首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Increasing water and fertilizer productivity stands as a relevant challenge for sustainable agriculture. Alternate furrow irrigation and surface fertigation have long been identified as water and fertilizer conserving techniques in agricultural lands. The objective of this study was to simulate water flow and fertilizer transport in the soil surface and in the soil profile for variable and fixed alternate furrow fertigation and for conventional furrow fertigation. An experimental data set was used to calibrate and validate two simulation models: a 1D surface fertigation model and the 2D subsurface water and solute transfer model HYDRUS-2D. Both models were combined to simulate the fertigation process in furrow irrigation. The surface fertigation model could successfully simulate runoff discharge and nitrate concentration for all irrigation treatments. Six soil hydraulic and solute transport parameters were inversely estimated using the Levenberg–Marquardt optimization technique. The outcome of this process calibrated HYDRUS-2D to the observed field data. HYDRUS-2D was run in validation mode, simulating water content and nitrate concentration in the soil profiles of the wet furrows, ridges and dry furrows at the upstream, middle and downstream parts of the experimental field. This model produced adequate agreement between measured and predicted soil water content and nitrate concentration. The combined model stands as a valuable tool to better design and manage fertigation in alternate and conventional furrow irrigation.  相似文献   

2.
The regular application of nitrogen fertilizers by irrigation is likely responsible for the increase in nitrate concentrations of groundwater in areas dominated by irrigated agriculture. Consequently, sustainable agricultural systems must include environmentally sound irrigation practices. To reduce the harmful effects of irrigated agriculture on the environment, the evaluation of alternative irrigation water management practices is essential. Micro-irrigation offers a large degree of control, enabling accurate application according to crop water requirements, thereby minimize leaching. Furthermore, fertigation allows the controlled placement of nutrients near the plant roots, reducing fertilizer losses through leaching into the groundwater. The presented two-dimensional modeling approach provides information to improve fertigation practices. The specific objective of this project was to assess the effect of fertigation strategy and soil type on nitrate leaching potential for four different micro-irrigation systems. We found that seasonal leaching was the highest for coarse-textured soils, and conclude that fertigation at the beginning of the irrigation cycle tends to increase seasonal nitrate leaching. In contrast, fertigation events at the end of the irrigation cycle reduced the potential for nitrate leaching. For all surface-applied irrigation systems on finer-textured soils, lateral spreading of water and nitrates was enhanced by surface water ponding, causing the water to spread across the surface with subsequent infiltration downwards and horizontal spreading of soil nitrate near the soil surface. Leaching potential increased as the difference between the extent of the wetted soil volume and rooting zone increased.  相似文献   

3.
【目的】通过水肥管理达到减少温室土壤硝态氮残留、维持土壤质量的目的,探求温室土壤硝态氮残留与水肥用量的关系。【方法】在滴灌施肥条件下,以灌水量和氮、磷、钾及有机肥用量为试验因素,根据当地日光温室番茄长季节栽培实际中的水肥用量,设计各试验因子的水肥水平,采用五元二次通用旋转组合设计进行试验。拉秧后测定耕层土壤硝态氮量,建立土壤硝态氮量与水肥因子间的数学模型,据此分析了各单因子效应及二因素的耦合效应。【结果】施氮量对土壤硝态氮残留量影响最大,施磷量、灌水量和施钾量次之,有机肥用量最小。当其他因子为0水平时,土壤硝态氮残留量随氮肥用量的增多而增加,随施磷量呈开口向上的抛物线变化,随灌水量、施钾量以及有机肥用量呈开口向下的抛物线变化。灌水量及氮、磷、钾和有机肥用量对土壤硝态氮残留产生的影响程度随其他因子的水平而变,存在明显交互作用。模型寻优显示:灌水量455.1~471.5 mm,施氮量532.3~586.5 kg/hm2,施磷量420.8~466.4 kg/hm2,施钾量646.1~723.5 kg/hm2,有机肥用量25.6~27.9 t/hm2,耕层土壤硝态氮量可维持在100~150 mg/kg的较低水平。【结论】温室菜地土壤硝态氮残留量相对较大,可以通过优化水肥用量来减少土壤硝态氮的残留,故在滴灌施肥条件下仍需严格控制水肥用量。  相似文献   

