首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
基于PEST的RZWQM2模型参数优化与验证   总被引:3,自引:0,他引:3  
根据糯玉米-冬小麦田间喷灌试验不同处理结果,利用独立的自动参数估计软件PEST对RZWQM2模型进行参数优化,并分析了24个模型参数的综合敏感度。通过控制不同观测变量(土壤含水率、土壤氮素含量、作物叶面积指数、产量)模拟差异函数值在目标函数中的比重,优化目标方程,确定模型参数,并用田间试验数据对模型进行验证。结果表明,在不同观测变量的模拟差异函数值最接近条件下,冬小麦出叶间隔特性参数、冬小麦春化作用敏感特性参数及糯玉米出叶间隔特性参数等3个参数对模型整体模拟效果影响最大。相比试错法而言,基于PEST优化的RZWQM2模型能够更准确地模拟糯玉米-冬小麦轮作系统中水分、氮素及作物生长情况。  相似文献   

2.
The root zone water quality model (RZWQM) was developed primarily for water quality research with a generic plant growth module primarily serving as a sink for plant nitrogen and water uptake. In this study, we coupled the CERES-Maize Version 3.5 crop growth model with RZWQM to provide RZWQM users with the option for selecting a more comprehensive plant growth model. In the hybrid model, RZWQM supplied CERES with daily soil water and nitrogen contents, soil temperature, and potential evapotranspiration, in addition to daily weather data. CERES-Maize supplied RZWQM with daily water and nitrogen uptake, and other plant growth variables (e.g., root distribution and leaf area index). The RZWQM-CERES hybrid model was evaluated with two well-documented experimental datasets distributed with DSSAT (Decision Support System for Agrotechnology Transfer) Version 3.5, which had various nitrogen and irrigation treatments. Simulation results were compared to the original DSSAT-CERES-Maize model. Both models used the same plant cultivar coefficients and the same soil parameters as distributed with DSSAT Version 3.5. The hybrid model provided similar maize prediction in terms of yield, biomass and leaf area index, as the DSSAT-CERES model when the same soil and crop parameters were used. No overall differences were found between the two models based on the paired t test, suggesting successful coupling of the two models. The hybrid model offers RZWQM users access to a rigorous new plant growth model and provides CERES-Maize users with a tool to address soil and water quality issues under different cropping systems.  相似文献   

3.
Root zone water quality model (RZWQM) has proven to be useful in evaluating the agricultural systems. However, it has previously been recognized that its evapotranspiration estimates somewhat depart from the measured values indicating the potential for some improvement in this module. Estimation procedure is based on the dual surface approach of Shuttleworth and Wallace, that although having a solid theoretical basis, it is greatly empirical in its application due to the lack of accurate quantitative knowledge of the resistance terms that control the heat fluxes in the canopy. Analysis of the formulation used in RZWQM allowed to detect some weakness in the calculation of bulk surface resistance (rsc), which is based on stomatal resistance averaged by effective leaf area index (LAIeff). In this work, an alteration to the definition of LAIeff is proposed, which leads to an improvement of the estimates. It is also discussed that a greater improvement could be obtained by introducing a model of stomatal resistance response to environmental conditions, which would increase the complexity of the model and be difficult to apply given the lack of adequate knowledge of the quantitative behavior of stomata. Alternatively, the simple crop coefficient approach could be incorporated to define an upper limit to evapotranspiration fluxes and avoid some otherwise unrealistically high estimates of the current version of the model.  相似文献   

