首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This retrospective study describes the clinical and magnetic resonance (MR) imaging features of chronic orbital inflammation with intracranial extension in four dogs (two Dachshunds, one Labrador, one Swiss Mountain). Intracranial extension was observed through the optic canal (n=1), the orbital fissure (n=4), and the alar canal (n=1). On T1-weighted images structures within the affected skull foramina could not be clearly differentiated, but were all collectively isointense to hypointense compared with the contralateral, unaffected side, or compared with gray matter. On T2-, short tau inversion recovery (STIR)-, or fluid-attenuated inversion recovery (FLAIR)-weighted images structures within the affected skull foramina appeared hyperintense compared with gray matter, and extended with increased signal into the rostral cranial fossa (n=1) and middle cranial fossa (n=4). Contrast enhancement at the level of the affected skul foramina as well as at the skull base in continuity with the orbital fissure was observed in all patients. Brain edema or definite meningeal enhancement could not be observed, but a close anatomic relationship of the abnormal tissue to the cavernous sinus was seen in two patients. Diagnosis was confirmed in three dogs (one cytology, two biopsy, one necropsy) and was presumptive in one based on clinical improvement after treatment. This study is limited by its small sample size, but provides evidence for a potential risk of intracranial extension of chronic orbital inflammation. This condition can be identified best by abnormal signal increase at the orbital fissure on transverse T2-weighted images, on dorsal STIR images, or on postcontrast transverse or dorsal images.  相似文献   

2.
MAGNETIC RESONANCE IMAGING FEATURES OF PRIMARY BRAIN TUMORS IN DOGS   总被引:1,自引:0,他引:1  
Magnetic resonance images of twenty-five dogs with histopathologically confirmed primary brain tumors were evaluated. A lesion was visible in each dog. Meningiomas were extra-axial lesions that enhanced markedly withj gadolinium-DTPA. Glimas were Characteized by intra-axial location, significant mass effect and surrounding edema, and variable enhancement patterns. Choroid plexus tumors and pituitary tumors were differentiated by their location and marked enbancement. Prediction of general typeof tumor was correct in 24 of 25 dogs.  相似文献   

3.
Magnetic resonance imaging (MRI) and computed tomographic imaging (CT) characteristics of intracranial intra-arachnoid cysts in six dogs are described.Of the six dogs, three were less than one year of age and 4 were males. Five of the six dogs weighed less than 11 kg. Five cysts were located in the quadrigeminal cistern.On CT images, the intracranial intra-arachnoid cysts had sharply defined margins, contained fluid isodense to CSf and did not enhance following IV administration of contrast. On MRI images, the intracranial intra-arachnoid cysts were extra-axial, contained fluid isointense with CSF and did not enhance following IV contrast. While spinal arachnoid cysts of dogs have been reported in the literature, other than the six dogs contained in this report, intracranial intra-arachnoid cysts have not to our knowledge been described in animals. These six dogs have a similar age, sex, arachnoid cysts.  相似文献   

4.
Magnetic resonance (MR) imaging characteristics of intracranial granular cell tumors (GCTs) have been previously reported in three dogs. The goal of this retrospective study was to examine a larger number of dogs and determine whether distinctive MR characteristics of intracranial GCTs could be identified. Six dogs with histologically confirmed intracranial GCTs and MR imaging were included. Tumor location, size, mass effect, T1‐ and T2‐weighted signal intensity, and peritumoral edema MR characteristics were recorded. In all dogs, GCTs appeared as well‐defined, extra‐axial masses with a plaque‐form, sessile distribution involving the meninges. All tumors were located along the convexity of the cerebrum, the falx cerebri, or the ventral floor of the cranial vault. All tumors were mildly hyperintense on T1‐weighted images, and iso‐ to hyperintense on T2‐weighted images. A moderate‐to‐severe degree of peritumoral edema and mass effect were evident in all dogs. Findings indicated that, while several MR imaging characteristics were consistently identified in canine cerebral GCTs, none of these characteristics were unique or distinctive for this tumor type alone.  相似文献   

5.
We describe histopathologically confirmed intracranial metastasis of cutaneous lymphoma. In magnetic resonance (MR) images there was a heterogeneous, contrast‐enhancing, extraaxial mass in the right parietal and piriform lobes at the level of the optic chiasm. Our MR imaging findings are consistent with reports in humans in that lymphoma masses have indistinct borders that are iso‐ to hyperintense relative to adjacent gray matter on T2‐weighted images. Our report varies from findings in humans in that the mass was extraaxial, whereas masses reported in humans are intraaxial. Contrast enhancement can be heterogeneous, as in our report, or homogeneous.  相似文献   