4.
采用盆栽试验,研究了不同水肥调控措施对玉米生长、根系分布及植株氮、磷、钾养分的影响。结果表明,与常规灌溉施肥处理相比,滴灌深施处理能显著提高10cm以下土层的总根长和根表面积;在试验条件下,不同处理对玉米地上、地下部含磷量影响差异不显著,在玉米生长后期对地上部氮及地上、地下部含钾量的影响差异显著,表现为常规灌溉施肥处理要显著低于土壤表层滴灌施肥、土壤深层滴灌施肥处理。玉米在3个取样时期的生物量均表现为土壤表层滴灌施肥、土壤深层滴灌施肥处理显著高于常规灌溉施肥处理,其增长率达59.0%~75.3%、30.0%~32.5%和13.6%~16.5%。  相似文献   

5.
同步滴灌施肥条件下根际土壤水氮分布试验研究   总被引:3,自引:1,他引:2  
通过室内土槽试验,探讨了停灌后不同时间,同步施肥滴灌对土壤水分及土壤硝态氮在土壤剖面分布的影响。结果表明:停灌后,各处理土壤水分以滴头为中心沿径向向四周扩散;由于水分在横向及纵向运动,上下层土壤水势梯度随径向距离增加而逐渐减少。停灌后,氮浓度3、2 g/L处理硝态氮的含量与径向距离及土层深度成反比;氮浓度0 g/L处理硝态氮的含量随径向距离及土层深度增加先增大后减小,氮浓度0 g/L处理硝态氮在深度分布表现为"上低中高下稳定"抛物线分布。  相似文献   

6.
通过对大田春玉米进行不同生育期灌水和施氮处理,研究了不同灌水和施氮对玉米农田硝态氮运移和产量的影响。结果表明:生物产量和籽粒产量及其灌溉水利用效率有随施氮量增加而增大的趋势。与全生育期灌水比较,任何生育期不灌水处理都造成生物产量和籽粒产量降低,而生育期不灌水处理增加了灌溉水利用效率,两个生育期不灌水处理的生物产量和籽粒产量的灌溉水利用效率最高。在春玉米生长阶段,拔节期,抽穗期和成熟期不灌水对生物产量影响显著,抽穗期不灌水、苗期与灌浆期不灌水、拔节期期和灌浆期不灌水处理显著影响籽粒产量。  相似文献   

7.
Summary Dry-seeded rice (Oryza sativa L., cv. Calrose) was subjected to 4 irrigation treatments — continuous flood (CF) and sprinkler irrigation at frequencies of one (S1 W), two (S2W) and three (S3W) applications per week — commencing 37 d after 50% emergence (DAE). The amount of water applied was calculated to replace water lost by pan evaporation. Urea (120 kg N ha–1) was applied in a 1:1 split 36 and 84 DAE, and there were also unfertilized controls for each irrigation treatment. Amounts of nitrate (NO 3 ) in the soil were very low throughout the growing season in all treatments, despite regular periods of draining which lasted for up to 7 d in SlW. In all irrigation treatments, the majority of the fertilizer nitrogen (N) was located in the top 20 mm of soil. After each application of fertilizer, levels of mineral N in CF declined rapidly, while levels in S3W and S1W remained high for 1–2 weeks longer. The poor growth of sprinkler-irrigated rice was not due to lower amounts of mineral N in the soil. The greater persistence of fertilizer N in the sprinkler-irrigated treatments was probably due to reduced root activity near the soil surface because of frequent periods of soil drying in between irrigations. Net mineralization of soil N in the unfertilized sprinkler-irrigated treatments was reduced by about half compared with CF.On average, the quantity of water applied (1.2–1.4 × EP) to the sprinkler-irrigated treatments appeared to be sufficient to meet the evapotranspiration demands of the crop, except possibly around flowering time. However, the plants may have suffered from moisture stress in between irrigations. Soil matric potential data at 100 mm suggested little water stress in the sprinkler-irrigated treatments during the vegetative stage, consistent with the similar tiller and panicle densities in all irrigation treatments. However, the crop was stunted and yellow and leaf rolling was observed in the sprinkler-irrigated treatments during this period. Soil matric potential data at 100 mm indicated considerable water stress in S1W beyond the commencement of anthesis, and in S2W during grain filling, consistent with the reduced floret fertility and grain weight in those treatments.  相似文献   