4.
《Agricultural Systems》1998,57(1):77-100
In simulations on the fate of agricultural chemicals applied to crops, accurate partitioning of rainfall between infiltration and runoff is fundamental to chemical runoff predictions. We evaluated the Root Zone Water Quality Model (RZWQM version 3.1) against measured runoff from two field plots (15×45 m with 3% slope) on a Tifton loamy sand (fine-loamy, siliceous, thermic Plinthic Kandiudult). Six simulated rainfall events, each 25 mm h−1 for 2 h, were applied to maize (Zea mays, L.) each year. In the uncalibrated mode, RZWQM under-predicted runoff by 40% on average, with the closest fit for events that occurred after full canopy. Saturated hydraulic conductivity (Ks) accounted for the majority of the uncertainty in predicted runoff. When Ks of the surface crust was back calibrated from the measured runoff, RZWQM predicted runoff closely for the remaining plots and events. Alternatively, using different Ks values for wheel track and crop beds, running the model for each and, then, proportionally assigning runoff also led to predictions that agreed with measured runoff. When spatial and temporal changes in Ks were calibrated to specific conditions at the site, RZWQM effectively predicted runoff.  相似文献   

5.
A 45% reduction in riverine total nitrogen flux from the 1980-1996 time period is needed to meet water quality goals in the Mississippi Basin and Gulf of Mexico. This paper addresses the goal of reducing nitrogen in the Mississippi River through three objectives. First, the paper outlines an approach to the site-specific quantification of management effects on nitrogen loading from tile drained agriculture using a simulation model and expert review. Second, information about the net returns to farmers is integrated with the nitrogen loading information to assess the incentives to adopt alternative management systems. Third, the results are presented in a decision support framework that compares the rankings of management systems based on observed and simulated values for net returns and nitrogen loading. The specific question addressed is how information about the physical and biological processes at Iowa State University’s Northeast Research Farm near Nashua, Iowa, could be applied over a large area to help farmers select management systems to reduce nitrogen loading in tile drained areas. Previous research has documented the parameterization and calibration of the RZWQM model at Nashua to simulate 35 management system effects on corn and soybean yields and N loading in tileflow from 1990 to 2003. As most management systems were studied for a 6 year period and in some cases weather had substantial impacts, a set of 30 alternative management systems were also simulated using a common 1974-2003 input climate dataset. To integrate an understanding of the economics of N management, we calculated net returns for all management systems using the DevTreks social budgeting tool. We ranked the 35 observed systems in the Facilitator decision support tool using N loading and net returns and found that rankings from simulated results were very similar to those from the observed results from both an onsite and offsite perspective. We analyzed the effects of tillage, crop rotation, cover crops, and N application method, timing, and amount for the 30 long term simulations on net returns and N loading. The primary contribution of this paper is an approach to creating a quality assured database of management effects on nitrogen loading and net returns for tile drained agriculture in the Mississippi Basin. Such a database would systematically extend data from intensively monitored agricultural fields to the larger area those fields represent.  相似文献   

6.
Irrigation and fertilization management practices play important roles in crop production. In this paper, the Root Zone Water Quality Model (RZWQM) was used to evaluate the irrigation and fertilization management practices for a winter wheat–summer corn double cropping system in Beijing, China under the irrigation with treated sewage water (TSW). A carefully designed experiment was carried out at an experimental station in Beijing area from 2001 to 2003 with four irrigation treatments. The hydrologic, nitrogen and crop growth components of RZWQM were calibrated by using the dataset of one treatment. The datasets of other three treatments were used to validate the model performance. Most predicted soil water contents were within ±1 standard deviation (S.D.) of the measured data. The relative errors (RE) of grain yield predictions were within the range of −26.8% to 18.5%, whereas the REs of biomass predictions were between −38% and 14%. The grain nitrogen (N) uptake and biomass N uptake were predicted with the RE values ranging from −13.9% to 14.7%, and from −11.1% to 29.8%, respectively. These results showed that the model was able to simulate the double cropping system variables under different irrigation and fertilization conditions with reasonable accuracy. Application of RZWQM in the growing season of 2001–2002 indicated that the best irrigation management practice was no irrigation for summer corn, three 83 mm irrigations each for pre-sowing, jointing and heading stages of winter wheat, respectively. And the best nitrogen application management practice was 120 kg N ha−1 for summer corn and 110 kg N ha−1 for winter wheat, respectively, under the irrigation with TSW. We also obtained the alternative irrigation management practices for the hydrologic years of 75%, 50% and 25%, respectively, in Beijing area under the conditions of irrigation with TSW and the optimal nitrogen application.  相似文献   