6.
7.
Evaluation of the canine temporomandibular joint (TMJ) is important in the clinical diagnosis of animals presenting with dysphagia, malocclusion and jaw pain. In humans, magnetic resonance imaging (MRI) is the modality of choice for evaluation of the TMJ. The objectives of this study were to establish a technical protocol for performing MRI of the canine TMJ and describe the MRI anatomy and appearance of the normal canine TMJ. Ten dogs (one fresh cadaver and nine healthy live dogs) were imaged. MRIs were compared with cadaveric tissue sections. T1‐weighted (T1‐W) transverse closed‐mouth, T1‐W sagittal closed‐mouth, T1‐W sagittal open‐mouth, and T2‐W sagittal open‐mouth sequences were obtained. The condylar process of the mandible and the mandibular fossa of the temporal bone were hyperintense to muscle and isointense to hypointense to fat on T1‐W images, mildly hyperintense to muscle on T2‐W images, and were frequently heterogeneous. The articular disc was visible in 14/20 (70%) TMJs on T1‐W images and 13/20 (65%) TMJs on T2‐W images. The articular disc was isointense to hyperintense to muscle on T1‐W images and varied from hypointense to hyperintense to muscle on T2‐W images. The lateral collateral ligament was not identified in any joint. MRI allows evaluation of the osseous and certain soft tissue structures of the TMJ in dogs.  相似文献   

8.
Diffusion‐weighted imaging is an advanced magnetic resonance imaging technique that is well established in the diagnosis of nonhemorrhagic infarction in people. However, recent investigations into intracranial neoplastic and inflammatory disease in people have identified variable and overlapping results. In this retrospective study of 37 dogs with histologically confirmed intracranial disease, we investigated whether histogram analysis of quantitative apparent diffusion coefficients (ADC) can differentiate specific disease processes. Disease categories included: meningiomas, glial cell tumors, choroid plexus tumors, pituitary tumors, inflammatory brain diseases, acute nonhemorrhagic infarcts, chronic nonhemorrhagic infarcts, and hemorrhagic infarcts. A wide range of ADC value distributions were identified within the disease groups, and there were overlapping ADC values between most groups. Low ADC values indicating restricted diffusion of water were identified in acute nonhemorrhagic infarcts as expected, but were also seen in meningiomas, glial cell tumors, and granulomatous meningoencephalitis. Based on this preliminary data it is unlikely that singular quantitative ADC values can be used to determine the histological type of canine intracranial disease.  相似文献   

9.
Magnetic resonance imaging was performed in seven dogs with histopathologically-confirmed brain infarcts. The infarcts were non-hemorrhagic in four dogs and hemorrhagic in three dogs. Six dogs had single infarcts involving the cerebrum and one dog had multiple infarcts involving the cerebrum and brain stem. Non-hemorrhagic infarcts were typically wedge-shaped, hypointense on T1-weighted images, hyperintense on T2-weighted images, and did not enhance with gadolinium-DTPA. Hemorrhagic infarcts had mixed intensity on T1- and T2-weighted images, with variable patterns of enhancement.  相似文献   

10.
The aim of this study was to identify magnetic resonance (MR) signs that aid differentiation of neoplastic vs. non-neoplastic brain diseases in dogs and cats. MR images of 36 dogs and 13 cats with histologic diagnosis of intracranial disease were reviewed retrospectively. Diagnoses included 30 primary and three metastatic brain tumors, 11 infectious/inflammatory lesions, three vascular, one degenerative disease, and one developmental malformation. Upon univariate analysis of 21 MR signs, there were seven that had a significant association with neoplasia: single lesion (P = 0.004), shape (P = 0.015), mass effect (P = 0.002), dural contact (P = 0.04), dural tail (P = 0.005), lesions affecting adjacent bone (P = 0.008), and contrast enhancement (P = 0.025). Increasing age was also found to be associated with neoplasia (P = 0.0001). MR signs of non-neoplastic brain diseases in dogs and cats were more variable than those of brain neoplasia.  相似文献   

11.
The cervical spine of 27 dogs with cervical pain or cervical myelopathy was evaluated using magnetic resonance imaging (MRI). Spin echo T1, T2, and post-contrast T1 weighted imaging sequences were obtained with a 0.5 Tesla magnet in 5 dogs and a 1.5 Tesla magnet in the remaining 22 dogs. MRI provided for visualization of the entire cervical spine including the vertebral bodies, intervertebral discs, vertebral canal, and spinal cord. Disorders noted included intervertebral disc degeneration and/or protrusion (12 dogs), intradural extramedullary mass lesions (3 dogs), intradural and extradural nerve root tumors (3 dogs), hydromyelia/syringomyelia (1 dog), intramedullary ring enhancing lesions (1 dog), extradural synovial cysts (1 dog), and extradural compressive lesions (3 dogs). The MRI findings were consistent with surgical findings in 18 dogs that underwent surgery. Magnetic resonance imaging provided a safe, useful non-invasive method of evaluating the cervical spinal cord.  相似文献   