8.
Deep percolation and nitrate leaching are important considerations in the design of sprinkler systems. Field experiments were therefore conducted to investigate the influence of nonuniformity of sprinkler irrigation on deep percolation and spatial distributions of nitrogen and crop yield during the growing season of winter wheat at an experiment station in Beijing, China. Three experimental plots of a sandy clay loam soil in the 0–40 cm depth interval and a loamy clay soil below 40 cm were irrigated with a sprinkler irrigation system that had a seasonal averaged Christiansen irrigation uniformity coefficient (CU) varying from 72 to 84%. Except for the fertilizer applied before planting, fertilizer was applied with the sprinkler irrigation system. The corresponding seasonal averaged CU for fertigation varied from 71 to 85%. Daily observation of matrix water potentials in the root zone showed that little deep percolation occurred. Consequently, the effect of sprinkler uniformity on deep percolation was minor during the irrigation season for the soil tested. Intensive gravimetric soil core samplings were conducted several times during the irrigation season in a grid of 5 m × 5 m for each plot to determine the spatial and temporal variation of NH4-N and NO3-N contents. Soil NH4-N and NO3-N exhibited high spatial variability in depth and time during the irrigation season with CU values ranging from 23 to 97% and the coefficient of variation ranging from 0.04 to 1.06. A higher uniformity of sprinkler fertigation produced a more uniform distribution of NH4-N, but the distribution of NO3-N was not related to fertigation. Rather it was related to the spatial variability of NO3-N before fertigation began. At harvest, the distribution of dry matter above ground, nitrogen uptake, and yield were measured and the results indicated that sprinkler fertigation uniformity had insignificant effects on the parameters mentioned above. Field experimental results obtained from this study suggest that sprinkler irrigation if properly managed can be used as an efficient and environment-friendly method of applying water and fertilizers.  相似文献   

9.
The purpose of optimal water and nutrient management is to maximize water and fertilizer use efficiency and crop production, and to minimize groundwater pollution. In this study, field experiments were conducted to investigate the effect of soil salinity and N fertigation strategy on plant growth, N uptake, as well as plant and soil 15N recovery. The experimental design was a 3 × 3 factorial with three soil salinity levels (2.5, 6.3, and 10.8 dS m−1) and three N fertigation strategies (N applied at the beginning, end, and in the middle of an irrigation cycle). Seed cotton yield, dry matter, N uptake, and plant 15N recovery significantly increased as soil salinity level increased from 2.5 to 6.3 dS m−1, but they decreased markedly at higher soil salinity of 10.8 dS m−1. Soil 15N recovery was higher under soil salinity of 10.8 dS m−1 than those under soil salinity of 6.3 dS m−1, but was not significantly different from that under soil salinity of 2.5 dS m−1. The fertigation strategy that nitrogen applied at the beginning of an irrigation cycle had the highest seed cotton yield and plant 15N recovery, but showed higher potential loss of fertilizer N from the root zone. While the fertigation strategy of applying N at the end of an irrigation cycle tended to avoid potential N loss from the root zone, it had the lowest cotton yield and nitrogen use efficiency. Total 15N recovery was not significantly affected by soil salinity, fertigation strategy, and their interaction. These results suggest that applying nitrogen at the beginning of an irrigation cycle has an advantage on promoting yield and fertilizer use efficiency, therefore, is an agronomically efficient way to provide cotton with fertilizer N under the given production conditions.  相似文献   

