of seed-maize plants will offer valuable information for suitable planting and irrigation strategies in this arid area. In this study, stem flow was measured using a heat balance method under alternate furrow irrigation and double-row ridge planting. Meteorological factors, soil water content(θ), soil temperature(Ts) and leaf area(LA) were also monitored during 2012 and 2013. The diurnal stem flow and seasonal dynamics of maize plants in the zones of south side female parent(SFP), north side female parent(NFP) and male parent(MP) were investigated. The order of stem flow rate was: SFPMPNFP. The relationships between stem flow and influential factors during three growth stages at different time scales were analyzed. On an hourly scale, solar radiation(Rs) was the main driving factor of stem flow. The influence of air temperature(Ta) during the maturity stage was significantly higher than in other periods. On a daily scale, Rs was the main driving factor of stem flow during the heading stage. During the filling growth stage, the main driving factor of NFP and MP stem flow was RH and Ts, respectively. However, during the maturity stage, the environmental factors had no significant influence on seed-maize stem flow. For different seed-maize plants, the main influential factors were different in each of the three growing seasons. Therefore, we identified them to accurately model the FP and MP stem flow and applied precision irrigation under alternate partial root-zone furrow irrigation to analyze major factors affecting stem flow in different scales.  相似文献   

6.
Parent materials and the fertility levels of paddy soils are highly variable in subtropical China. Bacterial diversity and community composition play pivotal roles in soil ecosystem processes and functions. However, the effects of parent material and fertility on bacterial diversity and community composition in paddy soils are unclear. The key soil factors driving the changes in bacterial diversity, community composition, and the specific bacterial species in soils that are derived from different parent materials and have differing fertility levels are unknown. Soil samples were collected from paddy fields in two areas with different parent materials(quaternary red clay or tertiary sandstone) and two levels of fertility(high or low). The variations in bacterial diversity indices and communities were evaluated by 454 pyrosequencing which targeted the V4–V5 region of the 16 S r RNA gene. The effects of parent material and fertility on bacterial diversity and community composition were clarified by a two-way ANOVA and a two-way PERMANOVA. A principal coordinate analysis(PCo A), a redundancy analysis(RDA), and multivariate regression trees(MRT) were used to assess changes in the studied variables and identify the factors affecting bacterial community composition. Co-occurrence network analysis was performed to find correlations between bacterial genera and specific soil properties, and a statistical analysis of metagenomic profiles(STAMP) was used to determine bacterial genus abundance differences between the soil samples. The contributions made by parent material and soil fertility to changes in the bacterial diversity indices were comparable, but soil fertility accounted for a larger part of the shift in bacterial community composition than the parent material. Soil properties, especially soil texture, were strongly associated with bacterial diversity. The RDA showed that soil organic carbon(SOC) was the primary factor influencing bacterial community composition. A key threshold for SOC(25.5 g kg~(–1)) separated low fertility soils from high fertility soils. The network analysis implied that bacterial interactions tended towards cooperation and that copiotrophic bacteria became dominant when the soil environment improved. The STAMP revealed that copiotrophic bacteria, such as Massilia and Rhodanobacter, were more abundant in the high fertility soils, while oligotrophic bacteria, such as Anaerolinea, were dominant in low fertility soils. The results showed that soil texture played a role in bacterial diversity, but nutrients, especially SOC, shaped bacterial community composition in paddy soils with different parent materials and fertility levels.  相似文献   