12.
The magnetic resonance (MR) imaging findings in 22 dogs and two cats with confirmed paraspinal infection of the thoracolumbar spine were characterized. These findings included extensive T2-hyperintense areas (24/24), abscessation (20/24), mild inherent T1-hyperintensity of muscle and abscesses (18/24), and postcontrast enhancement (24/24). Changes involved the vertebral canal in four patients. The longus coli muscles were affected in one cat. Thoracolumbar changes in the remaining 23 patients involved the iliopsoas and epaxial muscles in 23/23 and 19/23 patients, respectively. Iliopsoas muscle abscessation was unilateral in 12/23, and bilateral in 6/24 patients. Abscessation involved both epaxial and iliopsoas muscles in 2/23 patients and the epaxial muscles alone in one patient. A contrast-enhancing sinus tract within the deep thoracolumbar fascia was present in 10/23 patients. Lumbar vertebrae periosteal reactions were identified in 19/23 patients on MR images compared with 15/17 patients with radiography. A focal area of signal void suspected to represent foreign material was seen in 5/23 patients but foreign material was actually found in only two of these five. There was no recurrence of clinical signs following MR imaging and revision surgery. MR imaging permits the severity and extent of changes associated with paraspinal infection to be characterized and allows the location, number and any communication of sinus tracts to be documented.  相似文献   

13.
Three dogs with multilobular osteochondrosarcoma of the skull were evaluated using magnetic resonance (MR) imaging. Spin echo T1, T2, proton weighted and post contrast T1W images were obtained with a 1.5 Tesla magnet. The MR imaging findings were similar in all three dogs with mixed signal intensities in the T1W, T2W and proton weighted images and fairly large areas of contrast enhancement in the post contrast T1W images. The extent of brain and soft tissue involvement were well delineated and provided useful information concerning surgical planning. MR imaging provided a useful method of evaluating dogs with skull tumors.  相似文献   

14.
Radiography and magnetic resonance imaging were used to evaluate osteoarthritis at 2, 6, and 12 weeks following transection of the cranial cruciate ligament of the stifle (femorotibial) joint of 6 dogs. A quantitative radiographic scoring system was used to assess the progression of hard and soft tissue changes of osteoarthritis. Mediolateral (flexed joint) and oblique (extended joint) radiographic projections enabled identification of small osteophytes on the femoral trochlear ridges, which were detected at an earlier stage of development than was previously reported. Magnetic resonance imaging was useful in detecting changes in cartilage thickness, osteophytosis and intraarticular loose bodies. Radiography and magnetic resonance imaging were complementary in the assessment of pathologic changes of osteoarthritis.  相似文献   

15.
The diagnosis of discospondylitis is based mainly on diagnostic imaging and laboratory results. Herein, we describe the magnetic resonance imaging (MRI) findings in 13 dogs with confirmed discospondylitis. In total there were 17 sites of discospondylitis. Eleven (81.1%) of the dogs had spinal pain for >3 weeks and a variable degree of neurologic signs. Two dogs had spinal pain and ataxia for 4 days. Radiographs were available in nine of the dogs. In MR images there was always involvement of two adjacent vertebral endplates and the associated disk. The involved endplates and adjacent marrow were T1‐hypointense with hyperintensity in short tau inversion recovery (STIR) images in all dogs, and all dogs also had contrast enhancement of endplates and paravertebral tissues. The intervertebral disks were hyperintense in T2W and STIR images and characterized by contrast enhancement in 15 sites (88.2%). Endplate erosion was present in 15 sites (88.2%) and was associated with T2‐hypointense bone marrow adjacent to it. In two sites (11.8%) endplate erosion was not MR images or radiographically. The vertebral bone marrow in these sites was T2‐hyperintense. Epidural extension was conspicuous in postcontrast images at 15 sites (88.2%). Spinal cord compression was present at 15 sites (88.2%), and all affected dogs had neurologic signs. Subluxation was present in two sites (11.8%). MRI shows characteristic features of discospondylitis, and it allows the recognition of the exact location and extension (to the epidural space and paravertebral soft tissues) of the infection. Furthermore, MRI increases lesion conspicuity in early discospondylitis that may not be visualized by radiography.  相似文献   