10.
为了实现沙地上大型喷灌机施肥灌溉下马铃薯的水肥高效利用,通过田间试验研究了大型喷灌机施肥灌溉条件下配套水土保持措施——鱼鳞坑对马铃薯生长、水肥利用效率等的影响。结果表明,在大型喷灌机条件下,通过负压计指导施肥灌溉,当垄中心20cm深度处的土壤水基质势低于-15kPa时进行施肥灌溉时,在马铃薯垄间挖鱼鳞坑,能有效地改善根区土壤水分状况,促进马铃薯的生长,不仅马铃薯增产22.1%~33.3%,还使肥料偏生产力提高了33.3%~36.8%。  相似文献   

11.
Heavy rainfall and irrigations during the summer months in the North China Plain may cause losses of nitrogen because of nitrate leaching. The objectives of this study were to characterize the leaching of accumulated N in soil profiles, and to determine the usefulness of Br as a tracer of surface-applied N fertilizer under heavy rainfall and high irrigation rates. A field experiment with bare plots was conducted near Beijing from 5 July to 6 September 2006. The experiment included three treatments: no irrigation (rainfall only, I0), farmers’ practice irrigation (rainfall plus 100 mm irrigation, I100) and high-intensity irrigation (rainfall plus 500 mm irrigation, I500), with three replicates. Transport of surface-applied Br and NO3 (assuming no initial NO3 in the soil profile) and accumulated NO3 in soil profiles were all simulated with the HYDRUS-1D model. The model simulation results showed that Br leached through the soil profile faster than NO3. When Br was used as a tracer for surface-applied N fertilizer to estimate nitrate leaching losses, the amount of N leaching may be overestimated by about 10%. Water drainage and nitrate leaching were dramatically increased as the irrigation rate was increased. The amounts of N leaching out of the 2.1-m soil profile under I0, I100 and I500 treatments were 195 ± 84, 392 ± 136 and 612 ± 211 kg N ha−1, equivalent to about 20 ± 5%, 40 ± 6% and 62 ± 7% of the accumulative N in the soil profile, respectively. N was leached more deeply as the irrigation rate increased. The larger amount of initial accumulated N was in soil profile, the higher percentage of N leaching was. N leaching was also simulated in summer under different weather conditions from 1986 to 2006. The results indicated that nitrate leaching in rainy years were significantly higher than those in dry and normal years. Increasing the irrigation times and decreasing the single irrigation rate after fertilizer application should be recommended.  相似文献   

12.
Techniques for estimating seasonal water use from soil profile water depletion frequently do not account for flux below the root zone. A method using tensiometers for obtaining evapotranspiration losses from the root zone and water movement below it is discussed. Soil water flux below the root zone is approached by a sequence of pseudo steady state solutions of the flow equation. Upward soil water flux contributed 36 to 73% to the total water requirement of winter wheat (Triticum aestivum L.) whereas soil water depletion accounted for 11 to 19% only. Water use efficiency with one irrigation during an early stage of plant development is greater than with no or three irrigations. This is the result of both decrease of resistance due to soil moistening and better root development. Tensiometer readings were also interpreted to estimate root zones, water table depths and soil moisture contents. Methods described in this paper can be used in determining seasonal water use by growing crops, replacing or supplementing lysimeter or meteorology approaches to this problem.  相似文献   