7.
Compaction layers are widely distributed in the Huang-Huai-Hai Plain, China, which restrict root growth and reduce yields. The adoption of subsoiling has been recommended to disrupt compacted soil layers and create a reasonable soil structure for crop development. In this paper, the effects of subsoiling depth(30, 35 and 40 cm), period interval(2 or 3 years) and combined pre-sowing tillage practice(rotary cultivation or ploughing) on soil condition improvement was studied on a tidal soil in the Huang-Huai-Hai Plain. Seven tillage patterns were designed by combining different subsoiling depths, period intervals and pre-sowing. The evaluation indicators for soil condition improvement were as follows: thickness of the plough layer and hard pan, soil bulk density, cone index, soil three-phase R values, alkali nitrogen content, crop yield, and economic benefits. The results showed that subsoiling can significantly improve the soil structure and physical properties. In all subsoiling treatments, the depth of 35 or 40 cm at a 2-year interval was the most significant. The thickness of the plough layer increased from 13.67 cm before the test to 21.54–23.45 cm in 2018. The thickness of the hard pan decreased from 17.68 cm before the test to 12.09–12.76 cm in 2018, a decrease of about 40.07%. However, the subsoiling combined presowing tillage practice, that is, rotary cultivation or ploughing, was not significant for soil structure and physical properties. For all subsoiling treatments, the soil bulk density, cone index and soil three-phase R values of the 15–25 cm soil layer were significantly lower compared to single rotary cultivation. Subsoiling was observed to increase the soil alkaline nitrogen and water contents. The tillage patterns that had subsoiling at the depth of 35–40 cm at a 2-year interval combined with rotary cultivation had the highest alkali nitrogen and water contents, which increased by 31.08–34.23% compared with that of the single rotary cultivation. Subsoiling can significantly increase the yield both of wheat and corn, as well as the economic benefits. The treatment of subsoiling at the depth of 35 cm at an interval of 2 years combined with rotary cultivation had the highest annual yield and economic benefits. For this treatment, the annual yield and economic benefits increased by 14.55 and 62.87% in 2018, respectively. In conclusion, the tillage patterns that involved subsoiling at a depth of 35 cm at a 2-year interval along with rotary cultivation are suitable for the Huang-Huai-Hai Plain.  相似文献   

8.
Knowledge on spatial distribution and sampling size optimization of soil copper (Cu) could lay solid foundations for environmetal quality survey of agricultural soils at county scale. In this investigation, cokriging method was used to conduct the interpolation of Cu concentraiton in cropland soil in Shuangliu County, Sichuan Province, China. Based on the original 623 physicochmically measured soil samples, 560, 498, and 432 sub-samples were randomly selected as target variable and soil organic matter (SOM) of the whole original samples as auxiliary variable. Interpolation results using Cokriging under different sampling numbers were evaluated for their applicability in estimating the spatial distribution of soil Cu at county sacle. The results showed that the root mean square error (RMSE) produced by Cokriging decreased from 0.9 to 7.77%, correlation coefficient between the predicted values and the measured increased from 1.76 to 9.76% in comparison with the ordinary Kriging under the corresponding sample sizes. The prediction accuracy using Cokriging was still higher than original 623 data using ordinary Kriging even as sample size reduced 10%, and their interpolation maps were highly in agreement. Therefore, Cokriging was proven to be a more accurate and economic method which could provide more information and benefit for the studies on spatial distribution of soil pollutants at county scale.  相似文献   

9.
Understanding bacterial transportation in unsaturated soil is helpful for reducing and avoiding pathogenic contamination that may be induced by irrigation with reclaimed waste water and for developing better irrigation management practices. Experiments were conducted to study the transport of a typical bacterium, Escherichia coli(E. coli), in a sandy and a sandy loam soil under different application rates and input concentrations. A 30° wedge-shaped plexiglass container was used to represent one twelfth of the complete cylinder in the experiments. The apparent cylindrical application rate varied from 1.05 to 5.76 L h–1 and the input concentration of E. coli from magnitude of 102 to 107 colony-forming unit(CFU) m L–1. F or a given volume of water applied, an increase in application rate resulted in an increase in the wetted radius and a decrease in the wetted depth. In the sandy loam soil, the water spread out in a circular-arc shaped saturated zone on the surface, and the ultimate saturated entry radius increased with the application rate. An increasing application rate of water suspended bacteria allowed a more rapid transport of bacteria, thus accelerating E. coli transport rate and resulting in a larger distributed volume of E. coli for both soil types. For the sandy soil, more than 70% of the E. coli that was detected within the entire wetted volume concentrated in the range of 10 cm from the point source, and the concentration of E. coli decreased greatly as the distance from the point source increased. More than 98% of the E. coli was detected in a range of 5 cm around the saturated wetted zone for the sandy loam soil. For both soil types tested, an extremely high concentration of E. coli was observed in the proximity of the point source, and the peak value increased with an increased input concentration. In principle, using an emitter with relative lower application rate would be effective to restrict E. coli transport. To reduce bacterial concentration in the sewage effluent during wastewater treatment is important to decrease the risk of soil contamination caused by irrigation with sewage effluent.  相似文献   