7.
为明析根区水质模型(RZWQM2)对河北坝上地区蔬菜作物的适用性,以该地区膜下滴灌大白菜为研究对象,建立模型运行的气象、土壤及作物数据库,模拟2018年和2019年大白菜生育期内田间土壤水分动态变化、作物株高变化及最终产量,并通过实测值进行对比分析.结果表明:①经过对该模型参数的校准,得到各土层(20 cm、40 cm...  相似文献   

8.
根系带水质量模型参数灵敏度分析与标定的研究   总被引:2,自引:0,他引:2  
利用收集的河南省新乡试验站田间试验数据对根系带水质量模型(ROOt Zone Water Quality Model,RZWQM)输入参数进行灵敏度分析和标定.结果表明,通过参数的灵敏度分析结果对RZWQM进行调参,节省参数校核时间,提高精度.参数标定后模拟值与实测值的对比显示,土壤含水量的模拟均方根差和平均相对误差分...  相似文献   

9.
Food security is an issue of global concern, which is tightly linked with water supply issues as regional demands for water are dominated by agricultural water use. This special issue of Agricultural Water Management focuses on crop-water use in China, especially in the North China Plain (NCP) and Loess Plateau and surrounding areas, where intensive agriculture (e.g., wheat-maize double cropping) with limited water is practiced to meet the large demand for grains. Such intensive agriculture raises concerns for agricultural sustainability due to limited water supply and effects on water quality, which may be aggravated by projected climate change and its variability across the region and over time. Addressing these issues requires basic understanding of crop-water relationships in water-limited agricultural systems, methods to quantify water demand and actual crop-water use over multiple scales, and strategies to improve water use efficiency (WUE, or water productivity). Advances in crop breeding (selection) and agronomic management, such as irrigation and nutrient management, and tools to assess and improve WUE at multiple scales are addressed for a range of cropping systems in China. Water supplies within a basin (regional scale) must be managed in view of the patterns of water demand in space and time determined by soil and climatic conditions.  相似文献   

10.
《Agricultural Systems》2003,76(1):159-180
The long-term effects of nitrogen (N) fertiliser and slurry management practices in agricultural systems has been simulated using event driven physically based models. The Swedish soil water model SOIL and its associated nitrogen cycle model SOILN has been used to simulate the long-term impacts (over 12 years) of 360 management scenarios; three slurry applications with 10 spreading dates (involving single and split applications) for surface spreading and injection of slurry, and three fertiliser applications with two spreading dates. The effects of the N management scenarios on NO3–N drainage flows, total gaseous N losses and crop yields for grass, winter and spring cereals is investigated. Furthermore, seven soils with varying degrees of drainage efficiency and three climatic conditions (East and West coast Scotland and Southern Ireland) are studied.The aim of this work is to produce N-budget tables for an expert agricultural decision system (ADS) which deals specifically with N best management practises for fertiliser and slurry applications. Simulations conducted in this study were based on input parameters calibrated for specific sites in previous studies on hydrology and NO3–N transport to subsurface drains with associated crop growth.The results of this study show that increasing rates of N applications (in the form of slurry and fertiliser) resulted in a non-linear increase in both the N leached through subsurface drains and the N harvest yield. Surface spreading and injection of slurry gave similar trends. The most important decision about slurry spreading concerns the selection of spreading date and the selection of fields which are likely to produce only moderate leaching effects. Application of slurry in autumn (as a single or split loading), invariably leads to large losses through N leaching, with a single application always resulting in the highest loss. Significant differences are evident for N leaching from the seven soil types. Climatic variation as exemplified in the three meteorological data sets, produces noticeable and significant differences in both N leached and harvest crop totals. This study also aims to identify that a field environmental risk assessment (ERA) using a physically based model such as SOILN can be determined such that strategic agronomic decisions involving N management can be made. In practice this is so provided that a farm manager can recognise and match the actual soil type and drainage condition of the fields on which spreading is to occur with the simulated field types within a similar climate region.  相似文献   