13.
High frequency irrigation with surface irrigation methods has been proposed as a means to increase cotton productivity in cases where drip irrigation or other pressurized systems are not economically justifiable. Field studies were conducted in 1993 and 1994 to evaluate the effects of surface irrigation frequency on the growth, lint yield and water use for a semi-determinate cotton cultivar in central Arizona. Cotton was grown in level basins on a sandy loam under three irrigation treatments defined as low frequency irrigation for the whole season (L), high frequency irrigation for the whole season (H), and low frequency irrigation until the initiation of rapid fruiting, high frequency during rapid fruiting, and low frequency after rapid fruiting (LHL). The treatments were governed by the percentage of allowable soil water depletion within the effective root zone, and the allowable depletion targets for low and high frequency irrigation were 55 and 30%, respectively. An irrigation scheduling program calculated the soil water depletion within the estimated cotton root depth on a daily basis for each treatment and was used to project the dates and amounts for treatment irrigations. In 1993, seven, 14, and 11 irrigations and in 1994 eight, 13 and 10 irrigations were given to the L, H, and LHL treatments, respectively. The total amount of water applied including rainfall differed among the treatments by 4% in 1993 and by 1% in 1994. Soil water measurements indicated that actual soil water depletion within the estimated cotton root depth immediately before treatment irrigations was close to the intended treatment allowable depletion targets for the majority of the growing season. Cotton growth and lint yields were maximized under the H treatment, and yields in this treatment averaged 15 and 21% more lint than the L treatment for the first and second seasons, respectively. The LHL treatment, although not as effective in increasing crop productivity as the H treatment, out yielded the low frequency treatment by an average of 10% in the two seasons. Crop evapotranspiration determined from the soil water balance was 8 and 9% higher for the H than the L treatment and 3 and 5% higher for the LHL than the L treatment in 1993 and 1994, respectively.  相似文献   

14.
Florida is the largest producer of fresh-market tomatoes in the United States. Production areas are typically intensively managed with high inputs of fertilizer and irrigation. The objectives of this 3-year field study were to evaluate the interaction between N-fertilizer rates and irrigation scheduling on yield, irrigation water use efficiency (iWUE) and root distribution of tomato cultivated in a plastic mulched/drip irrigated production systems. Experimental treatments included three irrigation scheduling regimes and three N-rates (176, 220 and 230 kg ha−1). Irrigation treatments included were: (1) SUR (surface drip irrigation) both irrigation and fertigation line placed right underneath the plastic mulch; (2) SDI (subsurface drip irrigation) where the irrigation line was placed 0.15 m below the fertigation line which was located on top of the bed; and (3) TIME (conventional control) with irrigation and fertigation lines placed as in SUR and irrigation being applied once a day. Except for the “TIME” treatment all irrigation treatments were controlled by soil moisture sensor (SMS)-based irrigation set at 10% volumetric water content which was allotted five irrigation windows daily and bypassed events if the soil water content exceeded the established threshold. Average marketable fruit yields were 28, 56 and 79 Mg ha−1 for years 1-3, respectively. The SUR treatment required 15-51% less irrigation water when compared to TIME treatments, while the reductions in irrigation water use for SDI were 7-29%. Tomato yield was 11-80% higher for the SUR and SDI treatments than TIME where as N-rate did not affect yield. Root concentration was greatest in the vicinity of the irrigation and fertigation drip lines for all irrigation treatments. At the beginning of reproductive phase about 70-75% of the total root length density (RLD) was concentrated in the 0-15 cm soil layer while 15-20% of the roots were found in the 15-30 cm layer. Corresponding RLD distribution values during the reproductive phase were 68% and 22%, respectively. Root distribution in the soil profile thus appears to be mainly driven by development stage, soil moisture and nutrient availability. It is concluded that use of SDI and SMS-based systems consistently increased tomato yields while greatly improving irrigation water use efficiency and thereby reduced both irrigation water use and potential N leaching.  相似文献   

15.
Micro-irrigation has become an optimal means for providing water and nutrients to crops. There is an ample space for improving fertilizer use efficiency with micro-irrigation, if the movement and reactions of fertilizers in the soil are well understood. However, the rhizosphere dynamics of nutrients is very complex, depending on many factors such as soil temperature, pH, water content, and soil and plant characteristics. Many factors cannot be easily accurately quantified. However, using state-of-the-art modelling techniques, useful and reliable information can be derived.An attempt was made to evaluate the reactive transport of urea in the root zone of a sugarcane crop under drip irrigation, and to quantify the fluxes of urea, ammonium, and nitrate into the crop roots, volatilization fluxes, and deep drainage using a numerical model. This quantification helped in designing an optimal fertigation schedule. Various parameters used in the model were taken from either the literature or the field study. A typical scenario, based on the recommended total quantity of urea for sugar cane crop under drip irrigation in India, was tested using HYDRUS-2D. The total amount of urea was divided into fortnightly doses, depending on the stage of crop growth. For this scenario, the modelled crop uptake was found to be 30% higher than the crop demand. Consequently, an optimal fertigation schedule was developed that reduced the use of urea by 30% while at the same time providing enough N for its assimilation at all stages of crop growth. This type of modelling study should be used before planning field experiments for designing optimal fertigation schedules.  相似文献   