16.
The cervical spine of 21 dogs with clinical signs of cervical stenotic myelopathy was evaluated using magnetic resonance (MR) imaging. Spin echo T1, T2 and gradient echo T2 weighted images were obtained with a 1.5 Tesla magnet in 12 dogs and a 1.0 Tesla magnet in 9 dogs. Sagittal or parasagittal T1W and T2W images were helpful in determining the presence of spinal cord compression or degenerative disease of the articular processes. Transverse T1W and T2W images were the most useful for the identification of dorsolateral spinal cord compression secondary to soft tissue and ligament hypertrophy, as well as synovial cysts, associated with the articular processes. The MR imaging findings were consistent with the surgical findings in all 14 dogs that underwent surgery. Magnetic resonance imaging provided a safe, non-invasive method of evaluating the cervical spine in dogs suspected of having cervical stenotic myelopathy. Veterinary  相似文献   

17.
Magnetic resonance (MR) imaging characteristics are commonly used to help predict intracranial disease categories in dogs, however, few large studies have objectively evaluated these characteristics. The purpose of this retrospective study was to evaluate MR characteristics that have been used to differentiate neoplastic, inflammatory, and vascular intracranial diseases in a large, multi‐institutional population of dogs. Medical records from three veterinary teaching hospitals were searched over a 6‐year period for dogs that had diagnostic quality brain MR scans and histologically confirmed intracranial disease. Three examiners who were unaware of histologic diagnosis independently evaluated 19 MR lesion characteristics totaling 57 possible responses. A total of 75 dogs with histologically confirmed intracranial disease were included in analyses: 51 with neoplasia, 18 with inflammatory disease, and six with cerebrovascular disease. Only strong contrast enhancement was more common in neoplasia than other disease categories. A multivariable statistical model suggested that extra‐axial origin, T2‐FLAIR mixed intensity, and defined lesion margins were also predictive of neoplasia. Meningeal enhancement, irregular lesion shape, and multifocal location distinguished inflammatory diseases from the other disease categories. No MR characteristics distinguished vascular lesions and these appeared most similar to neoplasia. These results differed from a previous report describing seven MR characteristics that were predictive of neoplasia in dogs and cats. Findings from the current study indicated that the high performance of MR for diagnosing canine intracranial diseases might be due to evaluator recognition of combinations of MR characteristics vs. relying on any one MR characteristic alone.  相似文献   

18.
Normal anatomic variation, study design, external factors, and tissue characteristics can all influence the manifestation of structures on magnetic resonance images (MRI). For the purpose of this review, imaging artifacts are considered to be nonpathologic abnormalities resulting from study design, intrinsic tissue characteristics, or external factors, while MRI pseudolesions are due to normal anatomic variation. Awareness of imaging artifacts and pseudolesions, as well as normal anatomic structures, is important when determining pathologic vs. normal or clinically insignificant abnormalities. The purpose of this report is to examine the literature to compile a review of selected artifacts and pseudolesions that are commonly encountered when imaging the canine and feline brain.  相似文献   

19.
Magnetic resonance (MR) images were acquired in five dogs and one cat with ocular and orbital disease. MR images were obtained in the dorsal or oblique dorsal, and oblique sagittal planes. Pathologic changes identified in MR images included inflammatory lesions, cystic structures, and neoplasms. All abnormalities were readily apparent in TI-weighted images. MR findings in affected animals were often similar in signal intensity, location, and growth pattern to those found in people with comparable diseases. Although no MR changes were considered pathognomonic for a given disease, MR imaging provided detailed information on the homogeneity, extent and invasiveness of the lesions.  相似文献   

20.
A retrospective study of 15 dogs and three cats was done to characterize the appearance of meningeal enhancement on magnetic resonance (MR) images of the brain, and to correlate this appearance with its underlying cause. Two patterns of meningeal enhancement (pial and dural) were identified. Enhancement of the pia mater was evident in four dogs and one cat, while enhancement of the dura mater was seen in 11 dogs and 2 cats. A variety of causes of meningeal enhancement were identified, including bacterial and cryptococcal meningitis, plasmacytic meningitis with associated subdural fluid accumulation, granulomatous meningoencephalomyelitis, inflammation secondary to otitis interna, feline infectious peritonitis, and neoplasia. The present study confirms that pial or dural meningeal enhancement may be present on MR images of the brain of dogs or cats in association with a variety of central nervous system diseases. A larger prospective study is required to further establish the incidence of specific patterns of meningeal enhancement seen in association with specific diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号