10.
Assessing spatial variability and mapping of soil properties constitute important prerequisites for soil and crop management in agricultural areas. To explore the relationship between soil spatial variability and land management, 256 samples were randomly collected at two depths(surface layer 0–20 cm and subsurface layer 20–40 cm) under different land use types and soil parent materials in Yujiang County, Jiangxi Province, a red soil region of China. The pH, soil organic matter(SOM), total nitrogen(TN), cation exchange capacity(CEC), and base saturation(BS) of the soil samples were examined and mapped. The results indicated that soils in Yujiang were acidified, with an average pH of 4.87(4.03–6.46) in the surface layer and 4.99(4.03–6.24) in the subsurface layer. SOM and TN were significantly higher in the surface layer(27.6 and 1.50 g kg~(–1), respectively) than in the subsurface layer(12.1 and 0.70 g kg~(–1), respectively), while both CEC and BS were low(9.0 and 8.0 cmol kg~(–1), 29 and 38% for surface and subsurface layers, respectively). Paddy soil had higher pH(mean 4.99) than upland and forest soils, while soil derived from river alluvial deposits(RAD) had higher pH(mean 5.05) than the other three parent materials in both layers. Geostatistical analysis revealed that the best fit models were exponential for pH and TN, and spherical for BS in both layers, while spherical and Gaussian were the best fitted for SOM and CEC in the surface and subsurface layers. Spatial dependency varied from weak to strong for the different soil properties in both soil layers. The maps produced by selecting the best predictive variables showed that SOM, TN, and CEC had moderate levels in most parts of the study area. This study highlights the importance of site-specific agricultural management and suggests guidelines for appropriate land management decisions.  相似文献   

11.
Understanding soil nutrient distributions and the factors affecting them are crucial for fertilizer management and environmental protection in vulnerable ecological regions.Based on 555 soil samples collected in 2012 in Renshou County,located in the purple soil hilly area of Sichuan Basin,China,the spatial variability of soil total nitrogen(TN),total phosphorus(TP)and total potassium(TK)was studied with geostatistical analysis and the relative roles of the affecting factors were quantified using regression analysis.The means of TN,TP and TK contents were 1.12,0.82 and 9.64 g kg~(–1),respectively.The coefficients of variation ranged from 30.56 to 38.75%and the nugget/sill ratios ranged from 0.45 to 0.61,indicating that the three soil nutrients had moderate variability and spatial dependence.Two distribution patterns were observed.TP and TK were associated with patterns of obvious spatial distribution trends while the spatial distribution of TN was characterized by higher variability.Soil group,land use type and topographic factors explained 26.5,35.6 and 8.4%of TN variability,respectively,with land use being the dominant factor.Parent material,soil group,land use type and topographic factors explained 17.5,10.7,12.0 and 5.0%of TP variability,respectively,and both parent material and land use type played important roles.Only parent material and soil type contributed to TK variability and could explain 25.1 and 13.7%of TK variability,respectively.More attention should focus on adopting reasonable land use types for the purposes of fertilizer management and consider the different roles of the affecting factors at the landscape scale in this purple soil hilly area.  相似文献   

12.
To develop a rapid and high-sensitivity method for detection of grapevine virus E(GVE), a SYBR Green based real-time fluorescence quantitative RT-PCR method(RT-qPCR) was established. This method could be used to detect GVE specifically, and the sensitivity was about 100 times greater than conventional RT-PCR. An excellent linear correlation(R2=0.997) and a high amplification efficiency(E=97.5%) were obtained from the standard curve of this method. Reproducibility tests revealed that the coefficients of variation in the intra-and inter-assay results were 0.31–1.03% and 0.82–2.62%, respectively, indicating a good reproducibility. The RT-qPCR method could be used to detect GVE in a wide range of grapevine sample types. The detection rates of RT-qPCR for nearly all sample types from different positions and seasons were higher than conventional RT-PCR. The detection rates in spring, summer, autumn and winter increased gradually. Samples in autumn and winter were best for detection, and the detection rates of most samples were 80–100%, which were 10 to 40% higher than conventional RT-PCR. In general, old petioles and branches were the best tissues for GVE detection. The detection rates of these samples in each season were all 100%, which were 20 to 40% higher than conventional RT-PCR. The second highest rates were in the old leaf, with detection rates for RT-qPCR of 80–100% in all seasons, which were 20 to 40% higher than conventional RT-PCR. GVE could be difficultly detected in young leaves by conventional RT-PCR, and the detection rates were only 0–50%, while by RT-qPCR the rates could increase to 0–80%. A total of 33 out of 363 samples(belonging to 68 cultivars) from 20 regions in China were detected to be positive by RT-qPCR(9.1%), which was more than twice the rate of the conventional RT-PCR(3.9%).  相似文献   