11.
Conservation agriculture practices are being advocated to help sustain crop productivity gains and secure environmental sustainability in the Trans-Gangetic Plains, India’s Green Revolution heartland. The paper illustrates the use of village surveys as a quasi-quantitative system analysis tool to derive implications for agricultural research and development. Drawing from village surveys in 170 communities, the paper assesses current crop residue management practices in Punjab and Haryana’s rice-wheat, basmati-wheat and non-rice-wheat cropping systems. The prevalence of wheat as the winter crop implies an intensive collection, trading and use of wheat straw as basal feed for dairy livestock; which contrasts with the diverse crop residue management of the monsoon crops. The increased use of combine harvesters has spurred the rapid advent of mechanical wheat straw reapers whereas the bulk of combine harvested rice straw is burned in situ. Present crop residue management practices are largely incompatible with year-round mulch retention despite significant biomass production. The research and development community faces the challenge of evening out straw use and management over seasons to ensure at least partial residue retention if its calls for conservation agriculture in this important sub-region are to succeed. The paper also reiterates the worrying decline of groundwater tables associated with the rice-wheat system.  相似文献   

12.
The environmental impacts of agricultural drainage have become a critical issue. There is a need to design and manage drainage and related water table control systems to satisfy both crop production and water quality objectives. The model DRAINMOD-N was used to study long-term effects of drainage system design and management on crop production, profitability, and nitrogen losses in two poorly drained soils typical of eastern North Carolina (NC), USA. Simulations were conducted for a 20-yr period (1971–1990) of continuous corn production at Plymouth, NC. The design scenarios evaluated consisted of three drain depths (0.75, 1.0, and 1.25 m), ten drain spacings (10, 15, 20, 25, 30, 40, 50, 60, 80, and 100 m), and two surface conditions (0.5 and 2.5 cm depressional storage). The management treatments included conventional drainage, controlled drainage during the summer season and controlled drainage during both the summer and winter seasons. Maximum profits for both soils were predicted for a 1.25 m drain depth and poor surface drainage (2.5 cm depressional storage). The optimum spacings were 40 and 20 m for the Portsmouth and Tomotley soils, respectively. These systems however would not be optimum from the water quality perspective. If the water quality objective is of equal importance to the productivity objective, the drainage systems need to be designed and managed to reduce NO3–N losses while still providing an acceptable profit from the crop. Simulated results showed NO3–N losses can be substantially reduced by decreasing drain depth, improving surface drainage, and using controlled drainage. Within this context, NO3–N losses can be reduced by providing only the minimum subsurface drainage intensity required for production, by designing drainage systems to fit soil properties, and by using controlled drainage during periods when maximum drainage is not needed for production. The simulation results have demonstrated the applicability of DRAINMOD-N for quantifying effects of drainage design and management combinations on profits from agricultural crops and on losses of NO3–N to the environment for specific crop, soil and climatic conditions. Thus, the model can be used to guide design and management decisions for satisfying both productivity and environmental objectives and assessing the costs and benefits of alternative choices to each set of objectives.  相似文献   

13.
Mixed farming systems constitute a large proportion of agricultural production in the tropics, and provide multiple benefits for the world’s poor. However, our understanding of the functioning of these systems is limited. Modeling offers the best approach to quantify outcomes from many interacting causal variables in these systems. The objective of this study was to develop an integrated crop-livestock model to assess biophysical and economic consequences of farming practices exhibited in sheep systems of Yucatán state, Mexico. A Vensim™ dynamic stock-flow feedback model was developed to integrate scientific and practical knowledge of management, flock dynamics, sheep production, partitioning of nutrients, labor, and economic components. The model accesses sheep production and manure quantity and quality data generated using the Small Ruminant Nutrition System (SRNS), and interfaces on a daily basis with an Agricultural Production Systems Simulator (APSIM) model that simulates weather, crop, and soil dynamics. Model evaluation indicated that the integrated model adequately represents the complex interactions that occur between farmers, crops, and livestock.  相似文献   