16.
When subsurface irrigation sources are lacking in humid and subhumid regions, high yearly precipitation may allow for storage of surface water in farm ponds and lakes for irrigation. Irrigation at selected growth stages may avoid critical stress for crops with some drought tolerance, such as grain sorghum [Sorghum bicolor (L.) Moench]. Because grain sorghum is responsive to N, injecting fertilizer N through the irrigation system also may improve production. The objective of this study was to determine the effect of timing of limited-amount irrigation and N fertigation on grain sorghum yield; yield components; grain N content; and N uptake at the 9-leaf, boot, and soft dough stages. The experiment was conducted from 1984 to 1986 on a Parsons silt loam (fine, mixed, thermic, Mollic Albaqualf). The experiment was designed as a 6 × 2 factorial plus two reference treatments. Six timings for irrigation were targeted at the 9-leaf (9L), boot (B), soft dough (SD), 9L-B, 9L-SD, and B-SD growth stages. N application systems were either 112 kg N ha–1 surface-banded preplant or 56 kg N ha-1 preplant and 56 kg N ha–1 injected through the irrigation at a rate of 28 kg N ha–1 per 2.5 cm of irrigation. Two reference treatments included were one receiving N but no irrigation and one receiving neither N nor irrigation. In 1984, irrigation generally increased grain sorghum yield by nearly 1 Mg ha–1. However, yield was not affected by selection of irrigation timing, N application method, or the interaction of the two factors. This was partly because early irrigations increased kernels/head, whereas later irrigations increased kernel weight. Above average rainfall during the growing season, especially just prior to the 9-leaf, boot, and soft dough growth stages, resulted in no irrigations in 1985. In 1986, yield was increased by early (9-leaf) irrigations as compared to soft dough irrigations. Early irrigations resulted in higher kernels/head; however, rainfall after the soft dough irrigation may have masked any treatment effect on kernel weight. As in 1984, N application method did not affect grain sorghum yields, even though yield was reduced to less than 3 Mg ha–1 with no N nor irrigation. In both 1984 and 1986, N uptake at succeeding growth stages appeared to respond to irrigations made at previous growth stages. Injecting half of the fertilizer N through the irrigation system did not affect N uptake compared to applying all N preplant. The lack of response to fertigation may be related to the low leaching potential of the soil used in this study.Contribution No. 92-606-J, Kansas Agricultural Experiment Station  相似文献   

17.
以土壤水分运动的动力学方程和溶质运移的对流-弥散方程为基础,结合灌溉施肥过程中的初始和边界条件,建立了地下滴灌施肥条件下土壤水肥运动模拟模型,以SWM-2源代码为蓝本,模拟了新疆棉花地下滴灌施肥后土壤中氮的分布与变化过程。结果表明,地下滴灌条件下,施肥时机直接影响到土壤中氮的分布,施肥后冲洗管道1 h,使氮的运动在剖面上呈双峰曲线,以毛管为中心,氨态氮的运动局限于20 cm以内,其含量随时间延长而减少,同时向下层土壤运动;与氨态氮相比,硝态氮的运动范围略有增加,在垂直方向上向上运动大于向下运动。  相似文献   

18.
Selection of the time period when liquid N fertilizer is introduced during an irrigation (timing), can potentially lead to more accurate placement of N in the root zone of perennial crops. The effect of four timing treatments, T1, T2, T3 and T4 the four quarters of a water application on in situ redistribution of ammonium nitrate at two water application rates (23 and 58 mm) was investigated. Irrespective of applied water quantity, soil ammonium-N content decreased with depth from the soil surface. Retarding the timing from T1 to T4 resulted in a significant increase in ammonium-N content in the uppermost 50 mm depth increment at both water application rates. In all timing treatments, the negatively charged nitrate ion moved to greater depths than its positively charged counterpart. These differences were greater where 58 vs. 23 mm of water was applied. Except for the T3 and T4 treatments at the 23 mm level, peak soil nitrate concentrations appeared below the soil surface. Retarding the timing at the 58 mm level gave rise to consecutive nitrate peaks between the surface and the 500 mm depth. A less distinct trend was also apparent where 23 mm was applied. Evidence for preferential movement of N in a uniform course sandy profile is also presented.  相似文献   