13.
Research on the occurrence of perfluorochemicals(PFCs) such as perfluorooctanesulfonic acid(PFOS) and perfluorooctanoic acid(PFOA) in the agricultural environment is lacking, in spite of their potential risk via food chain transfer from aquatic and soil-plant systems to animals and/or humans. In the present study, for the first time, soil and water samples collected from 243 different agricultural sites adjacent to waste water treatment plants(WWTPs) belonging to 81 cities and 5 provinces with different levels of industrialization in South Korea were monitored for concentrations of PFOS and PFOA by use of solid phase extraction and liquid chromatography-tandem mass spectroscopy(LC-MS/MS). Significant mean concentrations of PFOA(0.001–0.007 μg L~(–1) water and 0.05–1.573 μg kg~(–1) soil) and PFOS(0.001–0.22 μg L~(–1) water and 0.05–0.741 μg kg~(–1) soil) were found in all samples. Concentrations of PFCs in soils were high, highlighting that soil is an important sink for PFCs in the agricultural environment. Samples from near WWTPs in Gyeongsang Province contained the highest concentrations of PFOS and PFOA, reflecting the concentration of heavy industry in the province. The concentrations of PFCs in agricultural water(most samples 0.05 μg L~(–1)) and soils(most samples 1 μg kg~(–1)) from South Korea were less than acceptable guideline values, indicating that South Korea is not a hotspot of PFOS and PFOA contamination and that there is negligible risk to human and ecological health from these chemicals. However, further studies investigating the seasonal variation in PFOA, PFOS and other perfluorochemical concentrations in the agricultural environment are needed.  相似文献   

14.
Fungi capable of arsenic(As) accumulation and volatilization are hoped to tackle As-contaminated environment in the future. However, little data is available regarding their performances in field soils. In this study, the chlamydospores of Trichoderma asperellum SM-12F1 capable of As resistance, accumulation, and volatilization were inoculated into As-contaminated Chenzhou(CZ) and Shimen(SM) soils, and subsequently As volatilization and availability were assessed. The results indicated that T. asperellum SM-12F1 could reproduce well in As-contaminated soils. After cultivated for 42 days, the colony forming units(cfu) of T. asperellum SM-12F1 in CZ and SM soils reached 1010–1011 cfu g–1 fresh soil when inoculated at a rate of 5.0%. Inoculation with chlamydospores of T. asperellum SM-12F1 could significantly accelerate As volatilization from soils. The contents of volatilized As from CZ and SM soils after being inoculated with chlamydospores at a rate of 5.0% for 42 days were 2.0 and 0.6 μg kg–1, respectively, which were about 27.5 and 2.5 times higher than their corresponding controls of no inoculation(CZ, 0.1 μg kg–1; SM, 0.3 μg kg–1). Furthermore, the available As content in SM soils was decreased by 23.7%, and that in CZ soils increased by 3.3% compared with their corresponding controls. Further studies showed that soil p H values significantly decreased as a function of cultivation time or the inoculation level of chlamydospores. The p H values in CZ and SM soils after being inoculated with 5.0% of chlamydospores for 42 days were 6.04 and 6.02, respectively, which were lowered by 0.34 and 1.21 compared with their corresponding controls(CZ, 6.38; SM, 7.23). The changes in soil p H and As-binding fractions after inoculation might be responsible for the changes in As availability. These observations could shed light on the future remediation of As-contaminated soils using fungi.  相似文献   