14.
作物生长模型由最初的作物生长发育模型发展到农业决策支持模型,在科学研究、农业管理、政策制定等方面发挥着越来越重要的作用。本文首先回顾了作物生长模型的发展过程,并按照模型主要驱动因子,将作物生长模型分为土壤因子、光合作用因子和人为因子驱动3类并分别进行了归纳阐述;然后对典型的模型分别从模型模块、时空尺度、可模拟的作物类型等方面进行列表式对比;并对作物生长模型在气候变化评估、生产管理决策支持、资源管理优化等方面的应用,以及面临的极端条件、复杂农业景观和模型复杂度等挑战进行了总结,在此基础上认为遥感数据同化和孪生农场是其发展方向。  相似文献   

15.
The purpose of this study was to test the hypotheses that (1) the tree Acacia senegal competes for water with associated agricultural crops, and the soil water content would vary spatially with tree density and type of management; (2) the microclimate created by trees would favourably affect the soil water content and improve the growth of associated agricultural crops. Trees were grown at 5 m × 5 m or 10 m × 10 m spacing alone or in mixture with sorghum or sesame. Soil water content was measured using a neutron probe at three depths, 0–25, 25–50 and 50–75 cm; and at different stages of crop development (early, mid, and late). Crop growth and yield and the overall system performance were investigated over a 4-year period (1999–2002). Results showed no significant variation in the soil water content under different agroforestry systems. Intercropping also resulted in a higher land equivalent ratio. No significant variation was found between yields of sorghum and sesame when these crops were grown with or without trees. The averages crop yields were1.54 and 1.54 t ha−1 for sorghum; and 0.36 and 0.42 t ha−1for sesame in intercropping and pure cultivation, respectively. This suggests that at an early stage of agroforestry system management, A. senegal has no detrimental effect on agricultural crop yield. However, the pattern of resource capture by trees and crops can change as the system matures. There was little competition between trees and crops for water suggesting that in A. senegal agroforestry systems with 4-year-old trees the clay soil has enough water to support the crop growth over a whole growing season up to maturation and harvest.  相似文献   

16.
Models that simulate crop production systems are useful tools to aid in crop management. The manager can evaluate numerous management options quickly and select the options most suitable for his situation. The Florida Soybean growth model (SOYGRO) has been implemented with several user interfaces to meet specific management goals. These implementations include a gaming model (SOYGAME), a pest decision model (PESTDEC), an irrigation decision model (IRRDEC) and a strategy evaluation model (SICM). The crop model integrates the effects of weather conditions, crop management inputs and soil conditions on crop yield and the yield changes are reflected in the corresponding profit. Also described in the paper is an automated weather collection and reporting system for the acquisition and use of weather data.  相似文献   

17.
Bio-economic models can be used to assess the impact of policy and environmental measures through economic and environmental indicators. Focusing on agricultural systems, farmers’ decisions in terms of cropping systems and the associated crop management at field scale are essential in such studies. The objective of this paper is to present a study using a bio-economic model to assess the impact of the Nitrate Directive in the Midi-Pyrenees region (France) by analyzing, at the farm scale, farm income and three environmental indicators: nitrate leaching, erosion and water consumption. Two scenarios, the 2003 CAP reform (baseline scenario) and the Nitrate Directive (policy scenario), with a 2013 time horizon, were developed and compared for three representative arable farm types in the Midi-Pyrenees region. Different types of data characterizing the biophysical context in the region (soil, climate), the current cropping systems (rotation, crop management) and farm resources (irrigated land, labor) were collected to calibrate and run the models. Results showed that the implementation of the Nitrate Directive may not affect farm income. However, significant modifications to cropping systems and crop allocation to soil types were simulated. Contrary to expectations, nitrogen leaching at the farm scale did not change. Overall water consumption increased and soil erosion decreased due mainly to a modification in cropping patterns and management by soil type. This study provides an example of unanticipated effects of policy and trade-offs between environmental issues.  相似文献   