19.
Summary The effect of partial wetting of the root zone on yield and water use efficiency in a drip- and sprinkler-irrigated mature grapefruit grove was tested in a long-term experiment from 1976 to 1979. Three different percentages of the surface soil areas ( 30%, 40% and 70%) were wetted by the use of single and double drip laterals and sprinklers, respectively. Irrigation frequencies were 3 and 7 days for the drip treatments and 14 and 21 days for the sprinkler-irrigated plots.Two amounts of water, 80% and 100% of the total seasonal water application as previously determined from the soil moisture depletion data (ca. 630 and 800 mm), were applied at the different irrigation intervals for the drip- and sprinkler-irrigated treatments during the irrigation season (April–November). Soil moisture and salinity patterns were determined by the neutron scattering method and by gravimetric sampling. The partition of water extraction from the wet and dry zones in the drip-irrigated treatments was determined. About 86% of the total amount of water depletion was from the wet zone and 14% from the dry zone. Percolation losses in the irrigated treatments receiving 80% of the total seasonal water application decreased as compared with the 100% irrigated plots. Salts accumulated during the irrigation season were leached out by the winter rainfall.The effect of the reduction of irrigation application amount, first introduced in 1976, on the grapefruit yield was cumulative. The average yield (for the three years 1977, 1978, 1979) in the 80%, drip-irrigated plots at 3-day intervals, was 89 t/ha, compared with 98 t/ha in the 100% irrigated plots. The average yields obtained in the sprinkler and trickle irrigation treatments receiving 100% of the water application was 84 t/ha and 100 t/ha, respectively. Yield reductions in the plots receiving reduced water application of 80% were 11% for the drip treatments and 13% for the sprinkler treatment; the extent of the yield reduction varied according to the time interval between irrigations. The fruit quality was up to the required standards in all treatments. Water use efficiency was greater in the drip-irrigated plots than in the sprinkled ones, and also greater in the plots given the reduced water applications (80% of the maximum seasonal amount of the irrigation water applied), as compared with plots receiving the full amount of irrigation.Contribution from the Agricultural Research Organization, The Volcani Center, P.O.B. 6, Bet Dagan 50–250, Israel. No. 175-E, 1981 series  相似文献   

20.
In new agricultural practices, joint application of water and fertilizer has been become common. Uniform distribution of fertilizer in soil and in plant growth duration is possible by this procedure. The main objective of this study was to investigate furrow fertigation management effects on distribution uniformity and runoff losses of nitrate in a cornfield, and validate a numerical fertigation model. A field experiment was carried out with seed corn at 12 experiments with a complete randomized block design during 2 years. Nitrogen requirement was determined by soil analysis and accomplished in four stages of the growth: before cultivation, in seven leaves, shooting and earring stages which first section (before cultivation) was applied by manual distribution and others by fertigation. Potash and super phosphate fertilizers (based on soil analysis) were sprayed on soil before planting. Water requirement was estimated by using class a evaporation pan multiplied by plant (Kc) and pan coefficients. Nitrogen fertilizer was solved in irrigation water and injected at the last minutes of irrigation. The results showed that fertilizer distribution uniformity of the low quarter (DULQ) ranged from 85.7% to 91.5% in first year, and 69.9% to 95.5% in second year. While water DULQ ranged from 74.1 to 98.2% in 2 years. Nitrate losses of surface runoff have ranged between 5.7 and 42.0% in first year according to the application time and the outflow flux. In second year, the nitrate losses decreased by adopting appropriate management based on the experiences of first year. The fertigation model was subsequently applied to the experimental data and results showed good agreement with field data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号