15.
Accurate assessment of soil loss caused by rainfall is essential for natural and agricultural resources management. Soil erosion directly affects the environment and human sustainability. In this work,the empirical and contemporary model of revised universal soil loss equation(RUSLE) was applied for simulating the soil erosion rate in a karst catchment using remote sensing data and geographical information systems. A scheme of alterative sub-models was adopted to calculate the rainfall erosivity(R),soil erodibility(K),slope length and steepness(LS),cover management(C) and conservation practice(P) factors in the geographic information system(GIS) environment. A map showing the potential of soil erosion rate was produced by the RUSLE and it indicated the severe soil erosion in the study area. Six classes of erosion rate are distinguished from the map: 1) minimal,2) low,3) medium,4) high,5) very high,and 6) extremely high. The RUSLE gave a mean annual erosion rate of 30.24 Mg ha–1 yr–1 from the 1980 s to 2000 s. The mean annual erosion rate obtained using RUSLE is consistent with the result of previous research based on in situ measurement from 1980 to 2009. The high performance of the RUSLE model indicates the reliability of the sub-models and possibility of applying the RUSLE on quantitative estimation. The result of the RUSLE model is sensitive to the slope steepness,slope length,vegetation factors and digital elevation model(DEM) resolution. The study suggests that attention should be given to the topographic factors and DEM resolution when applying the RUSLE on quantitative estimation of soil loss.  相似文献   

16.
The concentration of soil Olsen-P is rapidly increasing in many parts of China, where P budget(P input minus P output) is the main factor influencing soil Olsen-P. Understanding the relationship between soil Olsen-P and P budget is useful in estimating soil Olsen-P content and conducting P management strategies. To address this, a long-term experiment(1991–2011) was performed on a fluvo-aquic soil in Beijing, China, where seven fertilization treatments were used to study the response of soil Olsen-P to P budget. The results showed that the relationship between the decrease in soil Olsen-P and P deficit could be simulated by a simple linear model. In treatments without P fertilization(CK, N, and NK), soil Olsen-P decreased by 2.4, 1.9, and 1.4 mg kg~(–1) for every 100 kg ha~(–1) of P deficit, respectively. Under conditions of P addition, the relationship between the increase in soil Olsen-P and P surplus could be divided into two stages. When P surplus was lower than the range of 729–884 kg ha~(–1), soil Olsen-P fluctuated over the course of the experimental period with chemical fertilizers(NP and NPK), and increased by 5.0 and 2.0 mg kg~(–1), respectively, when treated with chemical fertilizers combined with manure(NPKM and 1.5 NPKM) for every 100 kg ha~(–1) of P surplus. When P surplus was higher than the range of 729–884 kg ha~(–1), soil Olsen-P increased by 49.0 and 37.0 mg kg~(–1) in NPKM and 1.5 NPKM treatments, respectively, for every 100 kg ha~(–1) P surplus. The relationship between the increase in soil Olsen-P and P surplus could be simulated by two-segment linear models. The cumulative P budget at the turning point was defined as the "storage threshold" of a fluvo-aquic soil in Beijing, and the storage thresholds under NPKM and 1.5 NPKM were 729 and 884 kg ha~(–1)P for more adsorption sites. According to the critical soil P values(CPVs) and the relationship between soil Olsen-P and P budget, the quantity of P fertilizers for winter wheat could be increased and that of summer maize could be decreased based on the results of treatments in chemical fertilization. Additionally, when chemical fertilizers are combined with manures(NPKM and 1.5 NPKM), it could take approximately 9–11 years for soil Olsen-P to decrease to the critical soil P values of crops grown in the absence of P fertilizer.  相似文献   

17.
We developed a microplate assay method for determining the contents of triacylglycerols(TAGs), phosphatidylcholines(PCs), and free fatty acids(FFAs) in the rice bran of one grain using enzymatic reactions. In this method, enzymes from commercially available kits were used. Optimum reaction conditions were established. It was found that Nonidet P-40 was the optimal among the three surfactants used(Triton X-100, Tween 40, and Nonidet P-40) when lipid was dissolved in a reaction solution. Using this method, it was possible to quantify TAGs, PCs, and FFAs in concentration ranges of 7–150, 5–70, and 8–200 mg L~(–1), respectively. Furthermore, when the TAG contents in the rice bran were measured, the values closely corresponded to those obtained by extracting from large amounts of rice bran. However, sufficient data on the PC and FFA contents in rice bran are not available for valid comparisons. Although this method can accurately quantify the TAG contents in the rice bran of one grain, the accuracy of the PC and FFA contents has not been verified. Hence, future study is necessary.  相似文献   