18.
《Agricultural Systems》1999,59(1):41-55
Environmental fate models are increasingly used to evaluate potential impacts of agrochemicals on water quality to aid in decision making. However, errors in predicting processes like evapotranspiration (ET), which is rarely measured during model validation studies, can significantly affect predictions of chemical fate and transport. This study compared approaches and predictions for ET by GLEAMS, Opus, PRZM-2, and RZWQM and determined effects of the predicted ET on simulations of other hydrology components. The ET was investigated for 2 years of various fallow–corn growing seasons under sprinkler irrigation. The comparison included annual cumulative daily potential ET (ETp), actual ET, and partitioning of total ET between soil evaporation (Es) and crop transpiration (Et). When measured pan evaporation was used for calculating ETp (the pan evaporation method), Opus, PRZM-2, and RZWQM predicted 74, 65, and 59%, respectively, of the 10-year average ET reported for a nearby site. When the energy-balance equations were used for calculating ETp (the combination methods), GLEAMS, Opus, PRZM-2, and RZWQM predicted 84, 105, 60, and 72% of the reported ET, respectively. The pan evaporation method predicted a similar amount of ET to the combination methods for bare soil, but predicted less ET when both Es and Et occurred. RZWQM reasonably predicted partitioning of ET to Es, while GLEAMS and Opus over-predicted this partitioning. A close correlation between soil water storage in the root zone and ET suggests that accurate soil water content predictions were fundamental to ET predictions. ©  相似文献   

19.
Nowadays European agriculture is evolving in a context where policy-making and environmental concerns play a key role. To better assess agro-environmental policies, the AROPAj agricultural supply model needs to take into account the technical characteristics of crop management for different farms. A method to build up specific relationships between yield and nitrogen fertilization that takes into account agronomic techniques is proposed in this paper. The nitrogen response curve is based on an exponential function that integrates economic properties consistently from an agronomic point of view. In AROPAj, individual production systems (farm types) do not have a given location within a specified region and in databases technical information is scarce. The method involves determining technical and physical characteristics, inputs that allow the STICS crop model to assess the yield response to nitrogen of each crop on every farm type. From this information, a nitrogen response curve can be drawn up for each crop of each one of the farms. It can take into account both nitrogen from purchased fertilizer and nitrogen from animal effluents produced on farm. The method was designed to be adaptable to any European region, and tests carried out on two French regions covering a wide range of situations (crops, soils, climates and techniques) showed it was able to cope with varying prices and environments. The agronomic consistency of STICS inputs and curve shapes was also checked. When incorporated into the AROPAj economic model, the response curves can be used to render farms more sensitive to agricultural policy scenarios, by allowing their optimal fertilization level to be adjusted.  相似文献   

20.
A farm systems mass-balance calculation model, FARMFLOW, was applied to a case study comparing organic and conventional management of a Swedish experimental dairy farm, Öjebyn. Parameterisation of the model is implemented using detailed field data from the Öjebyn farm where the two management systems have been run parallel for more than 11 years. Simulations were made to compare the stocks, flows and resulting balances of phosphorus (P) in the two systems during six crop rotations (36 years). In addition, a maximum animal density scenario was tested, in order to analyse the effects of increased production intensity. Results show that FARMFLOW can be a useful tool for analysing the impact of management on internal farm P dynamics, as well as imports and exports. The organic management results in a higher proportion of internal P flows whereas the conventional system relies more on imports of P in feed and mineral fertilisers. In both management systems, the crop rotation cause large temporal and spatial variation in the application of manure P to the soil system. The resulting field specific soil P accumulation can indicate which fields to target with changed fertilisation management. In the maximum animal density scenario, both management systems led to an application rate of manure P in excess of crop demands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号