18.
Laboratory and field experiments were conducted to investigate the effects of water application intensity(WAI) on soil salinity management and the growth of Festuca arundinacea(festuca) under three stages of water and salt management strategies using microsprinkler irrigation in Hebei Province, North China. The soil water content(è) and salinity of homogeneous coastal saline soils were evaluated under different water application intensities in the laboratory experiment. The results indicated that the WAI of microsprinkler irrigation influenced the è, electrical conductivity(ECe) and p H of saline soils. As the WAI increased, the average values of è and ECe in the 0–40 cm profile also increased, while their average values in the 40–60 cm profile decreased. The p H value also slightly decreased as depth increased, but no significant differences were observed between the different treatments. The time periods of the water redistribution treatments had no obvious effects. Based on the results for è, ECe and p H, a smaller WAI was more desirable. The field experiment was conducted after being considered the results of the technical parameter experiment and evaporation, wind and leaching duration. The field experiment included three stages of water and salt regulation, based on three soil matric potentials(SMP), in which the SMP at a 20-cm depth below the surface was used to trigger irrigation. The results showed that the microsprinkler irrigation created an appropriate environment for festuca growth through the three stages of water and salt regulation. The low-salinity conditions that occurred at 0–10 cm depth during the first stage(-5 k Pa) continued to expand through the next two stages. The average p H value was less than 8.5. The tiller number of festuca increased as SMP decreased from the first stage to the third stage. After the three stages of water and salt regulation, the highly saline soil gradually changed to a low-saline soil. Overall, based on the salt desalinization, the microsprinkler irrigation and three stages of water and salt regulation could be successfully used to cultivate plants for the reclamation of coastal saline land in North China.  相似文献   

19.
The objective of this work is to study the relation between humidity, density, porosity and shrinkage of the floodplain soil and riparian vegetation and their ability to store water. For this purpose, two locations for every type of soils were evaluated. Both were placed at the Agronomy University (Faculdade de Cidncias Agron6micas) in SAo Manuel, State of SAo Paulo, Brazil. The floodplain soil was vegetated with Southern Cattail (Typha domingensis). In both places, soil samples were collected from several depths: 0, 30, 60 and 100 cm. Results show that lower soil density values (0.15 g/cm3) with organic texture and high porosities values (up to 86.2%) were found in samples with the highest organic material content in the floodplain soil. For this field experiment, flood plains soils (characterised as basin gley soils) presented high volumetric instability with a retratibility of 67.49% and higher water storage capacities compared to riparian stands soils (characterised as fluvic neosoils).  相似文献   

20.
Fractal method is a new method to estimate soil structure. It has been shown to be a useful tool in studies related to physical properties of soil as well as erosion and other hydrological processes. Fractal dimension was used to study the soil structure in soil at different stages of vegetative succession on the Ziwuling Mountains. The land use and vegetation types included cultivated land, abandoned land, grassland, two types of shrub land, and three types of forests. The grassland, shrub land, and forested areas represented a continuum in vegetative succession that had occurred naturally, as the land was abandoned in 1862. Disturbed and undisturbed soil samples were collected from ten vegetation types from depths of 0-10, 10-20, and 20-30 cm on the Ziwuling Mountains, at a site with an elevation of about 1 500 m. Particle size distribution was determined by the pipette method and aggregate size distribution was determined by wet sieving. The results were used to calculate the particle and aggregate fractal dimension. The results showed that particle and aggregate fractal dimensions varied between vegetation types. There was a positive correlation between the particle fractal dimension and the weight of particles with diameter 〈 0.001 mm, but no relationship between particle fractal dimension and the other particle size classes. Particle fractal dimension was lower in vegetated soils compared to cropland and there was no consistent relationship between fractal dimension and vegetation type. Aggregate fractal dimension was positively correlated with the weight of 〉 0.25 mm aggregates. Aggregate fractal dimension was lower in vegetated soils compared with cropland. In contrast to particle fractal dimension, aggregate fractal dimension described changes in soil structure associated with vegetative succession. The results of this study indicate that aggregate fractal dimension is more effective in describing soil structure and function compared with particle fractal dimension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号